1
|
Weng Y, Zhang W, Qu F, Deng Z, Zhang X, Liu S, Wei H, Hao T, Gao L, Zhang M, Chen Y. Human platelet-rich plasma promotes primordial follicle activation via the PI3K/Akt signaling pathway. Mol Hum Reprod 2025; 31:gaaf007. [PMID: 40088933 DOI: 10.1093/molehr/gaaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/18/2025] [Indexed: 03/17/2025] Open
Abstract
The activation of dormant primordial follicles is a promising method to improve the fertility of premature ovarian insufficiency (POI) patients. Many experiments from both human and animal studies suggest that human platelet-rich plasma (hPRP) may restore ovarian function and promote follicle growth. However, the underlying mechanisms remain unclear. In the current study, our results demonstrate that hPRP significantly increased the number of growing follicles and promoted the proliferation of granulosa cells in cultured mouse ovaries. hPRP also significantly increased the protein levels of phosphorylated protein kinase B (p-Akt) and forkhead box O3a (p-FOXO3a), as well as the number of oocytes with FOXO3a nuclear export in cultured mouse ovaries. Immunofluorescence results showed that in vitro treatment with hPRP significantly increased the fluorescence intensity of p-Akt in oocytes. The inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by LY294002 blocked the hPRP-induced increase in the number of growing follicles in cultured mouse ovaries. Furthermore, hPRP injected i.p. or added to the medium significantly increased the number of growing follicles and the protein levels of p-Akt in the ovaries of newborn mice and in cultured human ovarian tissues. Taken together, our findings from mouse and human experiments indicate that hPRP promotes the activation of primordial follicles through the PI3K/Akt signaling pathway in oocytes.
Collapse
Affiliation(s)
- Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- Center for Reproductive Medicine, Zhongshan City People's Hospital, Zhongshan, China
| | - Wenbo Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fan Qu
- Center for Reproductive Medicine, Zhongshan City People's Hospital, Zhongshan, China
| | - Zehua Deng
- Center for Reproductive Medicine, Zhongshan City People's Hospital, Zhongshan, China
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tiantian Hao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuezhou Chen
- Center for Reproductive Medicine, Zhongshan City People's Hospital, Zhongshan, China
| |
Collapse
|
2
|
Guo X, Wang X, Wei J, Ma Y, Wang F, Sun Q, Sun H, Zhu G. BMP2 is required for granulosa cell proliferation and primordial follicle activation in chicken. Poult Sci 2025; 104:104716. [PMID: 39731872 PMCID: PMC11743103 DOI: 10.1016/j.psj.2024.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
During ovary development, the dormant primordial follicles (PF) are stimulated and begin to develop into primary follicles (PrF), a process called follicle activation. Only activated follicles can continue to grow and release the eggs in the future, making the female animal fertile. The molecular events during PF activation are not fully understood. In this study, we analyzed the transcriptome of ovarian granulosa cells (GCs) before and after PF activation from 4- and 7-day-old chicks and identified that BMP signaling was induced during this process. Further, exogenous addition of Bone Morphogenetic Protein-2 (BMP2) protein significantly promotes the proliferation of GCs, thereby increasing the number of PrF in the in vitro ovary culture system. Conversely, when the BMP2 was blocked, the proliferation of GCs is inhibited, leading to a decrease in the number of PrF generated. These findings reveal the critical role of BMP2 in regulating the activation of chicken PF and provide new strategies for improving egg production performance.
Collapse
Affiliation(s)
- Xiaotong Guo
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Xuzhao Wang
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Jiahui Wei
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Yuxiao Ma
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Feiyi Wang
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Qing Sun
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongcai Sun
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Guiyu Zhu
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China.
| |
Collapse
|
3
|
Liu S, Wang W, Liu H, Wei H, Weng Y, Zhou W, Zhang X, He S, Chen Y, Wang Y, Zhang M, Chen X. Berberine promotes primordial follicle activation and increases ovulated oocyte quantity in aged mice. Mol Med 2024; 30:251. [PMID: 39707173 DOI: 10.1186/s10020-024-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Primordial follicle activation is vital for the reproduction of women with advanced age and premature ovarian insufficiency (POI). But there is a lack of effective and safe therapeutic options to activate their primordial follicles in vivo. Berberine (BBR) possesses multiple pharmacological properties, but its impact on primordial follicle activation remains unclear. METHODS The role of BBR on primordial activation was investigated by neonatal mouse ovary culture and intraperitoneal injection, and by human ovarian fragment culture. Furthermore, the effect of BBR on the quantity of ovulated oocytes was investigated by the intragastric administration of aged mice. RESULTS BBR in vitro culture and in vivo intraperitoneal injection significantly increased growing follicle number and phosphorylated protein kinase B (p-Akt) levels in neonatal mouse ovaries. BBR also significantly increased the relative fluorescence intensities of p-Akt in the oocytes of primordial follicles. BBR-increased the number of growing follicles and the levels of p-Akt were blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Furthermore, BBR intragastric administration significantly increased the quantity of ovulated oocytes in aged mice. Moreover, BBR significantly increased growing follicle proportion and p-Akt levels in cultured human ovarian fragments. CONCLUSION BBR promotes mouse and human primordial follicle activation through the PI3K/Akt pathway in oocytes, and improves the quantity of ovulated oocytes in aged mice. Our results suggest a potential use of oral medicine BBR to improve fertility in POI patients and aged women.
Collapse
Affiliation(s)
- Shuang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenjun Zhou
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Sihui He
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ye Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yahong Wang
- Reproductive Medicine Center, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Xin Chen
- Reproductive Medicine Center, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China.
| |
Collapse
|
4
|
Zhou W, Li B, Wang Z, Liu S, Wang W, He S, Chen Y, Zhang X, Zhang M. Premeiotic deletion of Eif2s2 causes oocyte arrest at the early diplotene stage and apoptosis in mice. Cell Prolif 2024; 57:e13718. [PMID: 39044637 PMCID: PMC11628728 DOI: 10.1111/cpr.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2), a subunit of the heterotrimeric G protein EIF2, is involved in the initiation of translation. Our findings demonstrate that the depletion of Eif2s2 in premeiotic germ cells causes oocyte arrest at the pachytene and early diplotene stages at 1 day postpartum (dpp) and 5 dpp, respectively, and eventually leads to oocyte apoptosis and failure of primordial follicle formation. Further studies reveal that Eif2s2 deletion downregulates homologous recombination-related and mitochondrial fission-related protein levels, and upregulates the integrated stress response-related proteins and mRNA levels. Consistently, Eif2s2 deletion significantly decreases the expression of dictyate genes and compromises mitochondrial function, characterized by elongated shapes, decreased ATP levels and mtDNA copy number, along with an excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, DNA damage response and proapoptotic protein levels increase, while anti-apoptotic protein levels decrease in Eif2s2-deleted mice. An increase in oocytes with positive cleaved-Caspase-3 and TUNEL signals, alongside reduced Lamin B1 intensity, further indicates oocyte apoptosis. Collectively, Eif2s2 deletion in premeiotic germ cells causes oocyte meiotic arrest at the early diplotene stage by impairing homologous recombination, and eventually leads to oocyte apoptosis mainly through the downregulation of mitochondrial fission-related proteins, ROS accumulation and subsequent DNA damage.
Collapse
Affiliation(s)
- Wenjun Zhou
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Biao Li
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhijuan Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Sihui He
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ye Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
5
|
Shen H, Nie J, Li G, Tian H, Zhang J, Luo X, Xu D, Sun J, Zhang D, Zhang H, Zhao G, Wang W, Zheng Z, Yang S, Jin Y. Stem cell factor restrains endoplasmic reticulum stress-associated apoptosis through c-Kit receptor activation of JAK2/STAT3 axis in hippocampal neuronal cells. PLoS One 2024; 19:e0310872. [PMID: 39546459 PMCID: PMC11567559 DOI: 10.1371/journal.pone.0310872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common elderly disorder characterized by cognitive decline. Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including AD. Stem cell factor (SCF) performs its biological functions by binding to and activating receptor tyrosine kinase c-Kit. We aimed to investigate the effects of SCF/c-Kit and JAK2/STAT3 on ER stress and apoptosis in AD. METHODS The study employed L-glutamic acid (L-Glu)-treated HT22 cells as sporadic AD cell model and APP/PS1 mice as an animal model of familiar AD. SCF, c-Kit inhibitor ISCK03 or JAK2/STAT3 inhibitor WP1066 was treated to verify the effects of SCF/c-Kit and JAK2/STAT3 on ER stress and apoptosis of L-Glu-exposed HT22 cells. Cell viability was assessed by MTT. BrdU detected cell proliferation. Flow cytometry measured cell apoptosis. The expression levels of ER stress markers GRP78, PERK, CHOP, and apoptosis protein caspase3 were determined by western blot. The effect on the mRNA of ER stress markers GRP78, PERK, CHOP and apoptotic caspase3 were quantified by RT-qPCR in primary cultured hippocampal neurons from APP/PS1 transgenic mice. RESULTS Administration of SCF significantly augmented the activity and proliferation of hippocampal neuronal cells, protecting cells against L-Glu induced ER stress-associated apoptosis. Moreover, the addition of ISCK03 (c-Kit inhibitor) or WP1066 (JAK2/STAT3 inhibitor) reversed SCF effects on ER stress and apoptosis in vitro. CONCLUSION We found that SCF inhibits L-Glu-induced ER stress-associated apoptosis via JAK2/STAT3 axis in HT22 hippocampal neuronal cells, as well as in primary hippocampal neurons from APP/PS1 mice, which provides valuable insights into the molecular mechanisms underlying the pathogenesis of AD and explores novel therapeutic targets for both sporadic and familial AD.
Collapse
Affiliation(s)
- Haiying Shen
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Junjie Nie
- Department of Nuclear Medicine, Jilin People’s Hospital, Jilin, Jilin Province, P.R. China
| | - Guangqing Li
- Department of Computer Application, School of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Hongyan Tian
- Department of Histoembryology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Jun Zhang
- Department of Histoembryology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Xiaofeng Luo
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Da Xu
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Jie Sun
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Dongfang Zhang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Hong Zhang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Guifang Zhao
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Weiyao Wang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Zhonghua Zheng
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Shuyan Yang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Yuji Jin
- Department of Medical Genetics, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| |
Collapse
|
6
|
Zhang W, Gao L, Zhang X, Weng Y, Du Y, Sun YL, Wei H, Hao T, Chen Y, Liang X, Zhang M. Theophylline derivatives promote primordial follicle activation via cAMP-PI3K/Akt pathway and ameliorate fertility deficits in naturally aged mice. Int J Biol Sci 2024; 20:5312-5329. [PMID: 39430241 PMCID: PMC11489179 DOI: 10.7150/ijbs.99936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
In elderly women and patients with premature ovarian insufficiency (POI), activating their remaining dormant primordial follicles in vivo is challenging. In this study, we found that phosphodiesterase (PDE) subtypes were expressed mainly in primordial follicle oocytes. The specific PDE inhibitors and theophylline derivatives (aminophylline, dyphylline, and enprofylline) activated primordial follicles in neonatal mice by ovary culture and intraperitoneal injection. These inhibitors also increased the levels of ovarian cyclic adenosine monophosphate (cAMP) and oocyte phosphorylated protein kinase B (p-Akt). The blockade of gap junctions using carbenoxolone (CBX) increased the levels of ovarian cAMP and pre-granulosa cell phosphorylated mammalian target of rapamycin (p-mTOR), suggesting that oocyte PDEs hydrolyze cAMP from pre-granulosa cells through gap junctions to maintain primordial follicle dormancy. Importantly, oral aminophylline improved ovulated oocyte quantity and quality, and increased offspring numbers in naturally aged mice. In addition, theophylline derivatives also activated human primordial follicles and increased p-Akt levels. Thus, theophylline derivatives activate primordial follicles by accumulating cAMP levels and activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway in oocytes, and oral aminophylline increased fertility in naturally aged female mice by improving ovulated oocyte quantity and quality. As oral medications, theophylline derivatives may be used to improve fertility in elderly women and patients with POI.
Collapse
Affiliation(s)
- Wenbo Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Du
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan-Li Sun
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Tiantian Hao
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuezhou Chen
- Reproductive Medicine Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
7
|
Wang W, Liu H, Liu S, Hao T, Wei Y, Wei H, Zhou W, Zhang X, Hao X, Zhang M. Oocyte-specific deletion of eukaryotic translation initiation factor 5 causes apoptosis of mouse oocytes within the early-growing follicles by mitochondrial fission defect-reactive oxygen species-DNA damage. Clin Transl Med 2024; 14:e1791. [PMID: 39113233 PMCID: PMC11306288 DOI: 10.1002/ctm2.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.
Collapse
Affiliation(s)
- Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Tiantian Hao
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying Wei
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Wenjun Zhou
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xiaoqiong Hao
- Department of PhysiologyBaotou Medical CollegeBaotouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
8
|
Liang X, Xie H, Yu L, Ouyang J, Peng Q, Chen K, Liu F, Chen H, Chen X, Du X, Zhu X, Li G, He R. Study on the effects and mechanisms of Wenzhong Bushen Formula in improving ovarian reserve decline in mice based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117756. [PMID: 38218503 DOI: 10.1016/j.jep.2024.117756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Wenzhong Bushen Formula (WZBSF) is a traditional Chinese medicine empirical formula known for its effects in tonifying qi, strengthening the spleen, warming the kidneys, promoting yang, regulating blood circulation, and balancing menstruation. Clinical evidence has demonstrated its significant efficacy in treating Diminished Ovarian Reserve (DOR) by improving ovarian reserves. However, the specific pharmacological mechanisms of WZBSF remain unclear. AIM OF THE STUDY This study aims to investigate the mechanisms by which WZBSF improves ovarian reserve decline through network pharmacology and animal experiments. METHODS AND MATERIALS WZBSF was analyzed using a dual UPLC-MS/MS and GC-MS platform. Effective components and targets of WZBSF were obtained from the TCMSP database and standardized using UniProt. Disease targets were collected from GeneCard, OMIM, PHARMGKB, and DisGeNET databases, with cross-referencing between the two sets of targets. A PPI protein interaction network was constructed using Cytoscape3.9.1 and STRING database, followed by KEGG and GO enrichment analysis using the Metascape database. Finally, an ovarian reserve decline model was established in mice, different doses of WZBSF were administered, and experimental validation was conducted through serum hormone detection, H&E staining, immunofluorescence (IF), immunohistochemistry (IHC), and Western blot analysis (WB). RESULTS WZBSF shares 145 common targets with ovarian reserve decline. GO enrichment analysis revealed involvement in biological processes such as response to hormone stimulation and phosphatase binding, while KEGG analysis implicated pathways including the PI3K-AKT signaling pathway and FoxO signaling pathway. In mice with ovarian reserve decline, WZBSF restored weight gain rate, increased ovarian index, normalized estrous cycles, reversed serum hormone imbalances, restored various follicle counts, and improved ovarian morphology. Additionally, WZBSF reduced p-AKT and p-FOXO3a levels, preventing excessive activation of primordial follicles and maintaining ovarian reserve. CONCLUSION WZBSF can ameliorate cyclophosphamide and busulfan-induced ovarian reserve decline, and its mechanism may be associated with the inhibition of the PI3K/AKT/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Haibo Xie
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Leyi Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiahui Ouyang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qingjie Peng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Keming Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feifei Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hua Chen
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaojiang Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoli Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiangdong Zhu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangyong Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|