1
|
Wang R, He Y, Wang Y, Wang J, Ding H. Palmitoylation in cardiovascular diseases: Molecular mechanism and therapeutic potential. IJC HEART & VASCULATURE 2025; 58:101675. [PMID: 40242212 PMCID: PMC12002947 DOI: 10.1016/j.ijcha.2025.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, and involves complex pathophysiological mechanisms that encompass various biological processes and molecular pathways. Post-translational modifications of proteins play crucial roles in the occurrence and progression of cardiovascular diseases, among which palmitoylation is particularly important. Various proteins associated with cardiovascular diseases can be palmitoylated to enhance the hydrophobicity of their molecular subdomains. This lipidation can significantly affect some pathophysiological processes, such as metabolism, inflammation by altering protein stability, localization, and signal transduction. In this review, we narratively summarize recent advances in the palmitoylation of proteins related to cardiovascular diseases and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rongli Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuan 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuan 430030, PR China
| |
Collapse
|
2
|
Liu TT, Zeng KW. Recent advances in target identification technology of natural products. Pharmacol Ther 2025; 269:108833. [PMID: 40015520 DOI: 10.1016/j.pharmthera.2025.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Natural products, characterized by their structural diversity, broad spectrum of biological activities, and safe yet effective therapeutic potential, have become pivotal resources in drug research and development. However, the target proteins of many natural products remain unidentified, a significant challenge that impedes their development into viable drug candidates. Therefore, the target identification is crucial for elucidating the pharmacological mechanisms of natural products and facilitating their therapeutic applications. In this review, we present a comprehensive overview of recent advancements in methodologies for target identification of natural products. Additionally, we predict future developments in new technologies for target discovery. Collectively, this review establishes a methodological framework for uncovering the cellular targets and pharmacological mechanisms of natural products, thereby advancing the development of innovative natural product-based drugs.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Su D, Liu S, Lyu C, Wu D, Wang T, Wan X, Zhou L, Kang C, Guo L. Traditional Herbal Medicine Pithecellobium clypearia (Jack) Benth: Research progress in chemical constituents and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119635. [PMID: 40118196 DOI: 10.1016/j.jep.2025.119635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pithecellobium clypearia, a traditional herbal medicine, has garnered widespread attention for its significant anti-infective benefits. However, there is currently a lack of comprehensive reviews examining the chemical constituents and pharmacological activities of P. clypearia. AIMS OF THE STUDY This review aims to investigate the chemical constituents and pharmacological effects of P. clypearia, and to explore its potential for wider medical applications through the synthesis of these findings. MATERIALS AND METHODS The Web of Science, PubMed, CNKI, Google Scholar, and WanFang databases were searched for Pithecellobium clypearia, Using "Pithecellobium clypearia", "Archidendron clypearia", "pharmacology", "chemical composition" and "biological activity", as the keywords, we summarized the main chemical compositions and pathological mechanisms of P. clypearia. RESULTS A total of 129 compounds were isolated from P. clypearia, the primary active components identified include flavonoids, polysaccharides, lignins, triterpenoids, steroids, and phenolic acids. These compounds contribute to the medicinal plant's diverse pharmacological effects, which include antiviral, antibacterial, anti-inflammatory, antioxidant, and neuroprotective properties. P. clypearia presents great potential, especially in its antiviral and anti-inflammatory effects, indicating its valuable role in future therapeutic strategies. CONCLUSION P. clypearia has demonstrated effectiveness and safety in treating various respiratory and gastrointestinal diseases. It shows good monotherapy efficacy and significantly enhances overall treatment outcomes when used in combination therapy. P. clypearia is a valuable treatment option for patients of different age groups and provides a safe and effective alternative in various clinical settings.
Collapse
Affiliation(s)
- Dapeng Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Siqi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chaogeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dehua Wu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liangyun Zhou
- Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Liu H, Wen S, Xu C, Kang X, Kong E. Mechanisms and functional implications of ZDHHC5 in cellular physiology and disease. J Lipid Res 2025; 66:100793. [PMID: 40180214 DOI: 10.1016/j.jlr.2025.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025] Open
Abstract
Post-translational lipid modification by palmitoylation is a reversible process crucial for maintaining cellular functionality. The palmitoyl acyltransferase zinc finger Asp-His-His-Cys motif-containing 5 (ZDHHC5) has garnered significant attention due to its roles in neurodegenerative diseases, oncogenesis, and cardiac function. ZDHHC5 recognizes substrates through diverse mechanisms and its activity is regulated by multiple factors. Highly expressed in the brain, liver, and heart, ZDHHC5 exerts regulatory functions in various cellular processes through self-regulation and substrate palmitoylation. This review summarizes ZDHHC5's regulatory roles in the nervous system, lipid metabolism and oncogenesis, highlighting its potential as a therapeutic target for neurological, lipid metabolic diseases, and cancer due to its involvement in diverse cellular processes and disease-associated dysfunctions.
Collapse
Affiliation(s)
- Huicong Liu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China; Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
| | - Shuo Wen
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Chang Xu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China; Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
5
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Wang F, Liu W, Geng Y, Shi Y, Tian Y, Zhang B, Luo Y, Sun X. New drug discovery and development from natural products: Advances and strategies. Pharmacol Ther 2024; 264:108752. [PMID: 39557343 DOI: 10.1016/j.pharmthera.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Natural products (NPs) have a long history as sources for drug discovery, more than half of approved drugs are related to NPs, which also exhibit multifaceted advantages in the clinical treatment of complex diseases. However, bioactivity screening of NPs, target identification, and design optimization require continuously improved strategies, the complexity of drug mechanism of action and the limitations of technological strategies pose numerous challenges to the development of new drugs. This review begins with an overview of bioactivity- and target-based drug development patterns for NPs, advances in NP screening and derivatization, and the advantages and problems of major targets such as genes and proteins. Then, target-based drugs as well as identification and validation methods are further discussed to elucidate their mechanism of action. Subsequently, the current status and development trend of the application of traditional and emerging technologies in drug discovery and development of NPs are systematically described. Finally, the collaborative strategy of multi-technology integration and multi-disciplinary intersection is emphasized for the challenges faced in the identification, optimization, activity evaluation, and clinical application of NPs. It is hoped to provide a systematic overview and inspiration for exploring new drugs from natural resources in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
7
|
Wang YH, Gao P, Wang YQ, Xu LZ, Zeng KW, Tu PF. Small-molecule targeting PKM2 provides a molecular basis of lactylation-dependent fibroblast-like synoviocytes proliferation inhibition against rheumatoid arthritis. Eur J Pharmacol 2024; 972:176551. [PMID: 38570082 DOI: 10.1016/j.ejphar.2024.176551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lu-Zheng Xu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|