1
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
2
|
Pu Y, Liu Q, Liu H, Bai H, Huang W, Xi M, Fan P. Association between CYP2E1 C-1054T and 96-bp I/D genetic variations and the risk of polycystic ovary syndrome in Chinese women. J Endocrinol Invest 2023; 46:67-78. [PMID: 35943720 DOI: 10.1007/s40618-022-01885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the association of cytochrome P450 2E1 (CYP2E1) C-1054T (rs2031920) and 96-bp I/D genetic variations with the risk of polycystic ovary syndrome (PCOS), and to estimate the effects of genotypes on the clinical, metabolic, hormonal, and oxidative stress indicators. METHODS This case-control study included 762 control women and 1034 patients with PCOS. Genotypes were determined using polymerase chain reaction and/or restriction fragment length polymorphism analysis. Clinical and biochemical parameters were also analyzed. RESULTS Frequencies of the TT + CT genotype (35.4 vs. 28.9%) and T allele (19.6 vs. 16.0%) of the CYP2E1 C-1054T polymorphism were significantly higher in the PCOS group than in the control group (OR = 1.350, 95% CI 1.103-1.652, P = 0.004 for the dominant model). Genotype TT + CT remained a significant predictor of PCOS in a logistic regression model including age, body mass index (BMI), and recruitment year of participants (OR = 1.345, 95% CI 1.071-1.688, P = 0.011). No statistical differences were found in the genotype and allele frequencies of CYP2E1 96-bp I/D polymorphism. However, the combined genotype DD/TT + CT was related to an increased risk of PCOS when the DD/CC wild-type combined genotype was used as a reference. Patients with the I allele of 96-bp I/D polymorphism had a lower BMI but higher plasma apolipoprotein B and oxidized low-density lipoprotein cholesterol levels than those with the DD genotype. CONCLUSION CYP2E1 C-1054T, but not 96-bp I/D, genetic polymorphism is associated with an increased risk of PCOS in Chinese women.
Collapse
Affiliation(s)
- Y Pu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Q Liu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - H Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - H Bai
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - W Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - M Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - P Fan
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Sridharan K, Qader AM, Hammad M, Jassim A, Diab DE, Abraham B, Hasan HMSN, Pasha SAA, Shah S. Evaluation of the Association between Single Nucleotide Polymorphisms of Metabolizing Enzymes with the Serum Concentration of Paracetamol and Its Metabolites. Metabolites 2022; 12:metabo12121235. [PMID: 36557273 PMCID: PMC9785892 DOI: 10.3390/metabo12121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Intravenous paracetamol is a commonly administered analgesic and antipyretic in inpatient settings. Paracetamol is metabolized by cytochrome P450 (CYP) enzymes followed by conjugating enzymes to mainly glucuronide but to a lesser extent, sulphate metabolites, and oxidative metabolites. Single nucleotide polymorphisms (SNPs) in the CYP enzymes result in modified enzymatic activity. The present study was carried out to evaluate the prevalence of SNPs related to paracetamol metabolism and principal metabolites in critically ill patients, and those with chronic kidney disease. The present study is a cross-sectional study carried out in adults (>21 years) requiring intravenous paracetamol as part of their standard of care. Details regarding their demographics, and renal and liver function tests were collected. Blood was withdrawn for the analysis of paracetamol and their metabolites, and the SNPs of key CYP enzymes. Paracetamol/paracetamol glucuronide (P/PG), paracetamol/paracetamol sulphate (P/PS) and PG/PS were estimated. Acute liver injury (ALI) and renal dysfunction were defined using standard definitions. We observed a significant prevalence of SNPs in CYP1A2*1C, CYP3A4*3, CYP1A2*1K, CYP1A2*6, CYP2D6*10, and CYP2E1*2 amongst the 150 study participants. Those with CYP1A2*6 (CC genotype) were observed with significantly lower PG and PS concentrations, and a higher P/PS ratio; CYP2D6*10 (1/1 genotype) with a significantly lower PG concentration and a higher P/PG ratio; and CYP1A2*1K (CC genotype) was observed with a significantly higher PG/PS ratio. Good predictive accuracies were observed for determining the SNPs with the cut-off concentration of 0.29 μM for PS in determining CYP1A2*1K, 0.39 μM for PG and 0.32 μM for PS in determining CYP1A2*6 genotype, and 0.29 μM for PG in determining the CYP2D6*10 genotype. Patients with renal dysfunction were observed with significantly greater concentrations of paracetamol, PG and P/PS, and PG/PS ratios, with a lower concentration of PS. No significant differences were observed in any of the metabolites or metabolite ratios in patients with ALI. We have elucidated the prevalence of key CYP enzymes involved in acetaminophen metabolism in our population. Alterations in the metabolite concentrations and metabolic ratios were observed with SNPs, and in patients with renal dysfunction. Population toxicokinetic studies elucidating the dose-response relationship are essential to understand the optimized dose in this sub-population.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
- Correspondence: ; Tel.: +973-17239794
| | | | - Mustafa Hammad
- Salmaniya Medical Complex, Manama P.O. Box 26671, Bahrain
| | - Anfal Jassim
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Al-Jawhara Center, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Diab Eltayeb Diab
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Al-Jawhara Center, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Betsy Abraham
- Intensive Care Unit, Salmaniya Medical Complex, Manama P.O. Box 26671, Bahrain
| | | | | | - Shamik Shah
- Department of Nephrology, Salmaniya Medical Complex, Manama P.O. Box 26671, Bahrain
| |
Collapse
|
4
|
Binmahfouz LS, Bagher AM. Genetic polymorphism of the drug-metabolizing enzyme Cytochrome P4502E1 (CYP2E1) in a healthy Saudi population. Saudi Pharm J 2021; 29:1355-1360. [PMID: 34819796 PMCID: PMC8596149 DOI: 10.1016/j.jsps.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/24/2021] [Indexed: 11/04/2022] Open
Abstract
Objectives Cytochrome P450 2E1 (CYP2E1) is one of the major enzymes involved in the metabolism and detoxification of various drugs and xenobiotics. Polymorphisms in the CYP2E1 gene exhibit high inter-individual variations associated with alterations in CYP2E1 gene expression and enzyme function. This study aimed to determine the genotype distributions and allele frequencies of CYP2E1*1B, *5B, and *6 polymorphisms among Saudis in western Saudi Arabia. Methods In total, 140 healthy Saudis attending King Abdulaziz University Hospital between February and April 2021 were included in the study. CYP2E1 gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. Results The genotype frequencies of CYP2E1*1B A2A2, A2A1, and A1A1 were 54.29%, 40%, and 8%, respectively. The frequencies of CYP2E1*5B c1c1 and c1c2 genotypes were approximately 99.93% and 0.07%, respectively. The frequencies of the CYP2E1*6 DD, DC, and CC genotypes were 91.43%, 7.85%, and 0.72%, respectively. The genotype distributions for these polymorphisms were consistent with the expected distribution based on Hardy-Weinberg equilibrium. The allele frequencies were 74.29% A2 and 25.71% A1 for CYP2E1*1B, 99.64% c1 and 0.36% c2 for CYP2E1*5B, and 95.36% D and 4.65% C for CYP2E1*6. Conclusion The genotype distribution of CYP2E1*1B polymorphism was higher in the western Saudi population, whereas the CYP2E1*5B and *6 polymorphisms were lower than the global average. Knowledge of the prevalence of CYP2E1 polymorphisms among our population will provide a better understanding of whether individual patients might benefit from their medication or whether they might develop adverse effects.
Collapse
Affiliation(s)
- Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Sridharan K, Al Jufairi M, Al Ansari E, Jasim A, Eltayeb Diab D, Al Marzooq R, Al Madhoob A. Evaluation of urinary acetaminophen metabolites and its association with the genetic polymorphisms of the metabolising enzymes, and serum acetaminophen concentrations in preterm neonates with patent ductus arteriosus. Xenobiotica 2021; 51:1335-1342. [PMID: 34529545 DOI: 10.1080/00498254.2021.1982070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acetaminophen is gaining importance as a first-line drug for treating patent ductus arteriosus (PDA) in neonates. Predominant metabolites of acetaminophen in preterm neonates vary from that of adults; and the drug is predominantly metabolised by conjugation and partly by Cytochrome P450 (CYP) enzymes.We carried out the present study to identify the principal urine metabolites of acetaminophen (glucuronide/sulphate) in preterm neonates with hemodynamically significant PDA receiving intravenous acetaminophen, and to evaluate the prevalence of single nucleotide polymorphisms (SNPs) in the key CYP enzymes (CYP1A2*3, CYP1A2*4, CYP1A2*1C, CYP1A2*1K, CYP1A2*6, CYP2D6*10, CYP2E1*2, CYP2E1*5B, CYP3A4*1B, CYP3A4*2, CYP3A4*3, CYP3A5*3, CYP3A5*7, and CYP3A5*11) and their effect on urinary metabolites and serum acetaminophen concentrations.Nineteen (32.8%) neonates had heterozygous CYP1A2*1C, two (3.3%) with heterozygous CYP1A2*1K, 15 (27.8%) and two (3.7%) had heterozygous and homozygous CYP2D6*10, two (3.7%) had heterozygous CYP2E1*5B, seven (12.3%) and three (5.3%) had heterozygous and homozygous CYP3A4*1B, and three (5.5%) had CYP3A5*7 amongst the study population. Acetaminophen sulphate predominated over glucuronide metabolite at all time points. Postnatal days of life was significantly associated with an increase in the urine acetaminophen metabolites with decreased serum acetaminophen concentrations.A significant prevalence of SNPs in the key CYP enzymes related to acetaminophen metabolism was observed in our neonatal population. Population pharmacokinetic-pharmacodynamic modelling incorporating genetic and metabolite data is urgently needed for implementation of precision medicine in this vulnerable population.
Collapse
Affiliation(s)
| | | | | | - Anfal Jasim
- Arabian Gulf University, Manama, Kingdom of Bahrain
| | | | | | | |
Collapse
|
6
|
Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev 2019; 51:178-195. [PMID: 31203697 DOI: 10.1080/03602532.2019.1632889] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) plays a vital role in drug-induced hepatotoxicity and cancers (e.g. lung and bladder cancer), since it is responsible for metabolizing a number of medications and environmental toxins to reactive intermediate metabolites. CYP2E1 was recently found to be the highest expressed CYP enzyme in human livers using a proteomics approach, and CYP2E1-related toxicity is strongly associated with its protein level that shows significant inter-individual variability related to ethnicity, age, and sex. Furthermore, the expression of CYP2E1 demonstrates regulation by extensive genetic polymorphism, endogenous hormones, cytokines, xenobiotics, and varying pathological states. Over the past decade, the knowledge of pharmacology, toxicology, and biology about CYP2E1 has grown remarkably, but the research progress has yet to be summarized. This study presents a timely systematic review on CYP2E1's xenobiotic metabolism, genetic polymorphism, and inhibitors, with the focus on their clinical relevance for the efficacy and toxicity of various CYP2E1 substrates. Moreover, several knowledge gaps have been identified towards fully understanding the potential interactions among different CYP2E1 substrates in clinical settings. Through in-depth analyses of these knowns and unknowns, we expect this review will aid in future drug development and improve management of CYP2E1 related clinical toxicity.
Collapse
Affiliation(s)
- Jingxuan Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| | - Sibo Jiang
- Department of Pharmaceutics, University of Florida , Orlando , FL , USA
| | - Jin Wang
- AbbVie Inc , North Chicago , IL , USA
| | - Jwala Renukuntla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Suman Sirimulla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| |
Collapse
|
7
|
Effects of gene polymorphisms of metabolic enzymes on the association between red and processed meat consumption and the development of colon cancer; a literature review. J Nutr Sci 2018; 7:e26. [PMID: 30305892 PMCID: PMC6176493 DOI: 10.1017/jns.2018.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
The role of environmental factors and genetic susceptibility in the development of colon cancer (CC) has been already proven, but the role of gene polymorphisms in modifying the risk of environmental factors such as nutritional factors is still unknown. This study aimed to investigate the effect of polymorphisms of involved genes in the association between red meat consumption and the development of CC. The present review was carried out using keywords such as polymorphism and/or protein and/or red meat and/or processed meat and/or colon cancer. PubMed and Science Direct databases were used to collect all related articles published from 2001 to 2017. The presence of SNP in the coding genes of proteins involved in metabolism of nutrients could play significant roles in the extent of the effects of nutrition in the development of CC. The effect of dietary proteins greatly depends on the polymorphisms in the metabolising genes of these substances. Gene polymorphisms may have a role in colorectal cancer risk, especially in people with high meat intake, and this leads to a difference in the effects of meat consumption in different individuals. To conclude, dietary recommendations for the prevention and control of CC should be modified based on the genotype of different individuals. Increasing our knowledge on this field of nutritional genomics can lead to personalised preventive and therapeutic recommendations for CC patients.
Collapse
|
8
|
Fattahi S, Karimi Alivije M, Babamahmoodi F, Bayani M, Sadeghi Haddad Zavareh M, Asouri M, Lotfi M, Amirbozorgi G, Akhavan-Niaki H. Cytochrome P450 Genes (CYP2E1 and CYP1A1) Variants and Susceptibility to Chronic Hepatitis B Virus Infection. Indian J Clin Biochem 2018; 33:467-472. [PMID: 30319195 PMCID: PMC6170240 DOI: 10.1007/s12291-017-0698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/11/2017] [Indexed: 01/26/2023]
Abstract
Hepatitis B virus (HBV) infection is a worldwide health concern which is associated with significant morbidity and mortality. Both viral and host factors have a significant effect on infection, replication and pathogenesis of HBV. The aim of this study was to investigate the effect of CYP2E1 and CYP1A1 genetic variants on susceptibility to HBV. 143 individuals including 54 chronic HBV patients and 89 healthy controls were enrolled in the genotyping procedure. rs2031920 and rs3813867 at CYP2E1 as well as rs4646421 and rs2198843 at CYP1A1 loci were studied in all subjects using PCR-RFLP (restriction fragment length polymorphism) analysis. Both variants at CYP2E1 locus were monomorphic in all studied subjects. Genotype frequency of rs4646421 was significantly different between chronic HBV patients and healthy blood donors (P = 0.04, OR 4.31; 95% CI 1.04-17.7). Furthermore, individuals carrying at least one C allele (CC or CT genotypes) for rs4646421 seemed to have a decrease risk of hepatitis in comparison with TT genotype (P = 0.039). Our results showed a relationship between rs4646421 TT genotype (rare genotype) and the risk for developing chronic HBV infection (four times higher). Further studies are needed to examine the role of CYP1A1 polymorphism in susceptibility to chronic HBV infection.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular and Molecular Department, North Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Farhang Babamahmoodi
- Department of Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masomeh Bayani
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohsen Asouri
- Cellular and Molecular Department, North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Maryam Lotfi
- Cellular and Molecular Department, North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Galia Amirbozorgi
- Cellular and Molecular Department, North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Department, North Research Center, Pasteur Institute of Iran, Amol, Iran
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Wei Q, Ye Y, Chen F, Li J, Wu H, Fu Y, Yan Y, Liao L. Polymorphism study of nine SNPs associated with subjective response to alcohol in Chinese Han, Hui, Tibetan, Mongolian and Uygur populations. Forensic Sci Res 2018; 3:124-129. [PMID: 30483660 PMCID: PMC6197131 DOI: 10.1080/20961790.2018.1468538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
Heavy alcohol drinking is a major public health problem, causing a large disease, social and economic burden in societies. Subjective response (SR) to alcohol is an intermediate characteristic of heavy drinking. A variety of candidate genes have been reported to be associated with SR to alcohol. In this study, we investigated nine single nucleotide polymorphisms (SNPs) related to SR to alcohol in healthy individuals from five Chinese ethnic groups, the Han, Hui, Tibetan, Mongolian and Uygur populations, and a total of 584 bloodstain samples were collected. The nine SNPs included four SNPs in alcohol-metabolizing genes (ADH1B, ADH1C, ALDH2 and CYP2E1*5B) and five SNPs in genes of neurobiological pathways (GABRA2, OPRM1, CHRNA3, HYKK and SLC6A4). A SNaPshot analysis method was developed to type these SNPs simultaneously, and all samples were typed successfully. Statistical analyses of the allele frequencies indicated that the frequencies of all SNPs, except for ADH1C, showed varying degrees of difference in the five studied ethnic groups. Tibetans showed the highest frequencies of risk alleles for heavy drinking at most loci. The genetic polymorphic differences found in this study revealed the variation in genetic susceptibility to heavy drinking in the studied populations.
Collapse
Affiliation(s)
- Qingtao Wei
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Chen
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jienan Li
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingqiang Fu
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Youyi Yan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhu L, He Y, Niu F, Yan M, Li J, Yuan D, Jin T. Polymorphisms of drug-metabolizing enzyme CYP2E1 in Chinese Uygur population. Medicine (Baltimore) 2018; 97:e9970. [PMID: 29443789 PMCID: PMC5839839 DOI: 10.1097/md.0000000000009970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/05/2017] [Accepted: 01/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics is the genetic basis of pharmacokinetics, genetic testing, and clinical management in diseases. Evaluation about genetic alterations of drug metabolizing enzymes in human genome contributes toward understanding the interindividual and interethnic variability for clinical response to potential toxicants. CYP2E1 gene encodes a drug-metabolizing enzyme that metabolizes mostly small, polar molecules, including toxic laboratory chemicals. The aim of this study was to investigate CYP2E1 polymorphisms and gene profile in a Chinese Uygur population. Frequencies for the CYP2E1 mutated alleles and genotypes were screened in 100 unrelated random healthy Uygur volunteers. PCR and direct sequencing revealed a total of 32 polymorphisms, of which 5 novel mutations were presented. Rs 943975 was the most common single nucleotide polymorphism (SNP). The allele frequencies of CYP2E11A, 4, 7A, and 7C were 65.5, 2, 19.5, and 13%, respectively. The most common genotype combinations were CYP2C191A/1A (43%) and 1A/7C (24%). Functional prediction for 2 nonsynonymous mutations G173S and V179I was performed using MutationTaster, sorting intolerant from tolerant, and PolyPhen-2. The observations of the present study give rise to useful information on CYP2E1 polymorphisms in Chinese Uygur individuals. The results suggest important clinical implications for the use of medications metabolized by CYP2E1 among Uygurs.
Collapse
Affiliation(s)
- Linhao Zhu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Arici M, Özhan G. The genetic profiles of CYP1A1, CYP1A2 and CYP2E1 enzymes as susceptibility factor in xenobiotic toxicity in Turkish population. Saudi Pharm J 2016; 25:294-297. [PMID: 28344482 PMCID: PMC5355561 DOI: 10.1016/j.jsps.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/12/2016] [Indexed: 01/19/2023] Open
Abstract
Evaluation and sequencing of heritable alterations in the human genome and the large-scale identification of gene polymorphism for understanding the genetic background of individuals in response to potential toxicants are provided by toxicogenetics. Cytochrome P450 (CYP) enzymes play role not only phase I-dependent metabolism of xenobiotics but also metabolism of endogenous compounds. CYP1A1, CYP1A2 and CYP2E1 enzymes, which are in phase I enzymes, are responsible for metabolic activation and detoxification of several chemical compounds. In the present study, it was determined the genotype and allele frequency of CYP1A1∗2A, CYP1A2∗1C, CYP1A2∗1F, CYP2E1 and CYP2E1∗6, very common and functional single-nucleotide polymorphisms (SNPs), in Turkish healthy volunteers. It is believed that the determination of polymorphisms in the enzymes may be beneficial to prevent and reduce and adverse effects and death in response to drugs. The allele frequencies of these genes were 24%, 9%, 33%, 42%, and 12%, respectively. In the present study, the genotype profile of Turkish population was determined about critical enzymes for xenobiotic metabolism. It is suggested that the obtained results might be beneficial in order to dose adjustment of drugs and prevention of adverse reactions, and further investigation about mentioned enzymes and their polymorphisms.
Collapse
Affiliation(s)
- Merve Arici
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazıt 34116, Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazıt 34116, Istanbul, Turkey
| |
Collapse
|
12
|
Badavi E, Safavi B, Jalali A, Shahriary GM, Mohammadi-Asl J, Babaei J. Association of CYP3A4 and CYP3A5 polymorphisms with Iranian breast cancer patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Goh LPW, Chong ETJ, Chua KH, Chuah JA, Lee PC. Significant genotype difference in the CYP2E1 PstI polymorphism of indigenous groups in Sabah, Malaysia with Asian and non-Asian populations. Asian Pac J Cancer Prev 2015; 15:7377-81. [PMID: 25227845 DOI: 10.7314/apjcp.2014.15.17.7377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
CYP2E1 PstI polymorphism G-1259C (rs3813867) genotype distributions vary significantly among different populations and are associated with both diseases, like cancer, and adverse drug effects. To date, there have been limited genotype distributions and allele frequencies of this polymorphism reported in the three major indigenous ethnic groups (KadazanDusun, Bajau, and Rungus) in Sabah, also known as North Borneo. The aim of this study was to investigate the genotype distributions and allele frequencies of the CYP2E1 PstI polymorphism G-1259C in these three major indigenous peoples in Sabah. A total of 640 healthy individuals from the three dominant indigenous groups were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at G-1259C polymorphic site of CYP2E1 gene was performed using the Pst I restriction enzyme. Fragments were analyzed using agarose gel electrophoresis and confirmed by direct sequencing. Overall, the allele frequencies were 90.3% for c1 allele and 9.7% for c2 allele. The genotype frequencies for c1/c1, c1/c2 and c2/c2 were observed as 80.9%, 18.8%, and 0.3%, respectively. A highly statistical significant difference (p<0.001) was observed in the genotype distributions between indigenous groups in Sabah with all Asian and non-Asian populations. However, among these three indigenous groups, there was no statistical significant difference (p>0.001) in their genotype distributions. The three major indigenous ethnic groups in Sabah show unique genotype distributions when compared with other populations. This finding indicates the importance of establishing the genotype distributions of CYP2E1 PstI polymorphism in the indigenous populations.
Collapse
Affiliation(s)
- Lucky Poh Wah Goh
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia E-mail :
| | | | | | | | | |
Collapse
|
14
|
Jiang J, Briedé JJ, Jennen DG, Kleinjans JC, de Kok TM. Response to cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Lett 2015; 235:218-9. [DOI: 10.1016/j.toxlet.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
|
15
|
Wang YD, Yang HY, Liu J, Wang HY. Updated meta-analysis of the association between CYP2E1 RsaI/PstI polymorphisms and lung cancer risk in Chinese population. Asian Pac J Cancer Prev 2015; 15:5411-6. [PMID: 25040958 DOI: 10.7314/apjcp.2014.15.13.5411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of studies have reported relationships of CYP2E1 RsaI/PstI polymorphisms with susceptibility to lung cancer in Chinese population. However, the epidemiologic results have been conflictive rather than conclusive. The purpose of this study was to address the associations of CYP2E1 RsaI/PstI polymorphisms with lung cancer risk in Chinese population comprehensively. MATERIALS AND METHODS Systematic searches were conducted in the PubMed, Science Direct, Elsevier, CNKI and Chinese Biomedical Literature Databases. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the strength of association. RESULTS Overall, we observed a decreased lung cancer risk among subjects carrying CYP2E1 RsaI/PstI c1/ c2 and c1/c2+c2/c2 genotypes (OR=0.76, 95%CI: 0.64-0.90 and OR=0.78, 95%CI: 0.66-0.93, respectively), as compared with subjects carrying the c1/c1 genotype. In subgroup analysis, we observed a decreased lung cancer risk among c1/c2 carriers in hospital-based studies (OR=0.81, 95%CI: 0.68-0.98) and among carriers with c1/ c2 and c1/c2+c2/c2 genotypes in population-based studies(OR=0.57, 95%CI: 0.42-0.79 and OR=0.58, 95%CI: 0.43-0.79, respectively), as compared with subjects carrying the c1/c1 genotype. Limiting the analysis to studies with controls in Hardy-Weinberg equilibrium (HWE), we similarly observed a decreased lung cancer risk among c1/c2 and c1/c2+c2/c2 carriers (OR=0.73, 95%CI: 0.60-0.88 and OR=0.73, 95%CI: 0.60-0.88, respectively), as compared with c1/c1. CONCLUSIONS Our results suggested that CYP2E1 RsaI/PstI c1/c2 and c1/c2+c2/c2 variants might be a protective factor for developing lung cancer in Chinese population. Further well-designed studies with larger sample size are required to verify our findings.
Collapse
Affiliation(s)
- Ya-Dong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, China E-mail :
| | | | | | | |
Collapse
|
16
|
Jiang J, Briedé JJ, Jennen DGJ, Van Summeren A, Saritas-Brauers K, Schaart G, Kleinjans JCS, de Kok TMCM. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett 2015; 234:139-50. [PMID: 25704631 DOI: 10.1016/j.toxlet.2015.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdosage results in hepatotoxicity, but the underlying molecular mechanisms are still not completely understood. In the current study, we focused on mitochondrial-specific oxidative liver injury induced by APAP exposure. Owning to genetic polymorphisms in the CYP2E1 gene or varying inducibility by xenobiotics, the CYP2E1 mRNA level and protein activity vary extensively among individuals. As CYP2E1 is a known ROS generating enzyme, we chose HepG2 to minimize CYP2E1-induced ROS formation, which will help us better understand the APAP induced mitochondrial-specific hepatotoxicity in a subpopulation with low CYP2E1 activity. HepG2 cells were exposed to a low and toxic dose (0.5 and 10mM) of APAP and analyzed at four time points for genome-wide gene expression. Mitochondria were isolated and electron spin resonance spectroscopy was performed to measure the formation of mitochondrial ROS. The yield of ATP was measured to confirm the impact of the toxic dose of APAP on cellular energy production. Our results indicate that 10mM APAP significantly influences the expression of mitochondrial protein-encoding genes in association with an increase in mitochondrial ROS formation. Additionally, 10mM APAP affects the expression of genes encoding the subunits of electron transport chain (ETC) complexes, which may alter normal mitochondrial functions by disrupting the assembly, stability, and structural integrity of ETC complexes, leading to a measurable depletion of ATP, and cell death. The expression of mitochondrium-specific antioxidant enzyme, SOD2, is reduced which may limit the ROS scavenging ability and cause imbalance of the mitochondrial ROS homeostasis. Overall, transcriptome analysis reveals the molecular processes involved in the observed APAP-induced increase of mitochondrial ROS formation and the associated APAP-induced oxidative stress.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands.
| | - Jacob J Briedé
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Anke Van Summeren
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Karen Saritas-Brauers
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, School of nutrition, Toxicology and metabolism (NUTRIM) Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
17
|
Deng XD, Gao Q, Zhang B, Zhang LX, Zhang W, Er ZEM, Xie Y, Ma Y, Liu Y. Functional RsaI/PstI Polymorphism in Cytochrome P450 2E1 Contributes to Bladder Cancer Susceptibility: Evidence from a Meta-analysis. Asian Pac J Cancer Prev 2014; 15:4977-82. [DOI: 10.7314/apjcp.2014.15.12.4977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Dhaini HR, Kobeissi L. Toxicogenetic profile and cancer risk in Lebanese. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:95-125. [PMID: 24627976 DOI: 10.1080/10937404.2013.878679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An increasing number of genetic polymorphisms in drug-metabolizing enzymes (DME) were identified among different ethnic groups. Some of these polymorphisms are associated with an increased cancer risk, while others remain equivocal. However, there is sufficient evidence that these associations become significant in populations overexposed to environmental carcinogens. Hence, genetic differences in expression activity of both Phase I and Phase II enzymes may affect cancer risk in exposed populations. In Lebanon, there has been a marked rise in reported cancer incidence since the 1990s. There are also indicators of exposure to unusually high levels of environmental pollutants and carcinogens in the country. This review considers this high cancer incidence by exploring a potential gene-environment model based on available DME polymorphism prevalence, and their impact on bladder, colorectal, prostate, breast, and lung cancer in the Lebanese population. The examined DME include glutathione S-transferases (GST), N-acetyltransferases (NAT), and cytochromes P-450 (CYP). Data suggest that these DME influence bladder cancer risk in the Lebanese population. Evidence indicates that identification of a gene-environment interaction model may help in defining future research priorities and preventive cancer control strategies in this country, particularly for breast and lung cancer.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Faculty of Health Sciences , University of Balamand , Beirut , Lebanon
| | | |
Collapse
|
19
|
Malakar M, Devi KR, Phukan RK, Kaur T, Deka M, Puia L, Baruah D, Mahanta J, Narain K. CYP2E1 genetic polymorphism with dietary, tobacco, alcohol habits, H. pylori infection status and susceptibility to stomach cancer in Mizoram, India. Asian Pac J Cancer Prev 2014; 15:8815-22. [PMID: 25374213 DOI: 10.7314/apjcp.2014.15.20.8815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND The incidence of stomach cancer in India is highest in the state of Mizoram. In this population based matched case-control study, we evaluated the relationship between CYP450 2E1 RsaI polymorphism and risk of stomach cancer taking into considering various important dietary habits along with tobacco, alcohol consumption and H. pylori infection status. MATERIALS AND METHODS A total of 105 histologically confirmed stomach cancer cases and 210 matched healthy population controls were recruited. CYP2E1 RsaI genotypes were determined by PCR-RFLP and H. pylori infection status by ELISA. Information on various dietary, tobacco and alcohol habits was recorded in a standard questionnaire. RESULTS Our study revealed no significant association between the CYP2E1 RsaI polymorphism and overall risk of stomach cancer in Mizoram. However, we observed a non-significant protective effect of the variant allele (A) of CYP2E1 against stomach cancer. Tobacco smokers carrying C/C genotype have three times more risk of stomach cancer, as compared to non-smokers carrying C/C genotype. Both Meiziol and cigarette current and past smokers who smoked for more than 10 times per day and carrying the (C/C) genotype are more prone to develop stomach cancer. Smoke dried fish and preserved meat (smoked/sun dried) consumers carrying C/C genotype possesses higher risk of stomach cancer. No significant association between H. pylori infection and CYP2E1 RsaI polymorphism in terms of stomach cancer was observed. CONCLUSIONS Although no direct association between the CYP2E1 RsaI polymorphism and stomach cancer was observed, relations with different tobacco and dietary risk habits in terms of developing stomach cancer exist in this high risk population of north-eastern part of India. Further in-depth study recruiting larger population is required to shed more light on this important problem.
Collapse
Affiliation(s)
- Mridul Malakar
- Regional Medical Research Centre, NE Region (Indian Council of Medical Research), Dibrugarh, Assam, India E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|