1
|
Tighe RM, Heck K, Soderblom E, Zhou S, Birukova A, Young K, Rouse D, Vidas J, Komforti MK, Toomey CB, Cuttitta F, Sunday ME. Immediate Release of Gastrin-Releasing Peptide Mediates Delayed Radiation-Induced Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1029-1040. [PMID: 30898588 DOI: 10.1016/j.ajpath.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Radiation-induced pulmonary fibrosis (RTPF) is a progressive, serious condition in many subjects treated for thoracic malignancies or after accidental nuclear exposure. No biomarker exists for identifying the irradiated subjects most susceptible to pulmonary fibrosis (PF). Previously, we determined that gastrin-releasing peptide (GRP) was elevated within days after birth in newborns exposed to hyperoxia who later developed chronic lung disease. The goal of the current study was to test whether radiation (RT) exposure triggers GRP release in mice and whether this contributes to RTPF in vivo. We determined urine GRP levels and lung GRP immunostaining in mice 0 to 24 after post-thoracic RT (15 Gy). Urine GRP levels were significantly elevated between 24 hours post-RT; GRP-blocking monoclonal antibody 2A11, given minutes post-RT, abrogated urine GRP levels by 6 to 12 hours and also altered phosphoprotein signaling pathways at 24 hours post-RT. Strong extracellular GRP immunostaining was observed in lung at 6 hours post-RT. Mice given one dose of GRP monoclonal antibody 2A11 24 hours post-RT had significantly reduced myofibroblast accumulation and collagen deposition 15 weeks later, indicating protection against lung fibrosis. Therefore, elevation of urine GRP could be predictive of RTPF development. In addition, transient GRP blockade could mitigate PF in normal lung after therapeutic or accidental RT exposure.
Collapse
Affiliation(s)
- Robert M Tighe
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Karissa Heck
- Department of Pathology, Duke University Durham, North Carolina
| | - Erik Soderblom
- Department of Cell Biology, Duke University Durham, North Carolina
| | - Shutang Zhou
- Department of Pathology, Duke University Durham, North Carolina
| | - Anastasiya Birukova
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Durham, North Carolina
| | - Douglas Rouse
- Division of Laboratory Animal Resources, Duke University Durham, North Carolina
| | - Jessica Vidas
- Department of Pathology, Duke University Durham, North Carolina
| | | | | | - Frank Cuttitta
- Mouse, Cancer and Genetics Program, National Cancer Institute, Frederick, Maryland
| | - Mary E Sunday
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina; Department of Pathology, Duke University Durham, North Carolina.
| |
Collapse
|
2
|
Lin H, Chen H, Shao X, Deng C. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Mikrochim Acta 2018; 185:562. [PMID: 30488348 DOI: 10.1007/s00604-018-3109-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023]
Abstract
A zirconium(IV)-based metal organic framework (Zr-MOF) was deposited on polydopamine-coated silica microspheres to form microspheres of type SiO2@PDA@Zr-MOF. These were packed into capillary columns for enrichment of phosphopeptides. The column was off-line coupled to both matrix-assisted laser desorption/ionization time of flight mass spectrometry and LC-ESI-MS/MS. The method has a detection limit as low as 4 fmol of β-casein digest and a selectivity as high as 1:1000 (molar ratio of β-casein and BSA digest). It was applied to the analysis of human saliva. In total, 240 endogenous phosphopeptides were identified in only 25 μL human saliva. Graphical abstract A zirconium-based metal organic framework (Zr-MOF) was modified outside of polydopamine-coated silica microspheres to form microspheres named SiO2@PDA@Zr-MOF. Then they were packed in capillary columns for selective enrichment of phosphopeptides via interaction between Zr-O clusters and phosphate groups. The pre-concentration resulted in a better detection of phosphopeptides by mass spectrometry. Tris: Tris(hydroxymethyl)aminomethane; DMF: Dimethyl Formamide; Zr-MOF: Zirconium(IV)-organic framework; MOAC: Metal oxide affinity chromatography.
Collapse
Affiliation(s)
- Haizhu Lin
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Hemei Chen
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Xi Shao
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Tape C, Worboys JD, Sinclair J, Gourlay R, Vogt J, McMahon KM, Trost M, Lauffenburger DA, Lamont DJ, Jørgensen C. Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC. Anal Chem 2014; 86:10296-302. [PMID: 25233145 PMCID: PMC4206527 DOI: 10.1021/ac5025842] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/18/2014] [Indexed: 12/28/2022]
Abstract
Reproducible, comprehensive phosphopeptide enrichment is essential for studying phosphorylation-regulated processes. Here, we describe the application of hyper-porous magnetic TiO2 and Ti-IMAC microspheres for uniform automated phosphopeptide enrichment. Combining magnetic microspheres with a magnetic particle-handling robot enables rapid (45 min), reproducible (r2 ≥ 0.80) and high-fidelity (>90% purity) phosphopeptide purification in a 96-well format. Automated phosphopeptide enrichment demonstrates reproducible synthetic phosphopeptide recovery across 2 orders of magnitude, "well-to-well" quantitative reproducibility indistinguishable to internal SILAC standards, and robust "plate-to-plate" reproducibility across 5 days of independent enrichments. As a result, automated phosphopeptide enrichment enables statistical analysis of label-free phosphoproteomic samples in a high-throughput manner. This technique uses commercially available, off-the-shelf components and can be easily adopted by any laboratory interested in phosphoproteomic analysis. We provide a free downloadable automated phosphopeptide enrichment program to facilitate uniform interlaboratory collaboration and exchange of phosphoproteomic data sets.
Collapse
Affiliation(s)
- Christopher
J. Tape
- The
Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan D. Worboys
- The
Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - John Sinclair
- The
Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Robert Gourlay
- FingerPrints
Proteomics Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Janis Vogt
- FingerPrints
Proteomics Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly M. McMahon
- Cancer
Research UK Manchester Institute, The University
of Manchester, Wilmslow
Road, Manchester M20 4BX, United Kingdom
| | - Matthias Trost
- FingerPrints
Proteomics Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Douglas A. Lauffenburger
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas J. Lamont
- FingerPrints
Proteomics Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Claus Jørgensen
- The
Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
- Cancer
Research UK Manchester Institute, The University
of Manchester, Wilmslow
Road, Manchester M20 4BX, United Kingdom
| |
Collapse
|
5
|
Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, Fernández-García M, Ferrer M. Understanding the antimicrobial mechanism of TiO₂-based nanocomposite films in a pathogenic bacterium. Sci Rep 2014; 4:4134. [PMID: 24549289 PMCID: PMC3928576 DOI: 10.1038/srep04134] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023] Open
Abstract
Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose radical-mediated TiO2 photocatalytic action of such nanocomposites and evaluate the genome/proteome-wide expression profiles of Pseudomonas aeruginosa PAO1 cells after two minutes of intervention. The results indicate that the impact on the gene-wide flux distribution and metabolism is moderate in the analysed time span. Rather, the photocatalytic action triggers the decreased expression of a large array of genes/proteins specific for regulatory, signalling and growth functions in parallel with subsequent selective effects on ion homeostasis, coenzyme-independent respiration and cell wall structure. The present work provides the first solid foundation for the biocidal action of titania and may have an impact on the design of highly active photobiocidal nanomaterials.
Collapse
Affiliation(s)
- Anna Kubacka
- Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - María Suárez Diez
- Chair of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands
| | - David Rojo
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | | | - Sergio Ciordia
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, 28049 Madrid, Spain
| | - Inés Zapico
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, 28049 Madrid, Spain
| | - Juan P Albar
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, 28049 Madrid, Spain
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | - Vitor A P Martins dos Santos
- 1] Chair of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands [2] LifeGlimmer GmbH, 12163 Berlin, Germany
| | | | | |
Collapse
|
6
|
Hoos MD, Richardson BM, Foster MW, Everhart A, Thompson JW, Moseley MA, Colton CA. Longitudinal study of differential protein expression in an Alzheimer's mouse model lacking inducible nitric oxide synthase. J Proteome Res 2013; 12:4462-77. [PMID: 24006891 DOI: 10.1021/pr4005103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process that involves altered brain immune, neuronal and metabolic functions. Understanding the underlying mechanisms has relied on mouse models that mimic components of AD pathology. We used gel-free, label-free LC-MS/MS to quantify protein and phosphopeptide levels in brains of APPSwDI/NOS2-/- (CVN-AD) mice. CVN-AD mice show a full spectrum of AD-like pathology, including amyloid deposition, hyperphosphorylated and aggregated tau, and neuronal loss that worsens with age. Tryptic digests, with or without phosphopeptide enrichment on an automated titanium dioxide LC system, were separated by online two-dimensional LC and analyzed on a Waters Synapt G2 HDMS, yielding relative expression for >950 proteins and >1100 phosphopeptides. Among differentially expressed proteins were known markers found in humans with AD, including GFAP and C1Q. Phosphorylation of connexin 43, not previously described in AD, was increased at 42 weeks, consistent with dysregulation of gap junctions and activation of astrocytes. Additional alterations in phosphoproteins suggests dysregulation of mitochondria, synaptic transmission, vesicle trafficking, and innate immune pathways. These data validate the CVN-AD mouse model of AD, identify novel disease and age-related changes in the brain during disease progression, and demonstrate the utility of integrating unbiased and phosphoproteomics for understanding disease processes in AD.
Collapse
Affiliation(s)
- Michael D Hoos
- Department of Medicine/Neurology, ‡Institute for Genome Sciences & Policy, School of Medicine, and §Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Duke University , Durham, North Carolina 27710, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Yang S, Counter CM. Cell cycle regulated phosphorylation of the telomere-associated protein TIN2. PLoS One 2013; 8:e71697. [PMID: 23977114 PMCID: PMC3745427 DOI: 10.1371/journal.pone.0071697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/03/2013] [Indexed: 01/26/2023] Open
Abstract
The protein TIN2 is a member of telomere-binding protein complex that serves to cap and protect mammalian chromosome ends. As a number of proteins in this complex are phosphorylated in a cell cycle-dependent manner, we investigated whether TIN2 is modified by phosphorylation as well. We performed phospho-proteomic analysis of human TIN2, and identified two phosphorylated residues, serines 295 and 330. We demonstrated that both these sites were phosphorylated during mitosis in human cells, as detected by Phos-tag reagent and phosphorylation-specific antibodies. Phosphorylation of serines 295 and 330 appeared to be mediated, at least in part, by the mitotic kinase RSK2. Specifically, phosphorylation of TIN2 at both these residues was increased upon expression of RSK2 and reduced by an inhibitor of the RSK family of kinases. Moreover, RSK2 phosphorylated TIN2 in vitro. The identification of these specifically timed post-translational events during the cell cycle suggests a potential mitotic regulation of TIN2 by phosphorylation.
Collapse
Affiliation(s)
- Shuqun Yang
- Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, DUMC, Durham, North Carolina, United States of America
| | - Christopher M. Counter
- Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, DUMC, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|