1
|
Zou Y, Hu L, Zou W, Li H. Association of Low Leptin with Poor 3-Month Prognosis in Ischemic Stroke Patients with Type 2 Diabetes. Clin Interv Aging 2020; 15:2353-2361. [PMID: 33328729 PMCID: PMC7734075 DOI: 10.2147/cia.s279535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Leptin, an adipokine, has effects on the cardiovascular system with both protective and harmful role. This study aimed to assess the relationship between leptin and 3-month prognosis in ischemic stroke patients with type 2 diabetes. Patients and Methods As a prospective single-center observational study, we collected consecutive first-ever acute ischemia stroke with type 2 diabetes mellitus from February 2019 to February 2020. Serum samples were obtained at admission, and leptin serum levels were tested by the ELISA method. Logistic regression models were used to assess leptin's prognostic value to predict the functional outcome and mortality within three months. Results Finally, two hundred and eleven patients were included, and the mean leptin serum level was 16.8 (SD. 6.9) ng/mL. At admission, 53.6% of those included patients (N=113) were defined as severe stroke (NIH Stroke Scale [NIHSS]>5). In multivariable models adjusted for other factors, leptin levels<11.6ng/mL (lowest quartile, Q1) related to severe stroke and the risk increased 175% (odds ratios [OR] =2.75; 95% confidence interval [CI]=2.13-3.38; P=0.002). Serum leptin levels on admission in patients with poor outcomes and nonsurvivors were significantly reduced (P<0.001 and P<0.001). Leptin levels <11.6ng/mL (lowest quartile, Q1) related to a higher risk of poor functional impairment (OR=5.13; 95% CI =3.25-6.86; P<0.001) and mortality (OR=3.19; 95% CI =2.03-4.25; P<0.001). Conclusion The data shows that leptin serum level is a useful prognostic biomarker in ischemic stroke patients with type 2 diabetes, and this relationship is negative.
Collapse
Affiliation(s)
- Yi Zou
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ling Hu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wenjun Zou
- General Surgery, Nanchang Third Hospital, Nanchang, People's Republic of China
| | - Honglin Li
- Department of Biochemistry, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
2
|
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39:1176-1188. [PMID: 29877321 PMCID: PMC6289384 DOI: 10.1038/aps.2018.40] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Leptin, an adipokine that is implicated in the control of food intake via appetite suppression, may also stimulate oxidative stress, inflammation, thrombosis, arterial stiffness, angiogenesis and atherogenesis. These leptin-induced effects may predispose to the development of cardiovascular diseases. In the present review we discuss the evidence linking leptin levels with the presence, severity and/or prognosis of both coronary artery disease and non-cardiac vascular diseases such as stroke, carotid artery disease, peripheral artery disease (PAD) and abdominal aortic aneurysms (AAA) as well as with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). Leptin levels have been positively associated with the presence, severity, extent and lesion complexity of coronary atherosclerosis as well as with the presence, severity and poor clinical outcomes of both ischemic and hemorrhagic strokes. But conflicting results also exist. Furthermore, leptin was reported to independently predict common carotid intima-media thickness and carotid plaque instability. A link between hyperleptinemia and PAD has been reported, whereas limited data were available on the potential association between leptin and AAA. Elevated leptin concentrations have also been related to CKD incidence and progression as well as with insulin resistance, T2DM, micro- and macrovascular diabetic complications. Statins and antidiabetic drugs (including sitagliptin, metformin, pioglitazone, liraglutide and empagliflozin) may affect leptin levels. Further research is needed to establish the potential use (if any) of leptin as a therapeutic target in these diseases.
Collapse
Affiliation(s)
- Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK.
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
4
|
Opatrilova R, Caprnda M, Kubatka P, Valentova V, Uramova S, Nosal V, Gaspar L, Zachar L, Mozos I, Petrovic D, Dragasek J, Filipova S, Büsselberg D, Zulli A, Rodrigo L, Kruzliak P, Krasnik V. Adipokines in neurovascular diseases. Biomed Pharmacother 2017; 98:424-432. [PMID: 29278852 DOI: 10.1016/j.biopha.2017.12.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is now described as an endocrine organ secreting a number of adipokines contributing to the development of inflammation and metabolic imbalance, but also endothelial dysfunction, vascular remodeling, atherosclerosis, and ischemic stroke. Leptin, adiponectin, and resistin are the most studied adipokines which play important roles in the regulation of cardiovascular homeostasis. Leptin and adiponectin mediate both proatherogenic and antiatherogenic responses. Leptin and adiponectin have been linked to the development of coronary heart disease and may be involved in the underlying biological mechanism of ischemic stroke. Resistin, a pro-inflammatory cytokine, is predictive of atherosclerosis and poor clinical outcomes in patients with coronary artery disease and ischemic stroke. The changes in serum levels of novel adipokines apelin, visfatin are also associated with acute ischemic stroke. These adipokines have been proposed as potential prognostic biomarkers of cardiovascular mortality/morbidity and therapeutic targets in patients with cardiometabolic diseases. In this article, we summarize the biologic role of the adipokines and discuss the link between dysfunctional adipose tissue and metabolic/inflammation imbalance, consequently endothelial damage, progression of atherosclerotic disease, and the occurrence of ischemic stroke.
Collapse
Affiliation(s)
- Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Sona Uramova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Vladimir Nosal
- Department of Neurology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Ludovit Gaspar
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Lukas Zachar
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jozef Dragasek
- Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases and Slovak Medical University, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Anthony Zulli
- Centre for Chronic Disease (CCD), College of Health & Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Vladimir Krasnik
- Department of Ophthalmology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| |
Collapse
|
5
|
Letra L, Sena C. Cerebrovascular Disease: Consequences of Obesity-Induced Endothelial Dysfunction. ADVANCES IN NEUROBIOLOGY 2017; 19:163-189. [PMID: 28933065 DOI: 10.1007/978-3-319-63260-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the well-known global impact of overweight and obesity in the incidence of cerebrovascular disease, many aspects of this association are still inconsistently defined. In this chapter we aim to present a critical review on the links between obesity and both ischemic and hemorrhagic stroke and discuss its influence on functional outcomes, survival, and current treatments to acute and chronic stroke. The role of cerebrovascular endothelial function and respective modulation is also described as well as its laboratory and clinical assessment. In this context, the major contributing mechanisms underlying obesity-induced cerebral endothelial function (adipokine secretion, insulin resistance, inflammation, and hypertension) are discussed. A special emphasis is given to the participation of adipokines in the pathophysiology of stroke, namely adiponectin, leptin, resistin, apelin, and visfatin.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Neurology Department, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal.
| | - Cristina Sena
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Kantorová E, Jesenská Ľ, Čierny D, Zeleňák K, Sivák Š, Stančík M, Galajda P, Nosáľ V, Kurča E. The Intricate Network of Adipokines and Stroke. Int J Endocrinol 2015; 2015:967698. [PMID: 26783391 PMCID: PMC4689915 DOI: 10.1155/2015/967698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023] Open
Abstract
Cerebrovascular disorders, particularly ischemic stroke, are one of the most common neurological disorders. High rates of overweight and obesity support an interest in the role of adipose tissue and adipose tissue releasing cytokines in inducing associated comorbidities. Adipokines can serve as a key messenger to central energy homeostasis and metabolic homeostasis. They can contribute to the crosstalk between adipose tissue and brain. However recent research has offered ambiguous data on the network of adipose tissue, adipokines, and vascular disorders. In our paper we provide a critical insight into the role of adipokines in evolution of ischemic stroke.
Collapse
Affiliation(s)
- Ema Kantorová
- Jessenius Faculty of Medicine, Comenius University, Clinic of Neurology, Malá Hora 4A, 03601 Martin, Slovakia
- *Ema Kantorová:
| | - Ľubica Jesenská
- Jessenius Faculty of Medicine, Comenius University, Department of Medical Biochemistry, Malá Hora 4A, 03601 Martin, Slovakia
| | - Daniel Čierny
- Jessenius Faculty of Medicine, Comenius University, Department of Medical Biochemistry, Malá Hora 4A, 03601 Martin, Slovakia
| | - Kamil Zeleňák
- Jessenius Faculty of Medicine, Comenius University, Clinic of Radiodiagnostics, Malá Hora 4A, 03601 Martin, Slovakia
| | - Štefan Sivák
- Jessenius Faculty of Medicine, Comenius University, Clinic of Neurology, Malá Hora 4A, 03601 Martin, Slovakia
| | - Matej Stančík
- Jessenius Faculty of Medicine, Comenius University, Clinic of Internal Medicine I, Malá Hora 4A, 036 01 Martin, Slovakia
| | - Peter Galajda
- Jessenius Faculty of Medicine, Comenius University, Clinic of Internal Medicine I, Malá Hora 4A, 036 01 Martin, Slovakia
| | - Vladimír Nosáľ
- Jessenius Faculty of Medicine, Comenius University, Clinic of Neurology, Malá Hora 4A, 03601 Martin, Slovakia
| | - Egon Kurča
- Jessenius Faculty of Medicine, Comenius University, Clinic of Neurology, Malá Hora 4A, 03601 Martin, Slovakia
| |
Collapse
|
7
|
Jotic A, Milicic T, Covickovic Sternic N, Kostic VS, Lalic K, Jeremic V, Mijajlovic M, Lukic L, Rajkovic N, Civcic M, Macesic M, Seferovic JP, Stanarcic J, Aleksic S, Lalic NM. Decreased Insulin Sensitivity and Impaired Fibrinolytic Activity in Type 2 Diabetes Patients and Nondiabetics with Ischemic Stroke. Int J Endocrinol 2015; 2015:934791. [PMID: 26089903 PMCID: PMC4452095 DOI: 10.1155/2015/934791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
We analyzed (a) insulin sensitivity (IS), (b) plasma insulin (PI), and (c) plasminogen activator inhibitor-1 (PAI-1) in type 2 diabetes (T2D) patients with (group A) and without (group B) atherothrombotic ischemic stroke (ATIS), nondiabetics with ATIS (group C), and healthy controls (group D). IS was determined by minimal model (Si). Si was lower in A versus B (1.18 ± 0.67 versus 2.82 ± 0.61 min-1/mU/L × 104; P < 0.001) and in C versus D (3.18 ± 0.93 versus 6.13 ± 1.69 min-1/mU/L × 104; P < 0.001). PI and PAI-1 were higher in A versus B (PI: 19.61 ± 4.08 versus 14.91 ± 1.66 mU/L; P < 0.001, PAI-1: 7.75 ± 1.04 versus 4.57 ± 0.72 mU/L; P < 0.001) and in C versus D (PI: 15.14 ± 2.20 versus 7.58 ± 2.05 mU/L; P < 0.001, PAI-1: 4.78 ± 0.98 versus 3.49 ± 1.04 mU/L; P < 0.001). Si correlated with PAI-1 in T2D patients and nondiabetics, albeit stronger in T2D. Binary logistic regression identified insulin, PAI-1, and Si as independent predictors for ATIS in T2D patients and nondiabetics. The results imply that insulin resistance and fasting hyperinsulinemia might exert their atherogenic impact through the impaired fibrinolysis.
Collapse
Affiliation(s)
- Aleksandra Jotic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Tanja Milicic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Nadezda Covickovic Sternic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Vladimir S. Kostic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Katarina Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Veljko Jeremic
- Department for Operations Research and Statistics, Faculty of Organizational Sciences, University of Belgrade, Jove Ilica 154, 11 000 Belgrade, Serbia
| | - Milija Mijajlovic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Ljiljana Lukic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Natasa Rajkovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Milorad Civcic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Marija Macesic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Jelena P. Seferovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Jelena Stanarcic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Sandra Aleksic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Nebojsa M. Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
- *Nebojsa M. Lalic:
| |
Collapse
|