1
|
Ye S, Yao K, Xue J. Leveraging Empowering Leadership to Improve Employees' Improvisational Behavior: The Role of Promotion Focus and Willingness to Take Risks. Psychol Rep 2025; 128:2092-2114. [PMID: 37092876 DOI: 10.1177/00332941231172707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Improvisational behavior is an individual's spontaneous and creative behavior in the face of emergencies, using existing material and emotional resources to respond quickly and effectively to uncertain situations. Despite increasing interest in this behavior, its antecedents remain unclear, with particular ambiguity regarding the relationship between empowering leadership and employee improvisational behavior. The present article addresses this ambiguity with the theory of reasoned action to examine whether the impact of empowering leadership on employees' improvisational behavior is determined by employees' attitudes toward such behavior. In this study, a multi-source design was adopted, and data (339 valid samples) were collected from five Internet companies in China's Jiangsu and Zhejiang provinces. Hierarchical regression and bootstrapping methods were used to test the hypotheses. The results reveal that (1) employees' promotion focus moderates the relationship between empowering leadership and improvisational behavior and (2) employees' willingness to take risks mediates the moderating effect of promotion focus. Our findings demonstrate employees' attitudinal utility in explaining when improvisational behavior is most likely to occur under empowering leadership.
Collapse
Affiliation(s)
- Suyang Ye
- School of Humanities and Communication, Zhejiang Gongshang University, Hangzhou, China
- Academe of Zhejiang Culture Industry Innovation & Development, Hangzhou, China
| | - Kaibo Yao
- School of Humanities and Communication, Zhejiang Gongshang University, Hangzhou, China
- Academe of Zhejiang Culture Industry Innovation & Development, Hangzhou, China
| | - Jiale Xue
- School of Business Administration, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Liu C, Zhang Y, Liao R, Wang L, Zhou X, Tan M, Xu K, Wang H, Wang Q, Zhao Y, Cui Z, Lan X. Single-cell RNA sequencing of bone marrow reveals the immune response mechanisms of lymphocytes under avian leukosis virus subgroup J infection. Poult Sci 2025; 104:104995. [PMID: 40121758 PMCID: PMC11981752 DOI: 10.1016/j.psj.2025.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Avian Leukosis Virus (ALV) can induce tumorigenesis and immune suppression by acting on lymphocytes in the bone marrow. In this study, single-cell RNA sequencing (scRNA-seq) was used to analyze chicken bone marrow lymphocytes under Avian Leukosis Virus subtype J (ALV-J) infection. Using subgroup-specific marker genes and cell state analysis, we identified 18 distinct cell clusters, including 8 T cell clusters, 2 B cell clusters, 5 tumor-like cell clusters, and 3 unidentified clusters. Gene expression analysis revealed that in the 10 T/B lymphocyte clusters, the differentially expressed genes in double-positive T cells, B1-like B cells, and cytotoxic T cells were highly enriched in pathways related to viral infection and immune response. These three cell populations exhibited high proportions and significant changes after infection, suggesting a strong immune response to ALV-J infection. Additionally, during ALV-J infection, the proportion of regulatory T cells and CTLA4 T cells increased, while immune suppressive factors TGFB1 and IL16 were highly expressed across the cell populations, indicating an immune-suppressive state in bone marrow lymphocytes. Moreover, ALV-J infected all cell populations; however, within the same cluster, only a fraction of the cells expressed ALV-J viral genes. Notably, in all cells expressing ALV-J viral genes, the "Rho family GTPase signaling pathway" associated with antiviral responses was activated. The Rho family, which is a key regulator of cytoskeletal reorganization and cell polarity, also plays a critical role in tumor cell proliferation and metastasis. Further analysis using Ingenuity Pathway Analysis (IPA) software predicted key upstream regulators of immune response, such as MYC and MCYN. In conclusion, this study identifies key genes and signaling pathways involved in immune responses of different lymphocyte subpopulations triggered by ALV-J infection in bone marrow. These findings contribute to a better understanding of the immune mechanisms in ALV-J-infected bone marrow lymphocytes and provide insights for discovering breeding loci for ALV-J resistance.
Collapse
Affiliation(s)
- Cheng Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Ruyu Liao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lecheng Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xinyi Zhou
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Min Tan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Keyun Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiwei Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qigui Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Xu Y, Li D, Wang N, Ge B, Meng C, Zhao M, Lin Z, Li M, Yuan Y, Cai Y, Shi L, Gao S, Ye H. miR-182 promoter hypermethylation predicts the better outcome of AML patients treated with AZA + VEN in a real-world setting. Clin Epigenetics 2025; 17:18. [PMID: 39910681 PMCID: PMC11800541 DOI: 10.1186/s13148-025-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND 5-Azacytidine (AZA) combined with the BCL2 inhibitor Venetoclax (VEN) is the standard treatment for elderly acute myeloid leukemia (AML) patients or those who are unfit for intensive chemotherapy (elderly or unfit AML). However, an effective and rapid predictive biomarker to predict treatment outcome remains elusive. METHODS miR-182 promoter methylation was measured in 94 AZA + VEN-treated elderly or unfit AML patients and 20 normal controls (NCs) samples. To determine whether miR-182 promoter methylation is a predictive marker of clinical outcomes in AZA + VEN-treated AML patients in a real-world setting, we analyzed and compared the complete remission (CR)/CR with incomplete hematologic recovery (CRi) rate, overall survival (OS), and leukemia free-survival (LFS) across different methylation groups: miR-182 promoter hypomethylation (median value < 20.21%) and hypermethylation (> 20.21%) in a retrospective study. RESULTS The average methylation frequency was markedly higher in 94 AZA + VEN-treated elderly or unfit AML patients than that in 20 NCs. However, some AML patients (11.7%) still presented low miR-182 promoter methylation (< 10%). The average time to obtain CR/CRi was shorter in AML patients with miR-182 promoter hypermethylation than AML with hypomethylation. Moreover, the median OS and LFS were longer in AML patients with miR-182 promoter hypermethylation than AML with hypomethylation. Finally, the area under the curve (AUC) for 1-year mortality was 0.831, for 2-year was 0.788, and for 3-year was 0.800. CONCLUSIONS AML patients with miR-182 promoter hypermethylation have better outcomes. miR-182 promoter methylation is a predictive biomarker for AZA + VEN-treated AML patients.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, 315099, Zhejiang Province, China
| | - Na Wang
- Health Care Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Bei Ge
- Infection Control Department, Eye Hospital, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou, Zhejiang Province, China
| | - Chen Meng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yue Cai
- Department of Clinical Medicine, Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Liuzhi Shi
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
4
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024; 103:4375-4400. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
5
|
Hjazi A, Jasim SA, Al-Dhalimy AMB, Bansal P, Kaur H, Qasim MT, Mohammed IH, Deorari M, Jawad MA, Zwamel AH. HOXA9 versus HOXB9; particular focus on their controversial role in tumor pathogenesis. J Appl Genet 2024; 65:473-492. [PMID: 38753266 DOI: 10.1007/s13353-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 08/09/2024]
Abstract
The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | | | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Israa Hussein Mohammed
- College of Nursing, National University of Science and Technology, Dhi Qar, Nasiriyah, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Xie L, Li W, Li Y. mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX. J Orthop Surg Res 2024; 19:485. [PMID: 39152460 PMCID: PMC11330078 DOI: 10.1186/s13018-024-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in children and adolescents under the age of 20. Dysregulation of microRNAs (miRNAs) is an important factor in the occurrence and progression of OS. MicroRNA miR-744-5p is aberrantly expressed in various tumors. However, its roles and molecular targets in OS remain unclear. METHODS Differentially expressed miRNAs in OS were analyzed using the Gene Expression Omnibus dataset GSE65071, and the potential hub miRNA was identified through weighted gene co-expression network analysis. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-744-5p in OS cell lines. In vitro experiments, including CCK-8 assays, colony formation assays, flow cytometry apoptosis assays, and tube formation assays, were performed to explore the effects of miR-744-5p on OS cell biological behaviors. The downstream target genes of miR-744-5p were predicted through bioinformatics, and the binding sites were validated by a dual-luciferase reporter assay. RESULTS The lowly expressed miRNA, miR-744-5p, was identified as a hub miRNA involved in OS progression through bioinformatic analysis. Nuclear factor I X (NFIX) was confirmed as a direct target for miR-744-5p in OS. In vitro studies revealed that overexpression of miR-744-5p could restrain the growth of OS cells, whereas miR-744-5p inhibition showed the opposite effect. It was also observed that treatment with the conditioned medium from miR-744-5p-overexpressed OS cells led to poorer proliferation and angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, NFIX overexpression restored the suppression effects of miR-744-5p overexpression on OS cell growth and HUVECs angiogenesis. CONCLUSION Our results indicated that miR-744-5p is a potential tumor-suppressive miRNA in OS progression by targeting NFIX to restrain the growth of OS cells and angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Yu Li
- First Ward of Trauma Orthopaedics, Yantai Shan Hospital, Yantai, Shandong, 264003, China.
| |
Collapse
|
7
|
Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med 2024; 24:142. [PMID: 38958690 PMCID: PMC11222192 DOI: 10.1007/s10238-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
This comprehensive exploration delves into the pivotal role of microRNAs (miRNAs) within the intricate tapestry of cellular regulation. As potent orchestrators of gene expression, miRNAs exhibit diverse functions in cellular processes, extending their influence from the nucleus to the cytoplasm. The complex journey of miRNA biogenesis, involving transcription, processing, and integration into the RNA-induced silencing complex, showcases their versatility. In the cytoplasm, mature miRNAs finely tune cellular functions by modulating target mRNA expression, while their reach extends into the nucleus, influencing transcriptional regulation and epigenetic modifications. Dysregulation of miRNAs becomes apparent in various pathologies, such as cancer, autoimmune diseases, and inflammatory conditions. The adaptability of miRNAs to environmental signals, interactions with transcription factors, and involvement in intricate regulatory networks underscore their significance. DNA methylation and histone modifications adds depth to understanding the dynamic regulation of miRNAs. Mechanisms like competition with RNA-binding proteins, sponging, and the control of miRNA levels through degradation and editing contribute to this complex regulation process. In this review, we mainly focus on how dysregulation of miRNA expression can be related with skin-related autoimmune and autoinflammatory diseases, arthritis, cardiovascular diseases, inflammatory bowel disease, autoimmune and autoinflammatory diseases, and neurodegenerative disorders. We also emphasize the multifaceted roles of miRNAs, urging continued research to unravel their complexities. The mechanisms governing miRNA functions promise advancements in therapeutic interventions and enhanced insights into cellular dynamics in health and disease.
Collapse
Affiliation(s)
- Emre Nalbant
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye.
| |
Collapse
|
8
|
Shenoy US, Basavarajappa DS, Kabekkodu SP, Radhakrishnan R. Pan-cancer exploration of oncogenic and clinical impacts revealed that HOXA9 is a diagnostic indicator of tumorigenesis. Clin Exp Med 2024; 24:134. [PMID: 38904676 PMCID: PMC11192824 DOI: 10.1007/s10238-024-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Homeodomain transcription factor A9 (HOXA9) is a member of the HOX cluster family of transcription factors that are crucially involved in embryo implantation, morphogenesis, body axis development, and endothelial cell differentiation. Despite numerous reports on its aberrant expression in a few malignancies, the molecular and functional complexity of HOXA9 across cancers remains obscure. We aimed to analyze the dynamic role of HOXA9 across cancers by identifying, analyzing, and understanding its multiple modes of regulation and functional implications and identifying possible therapeutic avenues. We conducted a comprehensive analysis to determine the role of HOXA9 across cancers. This approach involved the integration of large-scale datasets from public repositories such as the Genomic Data Commons, specifically the Cancer Genome Atlas (GDC-TCGA), across 33 different cancer types. The multiple modes of HOXA9 regulation by genetic and epigenetic factors were determined using online tools, which comprised experimentally validated observations. Furthermore, downstream pathways were identified by predicting the targets of HOXA9 and by performing functional enrichment analysis. We also assessed the clinical significance of HOXA9 in terms of prognosis and stage stratification. This study evaluated the correlation between HOXA9 and tumor-infiltrating molecules and discussed its association with therapeutically approved antineoplastic drugs. HOXA9 was significantly upregulated in 9 tumors and downregulated in 2 cancers. The deregulation of HOXA9 is primarily attributed to epigenetic factors, including promoter DNA methylation and noncoding RNAs (ncRNAs). The HOXA9 transcription factor interacts with PBX/MEIS cofactors and regulates multiple genes involved in cancer-associated EMT, autophagy, the cell cycle, metabolic pathways, Wnt signaling, TGF-β signaling, the AMPK pathway, PI3K/AKT signaling, and NF-κB signaling, thereby establishing control over downstream mechanisms. Differential expression in various clinical stages across cancers was shown to have prognostic significance and to be correlated with tumor-infiltrating immune molecules. The assessment of the correlation of HOXA9 expression with approved antineoplastic drugs revealed that targeting HOXA9 could be the most reliable strategy for preventing cancer progression. HOXA9 is upregulated in the majority of malignancies and drives cancer progression by regulating multiple signaling mechanisms. Hence, HOXA9 could be a reliable diagnostic indicator and a potential therapeutic candidate for solid cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield,, S10 2TA, UK.
| |
Collapse
|
9
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
10
|
Li D, Yuan Y, Meng C, Lin Z, Zhao M, Shi L, Li M, Ye D, Cai Y, He X, Ye H, Zhou S, Zhou H, Gao S. Low expression of miR-182 caused by DNA hypermethylation accelerates acute lymphocyte leukemia development by targeting PBX3 and BCL2: miR-182 promoter methylation is a predictive marker for hypomethylation agents + BCL2 inhibitor venetoclax. Clin Epigenetics 2024; 16:48. [PMID: 38528641 PMCID: PMC10964616 DOI: 10.1186/s13148-024-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND miR-182 promoter hypermethylation frequently occurs in various tumors, including acute myeloid leukemia, and leads to low expression of miR-182. However, whether adult acute lymphocyte leukemia (ALL) cells have high miR-182 promoter methylation has not been determined. METHODS To assess the methylation status of the miR-182 promoter, methylation and unmethylation-specific PCR analysis, bisulfite-sequencing analysis, and MethylTarget™ assays were performed to measure the frequency of methylation at the miR-182 promoter. Bone marrow cells were isolated from miR-182 knockout (182KO) and 182 wild type (182WT) mice to construct BCR-ABL (P190) and Notch-induced murine B-ALL and T-ALL models, respectively. Primary ALL samples were performed to investigate synergistic effects of the hypomethylation agents (HMAs) and the BCL2 inhibitor venetoclax (Ven) in vitro. RESULTS miR-182 (miR-182-5P) expression was substantially lower in ALL blasts than in normal controls (NCs) because of DNA hypermethylation at the miR-182 promoter in ALL blasts but not in normal controls (NCs). Knockout of miR-182 (182KO) markedly accelerated ALL development, facilitated the infiltration, and shortened the OS in a BCR-ABL (P190)-induced murine B-ALL model. Furthermore, the 182KO ALL cell population was enriched with more leukemia-initiating cells (CD43+B220+ cells, LICs) and presented higher leukemogenic activity than the 182WT ALL population. Furthermore, depletion of miR-182 reduced the OS in a Notch-induced murine T-ALL model, suggesting that miR-182 knockout accelerates ALL development. Mechanistically, overexpression of miR-182 inhibited proliferation and induced apoptosis by directly targeting PBX3 and BCL2, two well-known oncogenes, that are key targets of miR-182. Most importantly, DAC in combination with Ven had synergistic effects on ALL cells with miR-182 promoter hypermethylation, but not on ALL cells with miR-182 promoter hypomethylation. CONCLUSIONS Collectively, we identified miR-182 as a tumor suppressor gene in ALL cells and low expression of miR-182 because of hypermethylation facilitates the malignant phenotype of ALL cells. DAC + Ven cotreatment might has been applied in the clinical try for ALL patients with miR-182 promoter hypermethylation. Furthermore, the methylation frequency at the miR-182 promoter should be a potential biomarker for DAC + Ven treatment in ALL patients.
Collapse
Affiliation(s)
- Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Meng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Min Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yue Cai
- Department of Clinical Medicine, Wenzhou Medical University, Chashan District, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Haixia Zhou
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Feng S, Yuan Y, Lin Z, Li M, Ye D, Shi L, Li D, Zhao M, Meng C, He X, Wu S, Xiong F, Ye S, Yang J, Zhuang H, Hong L, Gao S. Low-dose hypomethylating agents cooperate with ferroptosis inducers to enhance ferroptosis by regulating the DNA methylation-mediated MAGEA6-AMPK-SLC7A11-GPX4 signaling pathway in acute myeloid leukemia. Exp Hematol Oncol 2024; 13:19. [PMID: 38378601 PMCID: PMC10877917 DOI: 10.1186/s40164-024-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Ferroptosis is a new form of nonapoptotic and iron-dependent type of cell death. Glutathione peroxidase-4 (GPX4) plays an essential role in anti-ferroptosis by reducing lipid peroxidation. Although acute myeloid leukemia (AML) cells, especially relapsed and refractory (R/R)-AML, present high GPX4 levels and enzyme activities, pharmacological inhibition of GPX4 alone has limited application in AML. Thus, whether inhibition of GPX4 combined with other therapeutic reagents has effective application in AML is largely unknown. METHODS Lipid reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) assays were used to assess ferroptosis in AML cells treated with the hypomethylating agent (HMA) decitabine (DAC), ferroptosis-inducer (FIN) RAS-selective lethal 3 (RSL3), or their combination. Combination index (CI) analysis was used to assess the synergistic activity of DAC + RSL3 against AML cells. Finally, we evaluated the synergistic activity of DAC + RSL3 in murine AML and a human R/R-AML-xenografted NSG model in vivo. RESULTS We first assessed GPX4 expression and found that GPX4 levels were higher in AML cells, especially those with MLL rearrangements, than in NCs. Knockdown of GPX4 by shRNA and indirect inhibition of GPX4 enzyme activity by RSL3 robustly induced ferroptosis in AML cells. To reduce the dose of RSL3 and avoid side effects, low doses of DAC (0.5 µM) and RSL3 (0.05 µM) synergistically facilitate ferroptosis by inhibiting the AMP-activated protein kinase (AMPK)-SLC7A11-GPX4 axis. Knockdown of AMPK by shRNA enhanced ferroptosis, and overexpression of SLC7A11 and GPX4 rescued DAC + RSL3-induced anti-leukemogenesis. Mechanistically, DAC increased the expression of MAGEA6 by reducing MAGEA6 promoter hypermethylation. Overexpression of MAGEA6 induced the degradation of AMPK, suggesting that DAC inhibits the AMPK-SLC7A11-GPX4 axis by increasing MAGEA6 expression. In addition, DAC + RSL3 synergistically reduced leukemic burden and extended overall survival compared with either DAC or RSL3 treatment in the MLL-AF9-transformed murine model. Finally, DAC + RSL3 synergistically reduced viability in untreated and R/R-AML cells and extended overall survival in two R/R-AML-xenografted NSG mouse models. CONCLUSIONS Our study first identify vulnerability to ferroptosis by regulating MAGEA6-AMPK-SLC7A11-GPX4 signaling pathway. Combined treatment with HMAs and FINs provides a potential therapeutic choice for AML patients, especially for R/R-AML.
Collapse
Affiliation(s)
- Shuya Feng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Meng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Shanshan Wu
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Fang Xiong
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang Province, China
| | - Siyu Ye
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China
| | - Junjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China
| | - Lili Hong
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China.
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Fyodorova SS, Shebunyaeva YY, Sumenkova DV, Zhimulev IF. MicroRNA Expression Profile in Bone Marrow and Lymph Nodes in B-Cell Lymphomas. Int J Mol Sci 2023; 24:15082. [PMID: 37894763 PMCID: PMC10606460 DOI: 10.3390/ijms242015082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hodgkin's lymphomas (HL) and the majority of non-Hodgkin's lymphomas (NHL) derive from different stages of B-cell differentiation. MicroRNA (miRNA) expression profiles change during lymphopoiesis. Thus, miRNA expression analysis can be used as a reliable diagnostic tool to differentiate tumors. In addition, the identification of miRNA's role in lymphopoiesis impairment is an important fundamental task. The aim of this study was to analyze unique miRNA expression profiles in different types of B-cell lymphomas. We analyzed the expression levels of miRNA-18a, -20a, -96, -182, -183, -26b, -34a, -148b, -9, -150, -451a, -23b, -141, and -128 in lymph nodes (LNs) in the following cancer samples: HL (n = 41), diffuse large B-cell lymphoma (DLBCL) (n = 51), mantle cell lymphoma (MCL) (n = 15), follicular lymphoma (FL) (n = 12), and lymphadenopathy (LA) (n = 37), as well as bone marrow (BM) samples: HL (n = 11), DLBCL (n = 42), MCL (n = 14), FL (n = 16), and non-cancerous blood diseases (NCBD) (n = 43). The real-time RT-PCR method was used for analysis. An increase in BM expression levels of miRNA-26b, -150, and -141 in MCL (p < 0.01) and a decrease in BM levels of the miR-183-96-182 cluster and miRNA-451a in DLBCL (p < 0.01) were observed in comparison to NCBD. We also obtained data on increased LN levels of the miR-183-96-182 cluster in MCL (p < 0.01) and miRNA-18a, miRNA-96, and miRNA-9 in FL (p < 0.01), as well as decreased LN expression of miRNA-150 in DLBCL (p < 0.01), and miRNA-182, miRNA-150, and miRNA-128 in HL (p < 0.01). We showed that miRNA expression profile differs between BM and LNs depending on the type of B-cell lymphoma. This can be due to the effect of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei E. Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Sofya S. Fyodorova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Yana Yu. Shebunyaeva
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Dina V. Sumenkova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
13
|
Liu S, Duan C, Xie J, Zhang J, Luo X, Wang Q, Liang X, Zhao X, Zhuang R, Zhao W, Yin W. Peripheral immune cell death in sepsis based on bulk RNA and single-cell RNA sequencing. Heliyon 2023; 9:e17764. [PMID: 37455967 PMCID: PMC10339024 DOI: 10.1016/j.heliyon.2023.e17764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Background Immune cell activation in early sepsis is beneficial to clear pathogens, but immune cell exhaustion during the inflammatory response induces immunosuppression in sepsis. Here, we studied the relationship between immune cell survival status and the prognosis of sepsis patients. Methods Sepsis patients admitted to our hospital with a diagnosis time of less than 24 h were recruited. RNA sequencing technologies were used to study functional alterations in various immune cells in peripheral blood mononuclear cells (PBMCs) from sepsis patients. Flow cytometry and electron microscopy were performed to study cell apoptosis and morphological alterations. Results A total of 68 sepsis patients with complete data were enrolled and divided into survival (45 patients) and death (23 patients) groups according to their prognosis. Patients in the death group had significantly increased lactic acid levels compared with those in the survival group, but there was no significant difference in other physiological and coagulation functional indicators between the two groups. Bulk RNA sequencing showed that cell death-related pathways and biomarkers were highly enriched and activated in the PBMCs of the death group than that in the survival group. Signs of mitochondrial damage, autophagosomes, cell surface damage and cell surface pore forming were also more pronounced in PBMCs from the death group under electron microscopy. Further single-cell RNA sequencing revealed that cell death occurred mainly in myeloid cells rather than lymphocytes at the early stage of sepsis; cell death patterns of destructive necrosis and pyroptosis were predominant in neutrophils, and apoptosis, autophagy and ferroptosis with less damage to the surroundings were predominant in monocytes. Conclusion Cell death mainly occurs in monocytes and neutrophils in the PBMCs of sepsis at the early stage. The study provides a perspective for the immunotherapy of early sepsis targeting immune cell death.
Collapse
Affiliation(s)
- Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu Luo
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaojun Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Xia L, Guo H, Wu X, Xu Y, Zhao P, Yan B, Zeng Y, He Y, Chen D, Gale RP, Zhang Y, Zhang X. Human circulating small non-coding RNA signature as a non-invasive biomarker in clinical diagnosis of acute myeloid leukaemia. Theranostics 2023; 13:1289-1301. [PMID: 36923527 PMCID: PMC10008735 DOI: 10.7150/thno.80054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; AML is highly heterogeneous and involves abnormalities at multiple omics levels. Small non-coding RNAs (sncRNAs) present in body fluids are important regulatory molecules and considered promising non-invasive clinical diagnostic biomarkers for disease. However, the signature of sncRNA profile alteration in AML patient serum and bone marrow supernatant is still under exploration. Methods: We examined data for blood and bone marrow samples from 80 consecutive, newly-diagnosed patients with AML and 12 healthy controls for high throughput small RNA-sequencing. Differentially expressed sncRNAs were analysed to reveal distinct patterns between AML patients and controls. Machine learning methods were used to evaluate the efficiency of specific sncRNAs in discriminating individuals with AML from controls. The altered expression level of individual sncRNAs was evaluated by RT-PCR, Q-PCR, and northern blot. Correlation analysis was employed to assess sncRNA patterns between serum and bone marrow supernatant. Results: We identified over 20 types of sncRNA categories beyond miRNAs in both serum and bone marrow supernatant, with highly coordinated expression patterns between them. Non-classical sncRNAs, including rsRNA (62.86%), ysRNA (14.97%), and tsRNA (4.22%), dominated among serum sncRNAs and showed sensitive alteration patterns in AML patients. According to machine learning-based algorithms, the tsRNA-based signature robustly discriminated subjects with AML from controls and was more reliable than that comprising miRNAs. Our data also showed that serum tsRNAs to be closely associated with AML prognosis, suggesting the potential application of serum tsRNAs as biomarkers to assist in AML diagnosis. Conclusions: We comprehensively characterized the expression pattern of circulating sncRNAs in blood and bone marrow and their alteration signature between healthy controls and AML patients. This study enriches research of sncRNAs in the regulation of AML, and provides insights into the role of sncRNAs in AML.
Collapse
Affiliation(s)
- Lin Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Bingbing Yan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yundi He
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Dan Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
15
|
Feng Y, Zhou YH, Zhao J, Su XL, Chen NX, Zhao YQ, Ye Q, Hu J, Ou-Yang ZY, Zhong MM, Yang YF, Han PJ, Guo Y, Feng YZ. Prognostic biomarker GSTK1 in head and neck squamous cell carcinoma and its correlation with immune infiltration and DNA methylation. Front Genet 2023; 14:1041042. [PMID: 36936420 PMCID: PMC10020208 DOI: 10.3389/fgene.2023.1041042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Glutathione S-transferase kappa 1 (GSTK1) is critical in sarcoma and breast cancer (BRCA) development. However, the clinical significance of GSTK1 in head and neck squamous cell carcinoma (HNSC) remains unclear. This study is the first investigation into the role of GSTK1 in HNSC. Methods: All original data were downloaded from the Cancer Genome Atlas (TCGA) dataset and verified by R Base Package 4.2.0. The expression of GSTK1 in various cancers was explored with TIMER and TCGA databases. Prognostic value of GSTK1 was analyzed via survival module of Kaplan-Meier plotter and Human Protein Atlas database and Cox regression analysis. The association between GSTK1 and clinical features was evaluated by Wilcoxon signed-rank test and logistic regression analysis. The relationship between GSTK1 and immune infiltration and methylation level was further explored. The expression of GSTK1 and its correlation with immune cell infiltration was verified by Immunohistochemical staining (IHC). Results: GSTK1 was lower in HNSC, BRCA, Lung squamous cell carcinoma, and Thyroid carcinoma than in para-carcinoma. Low GSTK1 expression was associated with worse overall survival in Bladder urothelial carcinoma, Kidney renal papillary cell carcinoma, BRCA, and HNSC. However, only in BRCA and HNSC, GSTK1 expression in tumors was lower than that in normal tissues. Cox regression analyses confirmed that GSKT1 was an independent prognostic factor of overall survival in HNSC patients. The decrease in GSTK1 expression in HNSC was significantly correlated with high T stage and smoker history. IHC showed that the expression level of GSTK1 in HNSC was lower than that in para-carcinoma. In addition, GSEA showed that three pathways related to immune infiltration were positively correlated, while two pathways related to DNA methylation were negatively correlated with expression of GSTK1. Further analysis showed that GSTK1 was moderately positively correlated with the infiltration level of T cells and Cytotoxic cells, which was further confirmed by IHC. The methylation level of GSTK1 was associated with prognosis in patients with HNSC. Conclusion: Low GSTK1 expression may be a potential molecular marker for poor prognosis in HNSC and provide new insight for the development of diagnostic marker or therapeutic target.
Collapse
Affiliation(s)
- Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Fan Yang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Peng-Ju Han
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yue Guo, ; Yun-Zhi Feng,
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yue Guo, ; Yun-Zhi Feng,
| |
Collapse
|