1
|
Gao X, Han W, Chen L, Li H, Zhou F, Bai B, Yan J, Guo Y, Liu K, Li W, Li R, Yuan Q, Zhang J, Lu Y, Zhao X, Ji G, Li M, Zhao Q, Wu K, Li Z, Nie Y. Association of CDX2 and mucin expression with chemotherapeutic benefits in patients with stage II/III gastric cancer. Cancer Med 2023; 12:17613-17631. [PMID: 37602699 PMCID: PMC10523976 DOI: 10.1002/cam4.6379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Better predictors of patients with stage II/III gastric cancer (GC) most likely to benefit from adjuvant chemotherapy are urgently needed. This study aimed to assess the ability of CDX2 and mucin markers to predict prognosis and fluorouracil-based adjuvant chemotherapy benefits. METHODS CDX2 and mucin protein expressions were examined by immunohistochemistry and compared with survival and adjuvant chemotherapy benefits in a prospective evaluation cohort of 782 stage II/III GC patients. Then, the main findings were validated in an independent validation cohort (n = 386) and an external mRNA sequencing dataset (ACRG cohort, n = 193). RESULTS In the evaluation cohort, CDX2, CD10, MUC2, MUC5AC, and MUC6 expressions were observed in 59.7%, 26.7%, 27.6%, 55.1%, and 57.7% of patients, respectively. However, only the expression of CDX2 was found to be associated with adjuvant chemotherapy benefits. Most importantly, CDX2-negative patients had a poorer prognosis when treated with surgery only, while the prognosis of CDX2-negative and CDX2-positive patients was similar when receiving postoperative adjuvant chemotherapy. Further analysis revealed that patients with CDX2 negative tumors benefited from chemotherapy (5-year overall survival rates: 60.0% with chemotherapy vs. 23.2% with surgery-only, p < 0.001), whereas patients with CDX2 positive tumors did not (pinteraction = 0.004). Consistent results were obtained in the validation and ACRG cohorts. CONCLUSIONS Negative expression of CDX2 is an independent risk factor for survival in stage II/III GC, but subsequent adjuvant chemotherapy is able to compensate for this unfavorable effect. Therefore, active chemotherapy is more urgent for patients with negative CDX2 expression than for patients with positive CDX2 expression.
Collapse
Affiliation(s)
- Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
- Department of Health Statistics, Shaanxi Key Laboratory of Free Radical Biology and Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Preventive MedicineFourth Military Medical UniversityXi'anChina
| | - Weili Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Ling Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Hongwei Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Fenli Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Bin Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Junya Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Yong Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Kun Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Wenjiao Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Renlong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Qiangqiang Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Jiehao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Gang Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Mengbin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Qingchuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Zengshan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
2
|
Aziz S, Rasheed F, Zahra R, König S. Gastric Cancer Pre-Stage Detection and Early Diagnosis of Gastritis Using Serum Protein Signatures. Molecules 2022; 27:molecules27092857. [PMID: 35566209 PMCID: PMC9099457 DOI: 10.3390/molecules27092857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: A gastric cancer (GC) diagnosis relies on histopathology. Endoscopy rates are increasing. Helicobacter pylori infection is a major GC risk factor. In an effort to elucidate abundant blood biomarkers, and potentially reduce the number of diagnostic surgical interventions, we investigated sera and biopsies from a cohort of 219 H. pylori positive and negative patients diagnosed with GC, gastritis, and ulcers. This allowed the comparative investigation of the different gastroduodenal diseases, and the exclusion of protein changes resulting from bacterial infection or inflammation of the gastric mucosa when searching for GC-dependent proteins. Methods: High-definition mass spectrometry-based expression analysis of tryptically digested proteins was performed, followed by multivariate statistical and network analyses for the different disease groups, with respect to H. pylori infection status. Significantly regulated proteins differing more than two-fold between groups were shortlisted, and their role in gastritis and GC discussed. Results: We present data of comparative protein analyses of biopsies and sera from patients suffering from mild to advanced gastritis, ulcers, and early to advanced GC, in conjunction with a wealth of metadata, clinical information, histopathological evaluation, and H. pylori infection status. We used samples from pre-malignant stages to extract prospective serum markers for early-stage GC, and present a 29-protein marker panel containing, amongst others, integrin β-6 and glutathione peroxidase. Furthermore, ten serum markers specific for advanced GC, independent of H. pylori infection, are provided. They include CRP, protein S100A9, and kallistatin. The majority of these proteins were previously discussed in the context of cancer or GC. In addition, we detected hypoalbuminemia and increased fibrinogen serum levels in gastritis. Conclusion: Two protein panels were suggested for the development of multiplex tests for GC serum diagnostics. For most of the elements contained in these panels, individual commercial tests are available. Thus, we envision the design of multi-protein assays, incorporating several to all of the panel members, in order to gain a level of specificity that cannot be achieved by testing a single protein alone. As their development and validation will take time, gastritis diagnosis based on the fibrinogen to albumin serum ratio may be a quick way forward. Its determination at the primary/secondary care level for early diagnosis could significantly reduce the number of referrals to endoscopy. Preventive measures are in high demand. The protein marker panels presented in this work will contribute to improved GC diagnostics, once they have been transferred from a research result to a practical tool.
Collapse
Affiliation(s)
- Shahid Aziz
- BreathMAT Lab, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Islamabad 44000, Pakistan; (S.A.); (F.R.)
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Faisal Rasheed
- BreathMAT Lab, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Islamabad 44000, Pakistan; (S.A.); (F.R.)
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
3
|
Kim K, Noh S, Cheong JH, Kim H. CDX-1/CDX-2 Expression Is a Favorable Prognostic Factor in Epstein-Barr Virus-Negative, Mismatch Repair-Proficient Advanced Gastric Cancers. Gut Liver 2021; 15:694-704. [PMID: 34312322 PMCID: PMC8444103 DOI: 10.5009/gnl20203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/04/2022] Open
Abstract
Background/Aims Caudal type homeobox (CDX)-1 and -2 are reportedly involved in the development and progression of gastric cancer (GC). Although there are several reports on the prognostic significance of CDX-2 expression in GC, it remains controversial. In this study, we sought to validate the prognostic value of CDX-1 and -2 expression according to the histologic and molecular subtypes of GC. Methods In total, 1,158 cases of advanced GC were investigated using immunohistochemical staining and tissue microarrays for CDX-1 and -2 expression, and survival analysis was performed according to different histological and molecular subtypes. Results Of the 915 GCs with CDX-1 expression, 163 (17.8%) were Epstein-Barr virus (EBV)-positive or mismatch repair deficient (MMR-d), and the remaining 752 (82.2%) were EBV-negative or MMR-proficient (MMR-p). Of the 1,008 GCs with CDX-2 expression, 177 (17.5%) were EBV-positive or MMR-d, and the remaining 831 (82.5%) were EBV-negative or MMR-p. In the EBV-positive and MMR-d groups, CDX expression had no relationship with patient outcomes. In the EBV-negative and MMR-p groups, 404 (53.7%) and 523 (62.9%) samples were positive for CDX-1 and CDX-2 expression, respectively. Survival analysis demonstrated that CDX-1 and CDX-2 expression in all patients was correlated with favorable outcomes in terms of overall survival (multivariate analysis; p=0.018 and p=0.028, respectively). In the subgroup analysis, CDX-1 expression and CDX-2 expression were associated with favorable outcomes in EBV-negative and MMR-p intestinal (p=0.015 and p=0.010), and mixed and diffuse-type (p=0.019 and p=0.042) GCs, respectively. Conclusions The expression of CDX-1 and CDX-2 is a favorable prognostic factor in EBV-negative, MMR-p advanced GC. (Gut Liver 2021;15-704)
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Songmi Noh
- Department of Pathology, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
5
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
6
|
Chen BJ, Zeng S, Xie R, Hu CJ, Wang SM, Wu YY, Xiao YF, Yang SM. hTERT promotes gastric intestinal metaplasia by upregulating CDX2 via NF-κB signaling pathway. Oncotarget 2018; 8:26969-26978. [PMID: 28460480 PMCID: PMC5432311 DOI: 10.18632/oncotarget.15926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background hTERT has been reported involved in the proliferation and metastasis of gastric cancer, but the role of hTERT in gastric intestinal metaplasia, a premalignant lesion of the gastric mucosa was unknown. The aim of the present study was to investigate the role of hTERT in GIM and the effect of hTERT on CDX2 expression in gastric cells. Results Experiments showed that expression of hTERT was significantly higher in GIM than in normal gastric mucosa. Moreover, hTERT increased the KLF4 level via NF-κB during GIM. Furthermore, KLF4 is involved in the up-regulation of CDX2 induced by hTERT, and hTERT can interact with p50, thereby increasing the level of CDX2. Materials and Methods Immunohistochemistry was used to detect the expression of hTERT in gastric intestinal metaplasia tissue. Then, effect of hTERT on the expression of CDX2 was detected by qRT-PCR, WB and dual luciferase experiment. The role of p65 and p50 in the regulation of CDX2 were further detected by WB, CO-IP and ChIP. Conclusions We may conclude that hTERT promotes GIM by up-regulating CDX2 via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bai-Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China.,Department of Gastroenterology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, PR China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Su-Ming Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
7
|
Li Q, Zhu Y, Liu J, Yu X, Chen M, Dong N, Gong Y, Yuan Y. HpSlyD inducing CDX2 and VIL1 expression mediated through TCTP protein may contribute to intestinal metaplasia in the stomach. Sci Rep 2017; 7:2278. [PMID: 28536478 PMCID: PMC5442128 DOI: 10.1038/s41598-017-02642-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection is the most important risk factor for gastric intestinal metaplasia (IM). Our previous study demonstrated that infection with H. pylori HpslyD-positive strains associated with IM. To further investigate the signalling pathway involved in HpSlyD-induced IM, CDX2 and VIL1 expressions were determined before and after HpSlyD application. TCTP was knocked down by siRNA or overexpressed by plasmid transfection. An HpSlyD binding protein was used to block HpSlyD's enzymatic activity. The expression of CDX2 and TCTP in gastric diseases was measured by immunohistochemistry. Our results showed HpSlyD induced CDX2 and VIL1 expressions. TCTP protein expression was markedly increased after application of HpSlyD and in an HpSlyD-expressing stable cell line. Downregulation of TCTP protein led to decreased HpSlyD-induced CDX2 and VIL1. Overexpression of TCTP protein improved the expression of CDX2 and VIL1. Co-application of HpSlyD and FK506 led to significant reductions in CDX2, VIL1, and TCTP expression. Immunohistochemistry demonstrated that CDX2 and TCTP expression was higher in HpslyD-positive specimens compared with HpslyD-negative ones. Expression of CDX2 was positively correlated with TCTP in HpslyD-positive cells. Our study is the first to show that HpSlyD induction of CDX2 and VIL1 expression mediated through TCTP may contribute to IM in the stomach.
Collapse
Affiliation(s)
- Qiuping Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
| | - Yanmei Zhu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.,Department of Pathology, Cancer Hospital of China Medical University; Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Jun Liu
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26506-9229, USA
| | - Xiuwen Yu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.,Department of Pathology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
| | - Nannan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.
| |
Collapse
|
8
|
Effect of Rebamipide on the Premalignant Progression of Chronic Gastritis: A Randomized Controlled Study. Clin Drug Investig 2015; 35:665-73. [PMID: 26369655 DOI: 10.1007/s40261-015-0329-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Wei W, Li L, Wang X, Yan L, Cao W, Zhan Z, Zhang X, Yu H, Xie Y, Xiao Q. Overexpression of caudal type homeobox transcription factor 2 inhibits the growth of the MGC-803 human gastric cancer cell line in vivo. Mol Med Rep 2015; 12:905-12. [PMID: 25738600 PMCID: PMC4438918 DOI: 10.3892/mmr.2015.3413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/11/2015] [Indexed: 12/23/2022] Open
Abstract
Caudal type homeobox transcription factor 2 (CDX2) is important in intestinal cell fate specification and multiple lines of evidence have substantiated that CDX2 is important in carcinogenesis of the digestive tract. The CDX2 regulatory network is intricate and remains to be fully elucidated in gastric cancer. The aim of the present study was to examine the effects of CDX2 on the growth of the MGC-803 human gastric cancer cell line in vivo, and to elucidate the mechanism involved. The effects of the overexpression of CDX2 in xenograft tumors of MGC-803 cells was investigated in nude mice through the injection of CDX2 recombinant lentiviral vectors. The tumor size was measured using vernier callipers. The expression levels of CDX2, survivin, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cyclin D1, s-phase kinase-associated protein 2 (Skp2) and c-Myc in the tumor cells were analyzed by western blotting and semi-quantitative reverse transcription polymerase chain reaction. The apoptotic rates were determined using a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The overexpression of CDX2 was observed in the group subjected to the injection of CDX2 recombinant lentiviral vectors. CDX2 had an inhibitory effect on the MGC-803 human gastric cancer cell line and promoted tumor cell apoptosis in vivo. Furthermore, the overexpression of CDX2 upregulated the expression of Bax and downregulated the expression levels of survivin, Bcl-2, cyclin D1, Skp2 and c-Myc in the tumor tissues. These results indicated that CDX2 may serve as a tumor suppressor in gastric cancer, and inhibits gastric cancer cell growth by suppressing the nuclear factor-κB signaling pathway.
Collapse
Affiliation(s)
- Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Li
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xiaotong Wang
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Linhai Yan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoshi Zhang
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Han Yu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Features of gastric and colonic mucosa in congenital enteropathies: a study in histology and immunohistochemistry. Am J Surg Pathol 2015; 38:1697-706. [PMID: 25007148 DOI: 10.1097/pas.0000000000000287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Congenital enteropathies comprise a constellation of rare clinicopathologic diagnoses characterized by intractable watery diarrhea and failure to thrive in infants. These diagnoses include, but are not limited to, tufting enteropathy (TE), microvillous inclusion disease (MID), and enteroendocrine cell dysgenesis (EED). Commonly, the diagnosis is based on identification of their characteristic histologic and/or ultrastructural features in small intestinal mucosa. In cases in which the changes in the small intestine are inconclusive or a small intestine biopsy is not performed, the diagnosis can be hampered or significantly delayed. We describe the histologic features and immunohistochemical staining patterns of gastric and colonic mucosa in patients with confirmed TE (3), MID (2), and EED (1). Specifically, focal epithelial tufts were found in the gastric mucosa of one TE patient and multifocally in the colonic mucosa of another. All TE patients showed complete loss of membranous epithelial EpCAM expression in gastric and colonic mucosa, characteristic of the diagnosis. Gastric biopsies were available in 1 patient with MID; this showed focal disruption of the gastric glandular architecture. Three colon biopsies and 1 resection from 2 patients with MID showed characteristic cytoplasmic vacuoles and periodic acid-Schiff/villin-positive cytoplasmic inclusions. Chromogranin stains showed complete absence of enteroendocrine cells within the colon and a normal distribution in the gastric mucosa of the EED patient. On the basis of our findings, we conclude that the characteristic histologic and immunohistochemical features associated with the small intestine can be confirmed within the gastric and/or colonic mucosa by careful histologic examination and immunohistochemistry.
Collapse
|
11
|
Hu XF, Yao J, Gao SG, Yang YT, Peng XQ, Feng XS. Midkine and syndecan‑1 levels correlate with the progression of malignant gastric cardiac adenocarcinoma. Mol Med Rep 2014; 10:1409-15. [PMID: 25017879 DOI: 10.3892/mmr.2014.2369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine whether the expression levels of midkine (MK) and syndecan‑1 correlate with the malignant progression and poor prognosis of gastric cardiac adenocarcinoma (GCA). GCA tissue samples (n=72) were obtained from the Department of Pathology of the First Affiliated Hospital of Henan University of Science and Technology (Luoyang, China). The paraffin‑embedded samples had been surgically resected and pathologically diagnosed between 2007 and 2009. Normal gastric cardiac biopsy specimens (n=40) were also collected as the control. The expression levels of MK and syndecan‑1 were assessed by immunohistochemistry using the high‑sensitivity streptavidin‑peroxidase method. Statistical analysis was performed on the data obtained using the SPSS 17.0 statistics package. MK expression was detected in 76.4% of GCA samples and 5% of normal gastric cardiac mucosa specimens. A significant positive correlation was observed between the expression levels of MK and the infiltrative depth of the tumor, the presence of lymph node metastasis and the prognosis of the patients (P<0.05). Syndecan‑1 expression was detected in 38.9% of GCA samples and 100% of normal gastric cardiac mucosa samples. The expression levels of syndecan‑1 were negatively correlated with the grade of differentiation, serosal membrane invasion, lymph node metastasis and the patient's prognosis (P<0.05). Notably, the expression levels of MK and syndecan‑1 were inversely correlated (r=‑0.352, P<0.01) in the GCA tissue samples. These results suggest that high expression levels of MK in GCA tissues may indicate a differentiation stage that is characteristic of malignancy, a late clinical stage and a poor prognosis, whereas increased syndecan‑1 levels may indicate a high degree of differentiation, an early clinical stage and a favorable prognosis. MK and syndecan‑1 may serve as important biomarkers for monitoring the development and progression of GCA.
Collapse
Affiliation(s)
- Xiu-Feng Hu
- Department of Oncology, Cancer Research Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jun Yao
- Department of Oncology, Cancer Research Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - She-Gan Gao
- Department of Oncology, Cancer Research Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yan-Tong Yang
- Department of Oncology, Cancer Research Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiu-Qing Peng
- Department of Oncology, Cancer Research Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiao-Shan Feng
- Department of Oncology, Cancer Research Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
12
|
Wang LG, Su BH, Du JJ. Expression of β-arrestin 1 in gastric cardiac adenocarcinoma and its relation with progression. Asian Pac J Cancer Prev 2013; 13:5671-5. [PMID: 23317236 DOI: 10.7314/apjcp.2012.13.11.5671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Arrestins act as mediators of G protein-coupled receptor (GPCR) desensitization and trafficking, also actin as a scaffold for many intracellular signaling network. The role that β-arrestin 1 plays in gastric cardiac adenocarcinoma (GCA) and its clinicopathologic significance are untouched. METHODS Fifty patients with gastric cardiac adenocarcinoma were retrospectively enrolled and β-arrestin 1 was detected using immunohistochemistry in tissue samples. RESULTS Nuclear expression of β-arrestin 1 was observed in 78% of GCA samples (39/50) and cytoplasmic expression in 70% (35/50). β-arrestin 1 could be found in both nucleus and cytoplasm of 54% GCA (27/50) or in either of them in 94% (47/50). β-arrestin 1 protein positivity in well/ moderately differentiated carcinomas was significantly higher than that in poorly differentiated carcinomas (P=0.005). We found increased expression of β-arrestin 1 in cytoplasm was correlated with lymph nodal metastasis (P=0.002) and pathological lymph nodal staging (P=0.030). We also found β-arrestin 1 to be over-expressed in glandular epithelia cells of mucinous adenocarcinoma, a tumour type associated with an adverse outcome of gastric cardiac adenocarcinoma (P=0.022). CONCLUSION β-arrestin 1 is over-expressed in the nucleus and/or cytoplasm of gastric cardiac adenocarcinoma. However, β-arrestin 1 has no relationship with the prognosis of gastric cardiac adenocarcinoma (P>0.05). Our data imply that β-arrestin 1 in cytoplasm may be involved in differentiation and metastasis of gastric cardiac adenocarcinoma.
Collapse
Affiliation(s)
- Li-Guang Wang
- Institute for Cancer Research, Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | | | | |
Collapse
|
13
|
Pimentel-Nunes P, Gonçalves N, Boal-Carvalho I, Afonso L, Lopes P, Roncon-Albuquerque R, Henrique R, Moreira-Dias L, Leite-Moreira AF, Dinis-Ribeiro M. Helicobacter pylori induces increased expression of Toll-like receptors and decreased Toll-interacting protein in gastric mucosa that persists throughout gastric carcinogenesis. Helicobacter 2013; 18:22-32. [PMID: 23061653 DOI: 10.1111/hel.12008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Toll-like receptors (TLR) are essential for Helicobacter pylori (HP) recognition. Their role in the progression of gastric lesions leading to cancer is not established. AIM To evaluate for the first time in humans the expression of TLR2, TLR4, and TLR5, as well as the expression of other related molecules in the entire sequence of gastric lesions. METHODS Biopsy samples (n = 80, 48% HP+) from normal mucosa, HP gastritis, metaplasia, dysplasia or adenocarcinoma were obtained from 44 patients. mRNA quantification of TLR2, TLR4, TLR5, Toll-interacting protein (TOLLIP), PPAR-γ, NF-κB, TNF-α, COX-1, COX-2, and CDX-2 was performed by real-time RT-PCR. TLR2, TLR4, and TLR5 protein expression was quantified by immunohistochemistry. RESULTS When compared to normal mucosa (1.0 arbitrary unit (AU)), HP gastritis presented higher expression of TLR2 (2.23 ± 0.36 AU), TLR4 (1.92 ± 0.40 AU) and TNF-α (2.14 ± 0.50 AU) and lower TOLLIP and PPARγ expression (0.72 ± 0.12 AU, p < .05 all genes). Metaplasia and dysplasia/carcinoma presented higher expression of TLR2 (1.66 ± 0.46 and 1.48 ± 0.20 AU, respectively, p < .05), lower expression of TOLLIP (0.66 ± 0.09 and 0.52 ± 0.04 AU, p < .05) and PPARγ (0.73 ± 0.12 and 0.63 ± 0.10 AU, p < .05). The significant trend for decrease in TOLLIP and PPARγ was associated with increasing levels of CDX-2 from normal mucosa to carcinoma (p < .05), translating that in diffuse and higher TLRs protein expression (p < .05). CONCLUSION Gastric carcinogenesis is associated with decreasing levels of TLRs inhibitors and elevated TLRs levels throughout all the spectrum of lesions. Future studies should investigate if modulation of these receptors activity may influence gastric carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Pedro Pimentel-Nunes
- Department of Physiology and Cardiothoracic Surgery, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao YR, Zhao ZG, Ma J, Huang H, Liu C, Zhong YL, Cui J, Li ZF, Ren JL, Wu HF, Hu GM. Differential expression of Ki67 and CDX2 proteins in intestinal metaplasia among gastric mucosa appearing as type C, D, or E pit pattern. Shijie Huaren Xiaohua Zazhi 2012; 20:3310-3316. [DOI: 10.11569/wcjd.v20.i34.3310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of Ki67 and CDX2 in intestinal metaplasia (IM) among gastric mucosa appearing as type C, D or E pit pattern, and to assess the correlation between the degree of IM and the morphology of gastric pits.
METHODS: Immunohistochemistry was used to examine the expression of Ki67 and CDX2 proteins in 452 cases of gastric mucosal lesions with different pit patterns. The degree of IM was evaluated by hematoxylin and eosin staining.
RESULTS: The positive rates of Ki67 in non-atrophic gastritis (NAG) appearing as type B pit pattern (BG), atrophic gastritis (AG) with IM appearing as type C pit pattern (CIM), AG with IM appearing as type D pit pattern (DIM), AG with IM appearing as type E pit pattern (EIM), low intraepithelial neoplasia (LIN), and gastric antrum adenocarcinoma (GAAC) were 16.2%, 40.5%, 44.0%, 64.3%, 71.4%, and 87.1%, respectively. The positive rate of Ki67 protein in EIM was significantly different from those in CIM and DIM (P = 0.002, 0.008), but there was no difference between CIM and DIM. The positive rates of CDX2 protein were 21.6%, 75.0%, 78.6%, 81.0%, 80.4%, and 84.3% in the above groups, respectively. The positive rate of CDX2 protein in EIM was significantly different from that in BG (P = 0.000), but not different from those in CIM and DIM. The degree of IM was significantly higher in EIM than in DIM and CIM (P = 0.000).
CONCLUSION: CDX2 may have no relationship with micromorphology of IM in gastric mucosa. The expression of Ki67 protein and the degree of IM in EIM were higher than those in CIM and DIM.
Collapse
|
15
|
Wang XT, Wei WY, Kong FB, Lian C, Luo W, Xiao Q, Xie YB. Prognostic significance of Cdx2 immunohistochemical expression in gastric cancer: a meta-analysis of published literatures. J Exp Clin Cancer Res 2012; 31:98. [PMID: 23181722 PMCID: PMC3533813 DOI: 10.1186/1756-9966-31-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/20/2012] [Indexed: 12/16/2022] Open
Abstract
Cdx2 is a homeobox domain-containing transcription factor that is important in the development and differentiation of the intestinal cells, and served as a potential biomarker of tumor progression in early intestinal-type gastric cancer. However, its prognostic value and significance in gastric cancer remain controversial. A meta-analysis based on published studies was performed to obtain an accurate evaluation of the association between the presence of Cdx2-positive in clinical samples and clinical outcome. A total of 13 eligible retrospective cohort studies with 1513 patients were included. Cdx2-positive cases were significantly associated with higher male-to-female ratio (RR=1.27, 95% CI: 1.17-1.38, P<0.00001 fixed-effect), lower (I+II) clinical stage (RR=1.63, 95% CI: 1.42-1.87, P<0.00001 fixed-effect), better histologic differentiation (RR=1.54, 95% CI: 1.34-1.76, P<0.00001 fixed-effect), and lower rate of vascular invasion (RR=1.23, 95% CI: 1.08-1.41, P=0.002 fixed-effect) and lymph node metastasis (RR=1.52, 95% CI: 1.33-1.73, P<0.00001 fixed-effect), as well as higher 5-year survival rate (HR=2.22, 95% CI: 1.78-2.75, P<0.00001 fixed-effect). However, the presence of Cdx2 was not associated with tumor size. In summary, Cdx2 is a prognostic factor in gastric cancer, which acts as a marker of good outcome in patients with gastric cancer. Further clinical studies are needed to confirm the role of Cdx2 in clinical practice.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Wei-Yuan Wei
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Fan-Biao Kong
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Chao Lian
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Wen Luo
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Qiang Xiao
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Yu-Bo Xie
- Departments of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| |
Collapse
|