1
|
Wang Y, Ji X, Shi H, Liu S, Yu H. tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker. FRONT BIOSCI-LANDMRK 2025; 30:26345. [PMID: 39862092 DOI: 10.31083/fbl26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear. Consequently, we detected the expression profiles of tsRNAs in the plasma of patients with PE as well as those in the plasma of the healthy control group, and a multiplicity of experiments were conducted with the aim of clarifying their roles in the occurrence and development of PE and the feasibility of serving as predictive biomarkers for this disorder. METHODS High-throughput sequencing of tsRNA in plasma from PE cases was performed to evaluate its potential as a diagnostic or therapeutic biomarker. The function of tsRNA in trophoblasts was explored using the HTR-8/SVneo cell line. Plasma from pregnant women with suspected PE was analyzed to assess the potential of tsRNA to act as a predictive marker of PE. RESULTS High-throughput sequencing of tsRNA was performed on plasma from pregnant women with PE and from healthy pregnant controls. Analysis revealed a significant reduction in the level of tRNA-derived stress-inducing RNA (tiRNA)-Gln-CTG in the plasma (p < 0.001) and placenta (p < 0.001) of pregnant women with PE, suggesting its potential involvement in the development of this condition. tiRNA-Gln-CTG was identified in the cytoplasm and nucleus of HTR-8/SVneo cells. In vitro experiments revealed that tiRNA-Gln-CTG influences the proliferation, cycling, migration, and invasion of HTR-8/SVneo cells, possibly by targeting the 3'UTR region of thrombospondin-2 messenger ribonucleic acid (mRNA) for degradation. Extracellular vesicle (EV) carriers may mediate the level of tiRNA-Gln-CTG in the circulation. Y-box binding protein-1 (YBX1) may be involved in loading tiRNA-Gln-CTG into EVs. The sensitivity of low tiRNA-Gln-CTG levels for predicting the onset of PE in suspected cases was 91.7% within 1 week of delivery, 85.7% within 4 weeks of delivery, and 89.3% before delivery, with corresponding specificities of 84.5%, 79.2%, and 73.4%, respectively. CONCLUSIONS tiRNA-Gln-CTG significantly influences trophoblast function and is associated with the development of PE. It can serve as an effective biomarker for predicting PE progression within one week of delivery in women with suspected PE.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China
| | - Xiaohong Ji
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 210000 Nanjing, Jiangsu, China
| | - Hengmei Shi
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 210000 Nanjing, Jiangsu, China
| | - Sicong Liu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Baumann A, Ahmadi N, Wolfien M. A Current Perspective of Medical Informatics Developments for a Clinical Translation of (Non-coding)RNAs and Single-Cell Technologies. Methods Mol Biol 2025; 2883:31-51. [PMID: 39702703 DOI: 10.1007/978-1-0716-4290-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The journey from laboratory research to clinical practice is marked by significant advancements in the fields of single-cell technologies and non-coding RNA (ncRNA) research. This convergence may reshape our approach to personalized medicine, offering groundbreaking insights and treatments in various clinical settings. This chapter discusses advancements in (nc)RNAs in the clinics, innovations in single-cell technologies and algorithms, and the impact on actual precision medicine, showing the integration of single-cell and ncRNA research can have a tangible impact on precision medicine. Case studies in Oncology, Immunology, and other fields demonstrate how these technologies can guide treatment decisions, tailor therapies to individual patients, and improve outcomes. This approach is particularly potent in addressing diseases with high inter- and intra-tumor heterogeneity. The final sections address standardization, data integration, and analysis challenges because the complexity and volume of data generated by single-cell and ncRNA research poses significant challenges. Medical Informatics is not just a support tool but could be seen as a pivotal component in advancing clinical applications of single-cell and ncRNA research by bridging the gap between bench and bedside. The future of personalized medicine depends on our ability to harness the power of these technologies, and Medical Informatics in combination with ncRNA and single-cell technologies may stand at the forefront of this endeavor.
Collapse
Affiliation(s)
- Alexandra Baumann
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Najia Ahmadi
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Markus Wolfien
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany.
| |
Collapse
|
3
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Lan S, Liu S, Wang K, Chen W, Zheng D, Zhuang Y, Zhang S. tRNA-derived RNA fragment, tRF-18-8R6546D2, promotes pancreatic adenocarcinoma progression by directly targeting ASCL2. Gene 2024; 927:148739. [PMID: 38955307 DOI: 10.1016/j.gene.2024.148739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.
Collapse
Affiliation(s)
- Sihua Lan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sixue Liu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ke Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Wenying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Dandan Zheng
- Doctor of excellence program, First Affiliated Hospital of Jilin University, Changchun 130000, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
5
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
6
|
Yang W, Liu Y, Wang J, Liu T, Tian T, Li T, Ding L, Chen W, Wang H, Zhu J, Zhang C, Pan B, Zhou J, Fan J, Wang B, Yang X, Guo W. Optimizing of a suitable protocol for isolating tissue-derived extracellular vesicles and profiling small RNA patterns in hepatocellular carcinoma. Liver Int 2024; 44:2672-2686. [PMID: 39037259 DOI: 10.1111/liv.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive. METHODS To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis. RESULTS A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming. CONCLUSION The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyan Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - XinRong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Ding C, Wang N, Peng A, Wang Z, Li B, Zhang X, Zeng J, Zhou Y. Potential Diagnostic Biomarkers of tRNA-Derived Small RNAs in PBMCs for Nonproliferative Diabetic Retinopathy in Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol 2024; 13:32. [PMID: 39167377 PMCID: PMC11343001 DOI: 10.1167/tvst.13.8.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose This study aimed to reveal the altered expressions of transfer RNA (tRNA)-derived small RNAs (tsRNAs) in peripheral blood mononuclear cells and identify potential diagnostic biomarkers for nonproliferative diabetic retinopathy (NPDR) from patients with type 2 diabetes mellitus. Methods Fifty-three patients diagnosed with type 2 diabetes mellitus were enrolled, including 25 patients with NPDR and 28 patients without diabetic retinopathy (DR) as the control group. A small RNA microarray was performed to screen the differentially expressed tsRNAs. Reverse transcriptase quantitative polymerase chain reaction was used to validate the significantly altered tsRNAs in a screening cohort and a verification cohort. The target genes, their enriched functions, and signaling pathways were predicted by bioinformatics analyses. Results In total, 668 upregulated and 485 downregulated tsRNAs were found in the NPDR group by microarray. Eight tsRNAs were validated preliminarily to be altered significantly by reverse transcriptase quantitative polymerase chain reaction, and their target genes were enriched in cellular macromolecule metabolic process and ubiquitin-mediated proteolysis. The verification experiments confirmed the increased levels of 5'tiRNA-35-PheGAA-8, tRF3-28-PheGAA-1, and tRF3b-PheGAA-6, and the decreased levels of mt-tRF3-19-ArgTCG, mt-tRF3-20-ArgTCG, and mt-tRF3-21-ArgTCG in patients with NPDR, which may serve as potential biomarkers with clinical significance. Conclusions The study recognized the tsRNA expression changes in peripheral blood mononuclear cells from patients with NPDR and discovered potential diagnostic biomarkers that hold clinical significance. Translational Relevance The significantly altered tsRNAs identified in the study may serve as potential diagnostic biomarkers for patients with NPDR as well as possible molecular targets of the occurrence and development of DR.
Collapse
Affiliation(s)
- Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Nan Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Aohua Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
8
|
Zeng Y, Yuan Z, Li J, Yang L, Li C, Xiang Y, Wu L, Xia T, Zhong L, Li Y, Wu N. Small non-coding RNA signatures in atrial appendages of patients with atrial fibrillation. J Cell Mol Med 2024; 28:e18483. [PMID: 39051629 PMCID: PMC11193094 DOI: 10.1111/jcmm.18483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
The development of high-throughput technologies has enhanced our understanding of small non-coding RNAs (sncRNAs) and their crucial roles in various diseases, including atrial fibrillation (AF). This study aimed to systematically delineate sncRNA profiles in AF patients. PANDORA-sequencing was used to examine the sncRNA profiles of atrial appendage tissues from AF and non-AF patients. Differentially expressed sncRNAs were identified using the R package DEGseq 2 with a fold change >2 and p < 0.05. The target genes of the differentially expressed sncRNAs were predicted using MiRanda and RNAhybrid. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. In AF patients, the most abundant sncRNAs were ribosomal RNA-derived small RNAs (rsRNAs), followed by transfer RNA-derived small RNAs (tsRNAs), and microRNAs (miRNAs). Compared with non-AF patients, 656 rsRNAs, 45 miRNAs, 191 tsRNAs and 51 small nucleolar RNAs (snoRNAs) were differentially expressed in AF patients, whereas no significantly differentially expressed piwi-interacting RNAs were identified. Two out of three tsRNAs were confirmed to be upregulated in AF patients by quantitative reverse transcriptase polymerase chain reaction, and higher plasma levels of tsRNA 5006c-LysCTT were associated with a 2.55-fold increased risk of all-cause death in AF patients (hazard ratio: 2.55; 95% confidence interval, 1.56-4.17; p < 0.001). Combined with our previous transcriptome sequencing results, 32 miRNA, 31 snoRNA, 110 nucleus-encoded tsRNA, and 33 mitochondria-encoded tsRNA target genes were dysregulated in AF patients. GO and KEGG analyses revealed enrichment of differentially expressed sncRNA target genes in AF-related pathways, including the 'calcium signaling pathway' and 'adrenergic signaling in cardiomyocytes.' The dysregulated sncRNA profiles in AF patients suggest their potential regulatory roles in AF pathogenesis. Further research is needed to investigate the specific mechanisms of sncRNAs in the development of AF and to explore potential biomarkers for AF treatment and prognosis.
Collapse
Affiliation(s)
- Yuhong Zeng
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Zhiquan Yuan
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Jun Li
- Thoracic and Cardiac Surgery, Southwest HospitalThe First Affiliated Hospital of Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Lanqing Yang
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Chengying Li
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Tingting Xia
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Li Zhong
- Cardiovascular Disease CenterThird Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Na Wu
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
9
|
Shen Z, Naveed M, Bao J. Untacking small RNA profiling and RNA fragment footprinting: Approaches and challenges in library construction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1852. [PMID: 38715192 DOI: 10.1002/wrna.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Zhaokang Shen
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Muhammad Naveed
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
10
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhao P, Xia L, Chen D, Xu W, Guo H, Xu Y, Yan B, Wu X, Li Y, Zhang Y, Zhang X. METTL1 mediated tRNA m 7G modification promotes leukaemogenesis of AML via tRNA regulated translational control. Exp Hematol Oncol 2024; 13:8. [PMID: 38268051 PMCID: PMC10807064 DOI: 10.1186/s40164-024-00477-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND RNA modifications have been proven to play fundamental roles in regulating cellular biology process. Recently, maladjusted N7-methylguanosine (m7G) modification and its modifiers METTL1/WDR4 have been confirmed an oncogene role in multiple cancers. However, the functions and molecular mechanisms of METTL1/WDR4 in acute myeloid leukemia (AML) remain to be determined. METHODS METTL1/WDR4 expression levels were quantified using qRT-PCR, western blot analysis on AML clinical samples, and bioinformatics analysis on publicly available AML datasets. CCK-8 assays and cell count assays were performed to determine cell proliferation. Flow cytometry assays were conducted to assess cell cycle and apoptosis rates. Multiple techniques were used for mechanism studies in vitro assays, such as northern blotting, liquid chromatography-coupled mass spectrometry (LC-MS/MS), tRNA stability analysis, transcriptome sequencing, small non-coding RNA sequencing, quantitative proteomics, and protein synthesis measurements. RESULTS METTL1/WDR4 are significantly elevated in AML patients and associated with poor prognosis. METTL1 knockdown resulted in reduced cell proliferation and increased apoptosis in AML cells. Mechanically, METTL1 knockdown leads to significant decrease of m7G modification abundance on tRNA, which further destabilizes tRNAs and facilitates the biogenesis of tsRNAs in AML cells. In addition, profiling of nascent proteins revealed that METTL1 knockdown and transfection of total tRNAs that were isolated from METTL1 knockdown AML cells decreased global translation efficiency in AML cells. CONCLUSIONS Taken together, our study demonstrates the important role of METTL1/WDR4 in AML leukaemogenesis, which provides a promising target candidate for AML therapy.
Collapse
Affiliation(s)
- Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lin Xia
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Dan Chen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Wei Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Bingbing Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yuxia Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, China.
| |
Collapse
|
12
|
Zhong X, Wang H, Jia X, Chen G, Li H, Li P, Liu W, Yang T, Xie J. Association of noncoding RNAs with Kawasaki disease: A meta-analysis based on the current evidences. Medicine (Baltimore) 2023; 102:e35736. [PMID: 37960719 PMCID: PMC10637536 DOI: 10.1097/md.0000000000035736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND In recent years, many studies have focused on the relationship between noncoding RNAs (ncRNAs) and Kawasaki disease (KD). Studies have indicated that ncRNAs are associated with the occurrence and development of KD. Thus, we performed a systematic review and meta-analysis to investigate the diagnostic value of ncRNAs in KD patients. METHODS We searched the PubMed, Web of Science, Embase and Cochrane Library, China National Knowledge Infrastructure, VIP, China Biology Medicine disc databases, and Wanfang databases until August 25, 2023 and screened all eligible studies focusing on the diagnostic performance of ncRNAs in KD patients. RESULTS In total, 535 articles were found, and 28 articles were included in this systematic review and meta-analysis. The calculated area under the curve value was 0.880 (95% confidence intervals, 0.840-0.900). The pooled sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were 0.790, 0.830, 4.610, and 0.260, respectively. The pooled diagnostic odds ratio was 17.890 (95% confidence intervals, 13.110-24.420), indicating a relatively good diagnostic performance of the ncRNAs for detecting KD. In addition, the diagnostic value of micro RNAs in KD was better than that of long noncoding RNAs and circular noncoding RNAs. A subgroup analysis by specimen indicated a better diagnostic value of ncRNAs in plasma and platelet than serum. The diagnostic accuracy of ncRNAs was better in febrile controls than in healthy control groups, indicating a relatively good accuracy in distinguishing KD patients from febrile diseases. CONCLUSIONS This systematic review and meta-analysis demonstrated that ncRNAs could be used as novel biomarkers for detecting KD. More studies should be conducted in the future to verify the diagnostic values of ncRNAs in KD.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Pediatrics, The Third People's Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol 2023; 16:64. [PMID: 37349851 PMCID: PMC10286502 DOI: 10.1186/s13045-023-01466-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|