1
|
Wang X, Zhang W, Liang K, Wang Y, Zhang J, Wang J, Li A, Yun Y, Liu H, Sun Y. Identification of m6 A-regulated ferroptosis biomarkers for prognosis in laryngeal cancer. BMC Cancer 2025; 25:694. [PMID: 40229748 PMCID: PMC11998228 DOI: 10.1186/s12885-025-14134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
Laryngeal cancer (LC) is a malignant tumor that occurs in the larynx. N6-methyladenosine (m6A) RNA methylation, a pivotal and prevalent epigenetic modification in eukaryotic mRNA, intricately intertwines with ferroptosis, and together, they play a crucial role in the development of LC. Accordingly, further research on related molecular mechanisms and pathology of LC is necessary. Weighted gene co-expression network analysis and correlation analysis were used to identify differentially expressed m6A-related ferroptosis genes in LC. The TCGA-HNSC and GSE65858 datasets were obtained from public databases. The TCGA-HNSC dataset consisted of 110 primary tumor oropharynx samples and 12 control oropharynx samples, while the GSE65858 dataset contained forty-eight primary tumor oropharynx samples. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression were utilized for feature selection and risk model construction in the TCGA-HNSC dataset. The risk model was validated in the GSE65858 dataset. Then, a nomogram was built based on the independent prognostic factor identified using univariate and multivariate Cox regression in the TCGA-HNSC dataset. Mutation analysis, immune-related analysis, and drug sensitivity prediction were applied to analyze the utility of the risk model in the TCGA-HNSC dataset. Additionally, qRT-PCR and western blot were performed to detect the TFRC, RGS4, and FTH1 expression. Three biomarkers were identified to build a risk model using the univariate Cox and LASSO regression algorithms. Receiver operating characteristic (ROC) analysis verified the accuracy of the risk model. Tumor Immune Dysfunction and Exclusion (TIDE) and Estimation of STromal and Immune cells in MAlignant Tumors using the Expression data (ESTIMATE) algorithm showed a positive relationship between risk score and TIDE or ESTIMATE score. Furthermore, drug sensitivity prediction found that 19 chemotherapy drugs were strongly correlated with a risk score. TFRC, RGS4, and FTH1 exhibited high expression levels in 30 laryngeal carcinoma tissues and cell lines. Notably, TFRC and FTH1 expression levels were significantly associated with patient prognosis. In Conclusion, TFRC, RGS4, and FTH1, were identified as m6A-regulated ferroptosis biomarkers in LC, providing insights into LC treatment and prognosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Wen Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Kun Liang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Yujuan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Jin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Jinping Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - An Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Yonggang Yun
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Hiu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China.
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150000, China.
| |
Collapse
|
2
|
Sun J, Tian Z, Wu J, Li J, Wang Q, Huang S, Wang M. Pristimerin Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2024; 18:1673-1694. [PMID: 38779590 PMCID: PMC11110813 DOI: 10.2147/dddt.s460093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Pristimerin, a natural triterpenoid isolated from the plants of southern snake vine and Maidenwood in the family Weseraceae, is anti-inflammatory, insecticidal, antibacterial, and antiviral substance and has been used for its cardioprotective and antitumor effects and in osteoporosis treatment. These qualities explain Pristimerin's therapeutic effects on different types of tumors and other diseases. More and more studies have shown that pristimerin acts in a wide range of biological activities and has shown great potential in various fields of modern and Chinese medicine. While Pristimerin's wide range of pharmacological effects have been widely studied by others, our comprehensive review suggests that its mechanism of action may be through affecting fundamental cellular events, including blocking the cell cycle, inducing apoptosis and autophagy, and inhibiting cell migration and invasion, or through activating or inhibiting certain key molecules in several cell signaling pathways, including nuclear factor κB (NF-κB), phosphatidylinositol 3-kinase/protein kinase B/mammalian-targeted macromycin (PI3K/Akt/mTOR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase 1/2 (ERK1/2), Jun amino-terminal kinase (JNK1/2/3), reactive oxygen species (ROS), wingless/integrin1 (Wnt)/β-catenin, and other signaling pathways. This paper reviews the research progress of Pristimerin's pharmacological mechanism of action in recent years to provide a theoretical basis for the molecular targeting therapy and further development and utilization of Pristimerin. It also provides insights into improved treatments and therapies for clinical patients and the need to explore pristimerin as a potential facet of treatment.
Collapse
Affiliation(s)
- Jian Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jing Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jiafei Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qixia Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Prabhu KS, Jessy S, Kuttikrishnan S, Mujeeb F, Mariyam Z, Habeeba U, Ahmad N, Bhat AA, Uddin S. Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies. Pharmaceuticals (Basel) 2024; 17:578. [PMID: 38794148 PMCID: PMC11123949 DOI: 10.3390/ph17050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Serah Jessy
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Farina Mujeeb
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India;
| | - Zahwa Mariyam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Ummu Habeeba
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Yang C, Zhang X, Yang X, Lian F, Sun Z, Huang Y, Shen W. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal 2023; 21:316. [PMID: 37924113 PMCID: PMC10623796 DOI: 10.1186/s12964-023-01334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.
Collapse
Affiliation(s)
- Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Zongrun Sun
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
5
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
6
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:6136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
7
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
8
|
Chen RZ, Yang F, Zhang M, Sun ZG, Zhang N. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Front Oncol 2021; 11:671548. [PMID: 34026649 PMCID: PMC8138054 DOI: 10.3389/fonc.2021.671548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Seeking an efficient and safe approach to eliminate tumors is a common goal of medical fields. Over these years, traditional Chinese medicine has attracted growing attention in cancer treatment due to its long history. Pristimerin is a naturally occurring quinone methide triterpenoid used in traditional Chinese medicine to treat various cancers. Recent studies have identified alterations in cellular events and molecular signaling targets of cancer cells under pristimerin treatment. Pristimerin induces cell cycle arrest, apoptosis, and autophagy to exhibit anti-proliferation effects against tumors. Pristimerin also inhibits the invasion, migration, and metastasis of tumor cells via affecting cell adhesion, cytoskeleton, epithelial-mesenchymal transition, cancer stem cells, and angiogenesis. Molecular factors and pathways are associated with the anti-cancer activities of pristimerin. Furthermore, pristimerin reverses multidrug resistance of cancer cells and exerts synergizing effects with other chemotherapeutic drugs. This review aims to discuss the anti-cancer potentials of pristimerin, emphasizing multi-targeted biological and molecular regulations in cancers. Further investigations and clinical trials are warranted to understand the advantages and disadvantages of pristimerin treatment much better.
Collapse
Affiliation(s)
- Run-Ze Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Monroy LV, Cauich JC, Ortega AM, Campos MS. Medicinal plants as potential functional foods or resources for obtaining anticancer activity metabolites. ONCOLOGICAL FUNCTIONAL NUTRITION 2021:161-194. [DOI: 10.1016/b978-0-12-819828-5.00005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Qi F, Li Q, Lu X, Chen Z. Bioinformatics analysis of high-throughput data to validate potential novel biomarkers and small molecule drugs for glioblastoma multiforme. J Int Med Res 2020; 48:300060520924541. [PMID: 32634050 PMCID: PMC7343367 DOI: 10.1177/0300060520924541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective There have been no recent improvements in the glioblastoma multiforme (GBM) outcome, with median survival remaining 15 months. Consequently, the need to identify novel biomarkers for GBM diagnosis and prognosis, and to develop targeted therapies is high. This study aimed to establish biomarkers for GBM pathogenesis and prognosis. Methods In total, 220 overlapping differentially expressed genes (DEGs) were obtained by integrating four microarray datasets from the Gene Expression Omnibus database (GSE4290, GSE12657, GSE15824, and GSE68848). Then a 140-node protein–protein interaction network with 343 interactions was constructed. Results The immune response and cell adhesion molecules were the most significantly enriched functions and pathways, respectively, among DEGs. The designated hub genes ITGB5 and RGS4, which have a high degree of connectivity, were closely correlated with patient prognosis, and GEPIA database mining further confirmed their differential expression in GBM versus normal tissue. We also determined the 20 most appropriate small molecules that could potentially reverse GBM gene expression, Prestwick-1080 was the most promising and had the highest negative scores. Conclusions This study identified ITGB5 and RGS4 as potential biomarkers for GBM diagnosis and prognosis. Insights into molecular mechanisms governing GBM occurrence and progression will help identify alternative biomarkers for clinical practice.
Collapse
Affiliation(s)
- Fuwei Qi
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Qing Li
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Xiaojun Lu
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Zhihua Chen
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|
11
|
Liu S, Dong Y, Wang Y, Hu P, Wang J, Wang RYL. Pristimerin exerts antitumor activity against MDA-MB-231 triple-negative breast cancer cells by reversing of epithelial-mesenchymal transition via downregulation of integrin β3. Biomed J 2020; 44:S84-S92. [PMID: 35652598 PMCID: PMC9038948 DOI: 10.1016/j.bj.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background Pristimerin, a natural flavonoid compound, has potential anti-tumor activities. These activities have been illustrated in various cancer cell lines, including MDA-MB-231 cells. MDA-MB-231 cells are a representative mesenchymal subtype of triple negative breast cancer (MES-TNBC) cell line. Currently, the main treatment for patients with advanced MES-TNBC is cytotoxic chemotherapy. We tried to examine the role and effect of pristimerin on epithelial–mesenchymal transition (EMT) in MDA-MB-231 cells. Methods The effects of pristimerin on the proliferation of MDA-MB-231 cells were investigated by cloning formation growth assay. In vitro transwell and adhesion assays were performed for cell invasion and adhesion. The expression levels of EMT markers in E-cadherin and N-cadherin were examined by western blotting. We also established overexpressed- and silenced-integrin β3 cell lines to evaluate the role of integrin β3 in mediating the EMT reversion events in MDA-MB-231 cells. Results Pristimerin inhibited cell proliferation, and its inhibitory effect was dose-dependent. We demonstrated that pristimerin reserved EMT by upregulating E-cadherin and downregulating N-cadherin expression. Meanwhile, we revealed that pristimerin inhibited mRNA and protein expression of integrin β3, which is a key heterodimeric transmembrane receptor associated with EMT. These inhibitory effects and reversion of EMT were enhanced when integrin β3 was knockdown in MDA-MB-231 cells, while the overexpression of integrin β3 attenuated these effects. In vivo studies using xenograft mouse model demonstrated that pristimerin inhibited tumor growth. Conclusions Our findings provide important insights into the effects of pristimerin on inhibiting cancer progression and EMT reversion by suppression of integrin β3.
Collapse
|
12
|
Yan F, Liao R, Silva M, Li S, Jiang Y, Peng T, Lazarovici P, Zheng W. Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med 2020; 24:6208-6219. [PMID: 32347651 PMCID: PMC7294164 DOI: 10.1111/jcmm.15249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
Uveal melanoma (UM) is a highly invasive intraocular malignancy with high mortality. Presently, there is no FDA‐approved standard for the treatment of metastatic UM. Pristimerin is a natural quinine methide triterpenoid compound with anti‐angiogenic, anti‐cancer and anti‐inflammatory activities. However, Pristimerin potential cytotoxic effect on UM was poorly investigated. In the present study, we found the migration and invasion of UM‐1 cells were inhibited by Pristimerin which also caused a rapid increase of ROS, decreased mitochondrial membrane potential, induced the accumulation of cells in G0/G1 phase, ending with apoptotic cell death. Pristimerin inhibited Akt and FoxO3a phosphorylation and induced nuclear accumulation of FoxO3a in UM‐1 cells, increased the expression of pro‐apoptotic proteins Bim、p27Kip1, cleaved caspase‐3, PARP and Bax, and decreased the expression of Cyclin D1 and Bcl‐2. LY294002 or Akt‐siRNA inhibited the PI3K/Akt/FoxO3a pathway and promoted the Pristimerin‐induced apoptosis, while Pristimerin effects were partially abolished in FoxO3a knockdown UM‐1 cell cultures. Taken together, present results showed that Pristimerin induced apoptotic cell death through inhibition of PI3K/Akt/FoxO3a pathway in UM‐1 cells. These findings indicate that Pristimerin may be considered as a potential chemotherapeutic agent for patients with UM.
Collapse
Affiliation(s)
- Fengxia Yan
- Faculty of Health Sciences, University of Macau, Macau, China.,School of Medical Science, Jinan University, Guangzhou, China
| | - Rifang Liao
- Faculty of Health Sciences, University of Macau, Macau, China.,Department of pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Marta Silva
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Shuai Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yizhou Jiang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Tangming Peng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
13
|
He Z, Yu L, Luo S, Li Q, Huang S, An Y. RGS4 Regulates Proliferation And Apoptosis Of NSCLC Cells Via microRNA-16 And Brain-Derived Neurotrophic Factor. Onco Targets Ther 2019; 12:8701-8714. [PMID: 31695428 PMCID: PMC6821062 DOI: 10.2147/ott.s221657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Regulator of G-protein signaling (RGS) proteins are GTPase-activating proteins that target the α-subunit of heterotrimeric G proteins. Many studies have shown that RGS proteins contribute to tumorigenesis and metastasis. However, the mechanism in which RGS proteins, especially RGS4, affect the development of non-small cell lung cancer (NSCLC) remains unclear. The aim of this study was to characterize the role of RGS4 in NSCLC. METHODS RGS4 expression in NSCLC tissues was assessed using an immunohistochemistry tissue microarray. Additionally, RGS4 was knocked down using short-hairpin RNA to assess the regulatory function of RGS4 in the biological behaviors of human NSCLC cell lines. A xenograft lung cancer model in nude BALB/c mice was established to study whether RGS4 knockdown inhibits cancer cell proliferation in vivo. RESULTS We observed an increase in RGS4 protein levels in NSCLC samples. RGS4 knockdown inhibited cell proliferation and induced apoptosis in H1299 and PC9 cell lines, but did not affect cell migration. Moreover, we found that RGS4 negatively regulated the expression of microRNA-16 (miR-16), a tumor suppressor. The inhibition of miR-16 resulted in upregulated RGS4 expression. We also found that RGS4 regulated the expression of brain-derived neurotrophic factor (BDNF) and activated the BDNF-tropomyosin receptor kinase B signaling pathway. CONCLUSION This study revealed that RGS4 overexpression positively correlated with the development of NSCLC. TDownstream RGS4 targets (eg, miR-16 and BDNF) might be involved in the development of NSCLC and may serve as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Zheng He
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
- Department of Clinical Laboratory, Chinese People’s Liberation Army General Hospital, Beijing100853, People’s Republic of China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou318000, People’s Republic of China
| | - Shiyi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong250062, People’s Republic of China
| | - Yunhe An
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
| |
Collapse
|
14
|
Bao MH, Lv QL, Szeto V, Wong R, Zhu SZ, Zhang YY, Feng ZP, Sun HS. TRPM2-AS inhibits the growth, migration, and invasion of gliomas through JNK, c-Jun, and RGS4. J Cell Physiol 2019; 235:4594-4604. [PMID: 31637708 DOI: 10.1002/jcp.29336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
Abstract
Gliomas are a group of brain cancers with high mortality and morbidity. Understanding the molecular mechanisms is important for the prevention or treatment of gliomas. The present study was to investigate the effects and mechanisms of long noncoding RNA TRPM2-AS in gliomas proliferation, migration, and invasion. We first compared the levels of TRPM2-AS in 111 patients with glioma to that of the normal control group by a quantitative polymerase chain reaction. The results indicated a significant increase of TRPM2-AS in patients with glioma (2.43 folds of control, p = .0135). MTT methods, wound healing assays, transwell analysis, and clone formation analysis indicated the overexpression of TRPM2-AS promoted the proliferation, migration, and invasion of U251 and U87 cells, while downregulation of TRPM2-AS inhibited the cell proliferation, migration, and invasion significantly (p < .05). To further uncover the mechanisms, bioinformatics analysis was conducted on the expression profiles, GSE40687 and GSE4290, from the Gene Expression Omnibus database. One hundred fifty-six genes were differentially expressed in both datasets (FC > 2.0; p = .05). Among these differentially expressed genes, the level of RGS4 messenger RNA was drastically regulated by TRPM2-AS. Further western-blot analysis indicated the increase of RGS4 protein expression and decrease of p-JNK/JNK and p-c-Jun/c-Jun ratio after TRPM2-AS overexpression. On the other hand, inhibition of TRPM2-AS by small interfering RNA suppressed the expression of RGS4 and promoted the ratios of p-JNK/JNK and p-c-Jun/c-Jun. The present work indicated the mechanisms of the participation of TRPM2-AS in the progression of gliomas might, at least partly, be related to JNK, c-Jun, and RGS4. Our work provided new insights into the underlying mechanisms of glioma cellular functions.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Physiology, Pathophysiology, and Pharmacology, Science Research Center, Changsha Medical University, Changsha, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Wong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Su-Zhen Zhu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying-Ying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Li JJ, Yan YY, Sun HM, Liu Y, Su CY, Chen HB, Zhang JY. Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review. Front Pharmacol 2019; 10:746. [PMID: 31354475 PMCID: PMC6640652 DOI: 10.3389/fphar.2019.00746] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
As a quinonemethide triterpenoid extracted from species of the Celastraceae and Hippocrateaceae, pristimerin has been shown potent anti-cancer effects. Specifically, it was found that pristimerin can affect many tumor-related processes, such as apoptosis, autophagy, migration and invasion, vasculogenesis, and drug resistance. Various molecular targets or signaling pathways are also involved, such as cyclins, reactive oxygen species (ROS), microRNA, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways. In this review, we will focus on the research about pristimerin-induced anti-cancer activities to achieve a deeper understanding of the targets and mechanisms, which offer evidences suggesting that pristimerin can be a potent anti-cancer drug.
Collapse
Affiliation(s)
- Jia-Jun Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao-Yue Su
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Ye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Erukainure OL, Ashraf N, Naqvi AS, Zaruwa MZ, Muhammad A, Odusote AD, Elemo GN. Fatty Acids Rich Extract From Clerodendrum volubile Suppresses Cell Migration; Abates Oxidative Stress; and Regulates Cell Cycle Progression in Glioblastoma Multiforme (U87 MG) Cells. Front Pharmacol 2018; 9:251. [PMID: 29615913 PMCID: PMC5870396 DOI: 10.3389/fphar.2018.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary type of brain cancer with high proliferation and metastasis rates due to involvement of the microglial cell. It is resistant against available chemotherapy. Many strategic protocols have been developed but prognosis and patient life has not improved substantially. In this study, the anti-metastatic and antioxidant effect of fatty acids from Clerodendrum volubile leaves were investigated in U87-MG (Human Glioblastoma Multiforme) cell lines. The extracted fatty acids were incubated with U87-MG cells for 48 h. The anti-proliferative effect was determined by MTT assay, while apoptosis and cell cycle were analyzed with BD FACSCalibur. The transwell assay protocol was utilized in the analysis of cell migration and invasion. The treated cell lines were also assessed for reduced glutathione (GSH) level, catalase, superoxide dismutase (SOD) and lipid peroxidation. The fatty acid extract showed significant inhibitory activity on cell proliferation and cell cycle progression, mitigated oxidative stress, and suppressed migration and invasion in U-87 MG cell lines. These results give credence to the therapeutic potential of this plant against cancer, especially GBM.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Nadia Ashraf
- Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Asma S Naqvi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Moses Z Zaruwa
- Department of Biochemistry, Adamawa State University, Mubi, Nigeria
| | - Aliyu Muhammad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Adenike D Odusote
- Analytical Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Gloria N Elemo
- Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| |
Collapse
|
17
|
Yousef BA, Hassan HM, Zhang LY, Jiang ZZ. Pristimerin exhibits in vitro and in vivo anticancer activities through inhibition of nuclear factor-кB signaling pathway in colorectal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:140-147. [PMID: 29496166 DOI: 10.1016/j.phymed.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/23/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies associated with high mortality rate worldwide. We previously reported that pristimerin inhibits cell growth and induces apoptosis in CRC cells. HYPOTHESIS/PURPOSE To further understand the molecular mechanism by which pristimerin elicits its anticancer activities on colon cancer cells, we investigated its effect on nuclear factor-κB (NF-κB) signaling pathway. STUDY DESIGN This study consisted of both in vitro and in vivo experiments involving HCT-116 cell line and xenograft mouse model. Molecular techniques such as qRT-PCR, western blotting and immunofluorescence were used to demonstrate pristimerin in vitro effect on NF-κB signaling pathway; whereas it's in vivo activity was analyzed by western blot and immunohistochemistry on tumor tissues. RESULTS Our in vitro results on HCT-116 cells showed that pristimerin inhibited IKK phosphorylation, IкB-α degradations and IкB-α phosphorylation in both dose- and time- dependent manners, which caused suppression of NF-кB p65 phosphorylation, nuclear translocation and accumulation of NF-кB. Moreover, pristimerin was found to inhibit both constitutive activated-NF-кB and tumor necrosis factor-α (TNF-α)- and lipopolysaccharide (LPS)-induced activation of NF-кB signaling pathway. Furthermore, our in vivo results on xenograft animal model revealed that pristimerin inhibited tumor growth mainly through suppressing NF-кB activity in tumor tissues. CONCLUSION Pristimerin antitumor activities were mainly mediated through inhibition of NF-кB signaling pathway in colon tumor cells. These findings further explain that pristimerin has the therapeutic potential for targeting colon cancer.
Collapse
Affiliation(s)
- Bashir A Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan.
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad-Medani, Sudan
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Cevatemre B, Erkısa M, Aztopal N, Karakas D, Alper P, Tsimplouli C, Sereti E, Dimas K, Armutak EII, Gurevin EG, Uvez A, Mori M, Berardozzi S, Ingallina C, D'Acquarica I, Botta B, Ozpolat B, Ulukaya E. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol Res 2017; 129:500-514. [PMID: 29197639 DOI: 10.1016/j.phrs.2017.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Several natural products have been suggested as effective agents for the treatment of cancer. Given the important role of CSCs (Cancer Stem Cells) in cancer, which is a trendy hypothesis, it is worth investigating the effects of pristimerin on CSCs as well as on the other malignant cells (MCF-7 and MDA-MB-231) of breast cancer. The anti-growth activity of pristimerin against MCF-7 and MCF-7s (cancer stem cell enriched population) cells was investigated by real time viability monitorization (xCELLigence System®) and ATP assay, respectively. Mode of cell death was evaluated using electron and fluorescence microscopies, western blotting (autophagy, apoptosis and ER-stress related markers) and flow cytometry (annexin-V staining, caspase 3/7 activity, BCL-2 and PI3K expressions). Pristimerin showed an anti-growth effect on cancer cells and cancer stem cells with IC50 values ranging at 0.38-1.75μM. It inhibited sphere formation at relatively lower doses (<1.56μM). Apoptosis was induced in MCF-7 and MCF-7s cells. In addition, extensive cytoplasmic vacuolation was observed, implying an incompleted autophagy as evidenced by the increase of autophagy-related proteins (p62 and LC3-II) with an unfolded protein response (UPR). Pristimerin inhibited the growth of MCF-7 and MDA-MB-231-originated xenografts in NOD.CB17-Prkdcscid/J mice. In mice, apoptosis was further confirmed by cleavage of PARP, activation of caspase 3 and/or 7 and TUNEL staining. Taken together, pristimerin shows cytotoxic activity on breast cancer both in vitro and in vivo. It seems to represent a robust promising agent for the treatment of breast cancer. Pristimerin's itself or synthetic novel derivatives should be taken into consideration for novel potent anticancer agent(s).
Collapse
Affiliation(s)
- Buse Cevatemre
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey
| | - Merve Erkısa
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Nazlihan Aztopal
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Didem Karakas
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Pınar Alper
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Elif I Ikitimur Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University, 34320, Istanbul, Turkey
| | - Ebru Gurel Gurevin
- Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University, 34320, Istanbul, Turkey
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, 00161 Roma, Italy
| | - Simone Berardozzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, 00161 Roma, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Cinzia Ingallina
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, 00161 Roma, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ilaria D'Acquarica
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey.
| |
Collapse
|
19
|
Alqinyah M, Hooks SB. Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell Signal 2017; 42:77-87. [PMID: 29042285 DOI: 10.1016/j.cellsig.2017.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Regulators of G protein signaling (RGS) are a family of proteins classically known to accelerate the intrinsic GTPase activity of G proteins, which results in accelerated inactivation of heterotrimeric G proteins and inhibition of G protein coupled receptor signaling. RGS proteins play major roles in essential cellular processes, and dysregulation of RGS protein expression is implicated in multiple diseases, including cancer, cardiovascular and neurodegenerative diseases. The expression of RGS proteins is highly dynamic and is regulated by epigenetic, transcriptional and post-translational mechanisms. This review summarizes studies that report dysregulation of RGS protein expression in disease states, and presents examples of drugs that regulate RGS protein expression. Additionally, this review discusses, in detail, the transcriptional and post-transcriptional mechanisms regulating RGS protein expression, and further assesses the therapeutic potential of targeting these mechanisms. Understanding the molecular mechanisms controlling the expression of RGS proteins is essential for the development of therapeutics that indirectly modulate G protein signaling by regulating expression of RGS proteins.
Collapse
Affiliation(s)
- Mohammed Alqinyah
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
20
|
Hernandes C, Pereira AMS, Severino P. Compounds From Celastraceae Targeting Cancer Pathways and Their Potential Application in Head and Neck Squamous Cell Carcinoma: A Review. Curr Genomics 2016; 18:60-74. [PMID: 28503090 PMCID: PMC5321769 DOI: 10.2174/1389202917666160803160934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/28/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck is one of the most common cancer types worldwide. It initiates on the epithelial lining of the upper aerodigestive tract, at most instances as a consequence of tobacco and alcohol consumption. Treatment options based on conventional therapies or targeted therapies under development have limited efficacy due to multiple genetic alterations typically found in this cancer type. Natural products derived from plants often possess biological activities that may be valuable in the development of new therapeutic agents for cancer treatment. Several genera from the family Celastraceae have been studied in this context. This review reports studies on chemical constituents isolated from species from the Celastraceae family targeting cancer mechanisms studied to date. These results are then correlated with molecular characteristics of head and neck squamous cell carcinoma in an attempt to identify constituents with potential application in the treatment of this complex disease at the molecular level.
Collapse
Affiliation(s)
- Camila Hernandes
- aAlbert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; bDepartment of Biotechnology, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Ana Maria Soares Pereira
- aAlbert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; bDepartment of Biotechnology, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Patricia Severino
- aAlbert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; bDepartment of Biotechnology, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Lee SO, Kim JS, Lee MS, Lee HJ. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer 2016; 16:701. [PMID: 27581969 PMCID: PMC5007821 DOI: 10.1186/s12885-016-2730-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxia is a typical character of locally advanced solid tumours. The transcription factor hypoxia-inducible factor 1α (HIF-1α) is the main regulator under the hypoxic environment. HIF-1α regulates various genes to enhance tumour progression, angiogenesis, and metastasis. Sphingosine kinase 1 (SPHK-1) is a modulator of HIF-1α. METHODS To investigate the molecular mechanisms of pristimerin in association with SPHK-1 pathways in hypoxic PC-3 cancer cells. Vascular endothelial growth factor (VEGF) production, cell cycles, and SPHK-1 activity were measured, and western blotting, an MTT assay, and an RNA interference assay were performed. RESULTS Pristimerin inhibited HIF-1α accumulation in a concentration- and-time-dependent manner in hypoxic PC-3 cells. Pristimerin suppressed the expression of HIF-1α by inhibiting SPHK-1. Moreover, inhibiting SPHK-1 with a sphingosine kinase inhibitor enhanced the suppression of HIF-1α, phosphorylation AKT, and glycogen synthase kinase-3β (GSK-3β) by pristimerin under hypoxia. Furthermore, a reactive oxygen species (ROS) scavenger enhanced the inhibition of HIF-1α and SPHK-1 by pristimerin. CONCLUSION Taken together, these findings suggest that pristimerin can exert an anti-cancer activity by inhibiting HIF-1α through the SPHK-1 pathway.
Collapse
Affiliation(s)
- Seon-Ok Lee
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,College of Korean Medicine, Kyung Hee University, 1Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Joo-Seok Kim
- College of Korean Medicine, Kyung Hee University, 1Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Myoung-Sun Lee
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,College of Korean Medicine, Kyung Hee University, 1Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, Republic of Korea. .,College of Korean Medicine, Kyung Hee University, 1Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea. .,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells. Biomed Pharmacother 2016; 79:112-9. [DOI: 10.1016/j.biopha.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 11/20/2022] Open
|
23
|
Xie G, Yu X, Liang H, Chen J, Tang X, Wu S, Liao C. Pristimerin overcomes adriamycin resistance in breast cancer cells through suppressing Akt signaling. Oncol Lett 2016; 11:3111-3116. [PMID: 27123073 DOI: 10.3892/ol.2016.4335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/05/2016] [Indexed: 11/06/2022] Open
Abstract
Breast cancer remains a major public health problem worldwide. Chemotherapy serves an important role in the treatment of breast cancer. However, resistance to chemotherapeutic agents, in particular, multi-drug resistance (MDR), is a major cause of treatment failure in cancer. Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. Pristimerin, a quinonemethide triterpenoid compound isolated from Celastraceae and Hippocrateaceae, has been shown to possess antitumor, anti-inflammatory, antioxidant and insecticidal properties. The aim of the present study was to investigate whether pristimerin can override chemoresistance in MCF-7/adriamycin (ADR)-resistant human breast cancer cells. The results demonstrated that pristimerin indeed displayed potent cytocidal effect on multidrug-resistant MCF-7/ADR breast cancer cells, and that these effects occurred through the suppression of Akt signaling, which in turn led to the downregulation of antiapoptotic effectors and increased apoptosis. These findings indicate that use of pristimerin may represent a potentially promising approach for the treatment of ADR-resistant breast cancer.
Collapse
Affiliation(s)
- Gui'e Xie
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Xinpei Yu
- Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Huichao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Jingsong Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Xuewei Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Shaoqing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Can Liao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
24
|
Mustafa EH, Mahmoud HT, Al-Hudhud MY, Abdalla MY, Ahmad IM, Yasin SR, Elkarmi AZ, Tahtamouni LH. 2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells. Asian Pac J Cancer Prev 2015; 16:3213-22. [DOI: 10.7314/apjcp.2015.16.8.3213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Xu Z, Zuo Y, Wang J, Yu Z, Peng F, Chen Y, Dong Y, Hu X, Zhou Q, Ma H, Bao Y, Chen M. Overexpression of the regulator of G-protein signaling 5 reduces the survival rate and enhances the radiation response of human lung cancer cells. Oncol Rep 2015; 33:2899-907. [PMID: 25891540 DOI: 10.3892/or.2015.3917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
Regulator of G protein signaling 5 (RGS5) belongs to the R4 subfamily of RGS proteins, a family of GTPase activating proteins, which is dynamically regulated in various biological processes including blood pressure regulation, smooth muscle cell pathology, fat metabolism and tumor angiogenesis. Low-expression of RGS5 was reported to be associated with tumor progression in lung cancer. In the present study, we examined the potential roles of RGS5 in human lung cancer cells by overexpressing RGS5 in the cancer cells and further explored the underlying molecular mechanisms. The RGS5 gene was cloned and transfected into the human lung cancer cell lines A549 and Calu-3. The cells were tested for apoptosis with flow cytometry, for viability with MTT, for mobility and adhesion capacity. The radiosensitization effect of RGS5 was measured by a colony formation assay. The mechanisms of RGS5 functioning was also investigated by detection of protein expression with western blot analysis, including PARP, caspase 3 and 9, bax, bcl2, Rock1, Rock2, CDC42, phospho-p53 (Serine 15) and p53. The present study demonstrated that RGS5 overexpression remarkably induced apoptosis in human lung cancer cells, which was suggested to be through mitochondrial mechanisms. Overexpression of RGS5 resulted in significantly lower adhesion and migration abilities of the lung cancer cells (P<0.01). Furthermore, overexpression of RGS5 sensitized the lung cancer cells to radiation. In conclusion, the present study showed that RGS5 played an inhibitory role in human lung cancer cells through induction of apoptosis. Furthermore, RGS5 enhanced the cytotoxic effect of radiation in the human lung cancer cells. Our results indicated that RGS5 may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zumin Xu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Jin Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhonghua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Fang Peng
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanyuan Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Yong Dong
- Cancer Center, Shilong People's Hospital, Dongguan City, Guangdong 523321, P.R. China
| | - Xiao Hu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qichao Zhou
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Honglian Ma
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Yong Bao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
26
|
Liu YB, Gao X, Deeb D, Brigolin C, Zhang Y, Shaw J, Pindolia K, Gautam SC. Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int J Oncol 2014; 45:1735-41. [PMID: 25175770 PMCID: PMC4151800 DOI: 10.3892/ijo.2014.2561] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/17/2014] [Indexed: 12/26/2022] Open
Abstract
Pristimerin (PM), a quinonemethide triterpenoid, is a promising anticancer agent with potent antiproliferative and apoptosis-inducing activities against cancer cell lines. However, the anticancer activity and mechanisms of PM in prostate cancer cells have not been adequately investigated. Here we report that the degradation of survivin plays an important role in the antiproliferative and proapoptotic effects of PM in carcinoma of the prostate (CaP) cell lines. Treatment with PM inhibited proliferation and induced apoptosis in LNCaP and PC-3 cells as characterized by the loss of cell viability and an increase in Annexin V-binding and cleavage of PARP-1, respectively. The antiproliferative and apoptosis-inducing effects of PM were associated with the inhibition of cell cycle regulatory proteins, antiapoptotic survivin and members of the Bcl-2 family. Data showed that response to PM is regulated by survivin since overexpression of survivin rendered CaP cells resistant to PM. Furthermore, downregulation of survivin by PM was mediated through the ubiquitin-proteasomal degradation. Together, these data demonstrate that pristimerin inhibits proliferation and induces apoptosis in CaP cells by abolishing survivin through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Yong Bo Liu
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| | - Xiaohua Gao
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| | - Dorrah Deeb
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| | - Chris Brigolin
- Department of Medical Genetics, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yiguan Zhang
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jiajiu Shaw
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Kirit Pindolia
- Department of Medical Genetics, Henry Ford Health System, Detroit, MI 48202, USA
| | - Subhash C Gautam
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
27
|
Deeb D, Gao X, Liu YB, Pindolia K, Gautam SC. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int J Oncol 2014; 44:1707-15. [PMID: 24603988 PMCID: PMC4027926 DOI: 10.3892/ijo.2014.2325] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 12/26/2022] Open
Abstract
Lack of effective therapeutics for pancreatic cancer at the present time underscores the dire need for safe and effective agents for the treatment of this malignancy. In the present study, we have evaluated the anticancer activity and the mechanism of action of pristimerin (PM), a quinonemethide triterpenoid, against MiaPaCa-2 and Panc-1 pancreatic ductal adenocarcinoma (PDA) cell lines. Treatment with PM inhibited the proliferation and induced apoptosis in both cell lines as characterized by the increased Annexin V-binding and cleavage of PARP-1 and procaspases -3, -8 and -9. PM also induced mitochondrial depolarization and the release of cytochrome c from the mitochondria. The induction of apoptosis by PM was associated with the inhibition of the pro-survival Akt, NF-κB and mTOR signaling proteins and their downstream intermediaries such as Foxo-3α and cyclin D1 (Akt); Cox-2 and VEGF (NF-κB); p-S6K1 and p-4E-BP1 (mTOR) as well as PKCɛ. Treatment with PM also inhibited the expression of anti-apoptotic Bcl-2 and survivin but not Bcl-xL. The downregulation of Bcl-2 by PM was not due to proteasomal or lysosomal proteolytic degradation of Bcl-2, since treatment with PM in the presence of proteasomal inhibitors MG132 or lactacystin (LAC) or calpain inhibitor MG101 failed to block the downregulation of Bcl-2 by PM. On the other hand, RT-PCR analysis showed the inhibition of Bcl-2 mRNA by PM in a dose-related manner, indicating that inhibition of Bcl-2 by PM is mediated through the suppression of Bcl-2 gene expression. Thus, the mechanistic understanding of the antitumor activity of pristimerin could facilitate in vivo efficacy studies of pristimerin for pancreatic cancer.
Collapse
Affiliation(s)
- Dorrah Deeb
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| | - Xiaohua Gao
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yong Bo Liu
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| | - Kirit Pindolia
- Department of Medical Genetics, Henry Ford Health System, Detroit, MI 48202, USA
| | - Subhash C Gautam
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
28
|
Luan X, Guan YY, Liu YR, Wang C, Zhao M, Lu Q, Tang YB, Wang XL, Fang C, Chen HZ. Development and validation of a quantitative liquid chromatography tandem mass spectrometry assay for pristimerin in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 941:25-30. [DOI: 10.1016/j.jchromb.2013.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022]
|
29
|
Liu YB, Gao X, Deeb D, Arbab AS, Gautam SC. Pristimerin Induces Apoptosis in Prostate Cancer Cells by Down-regulating Bcl-2 through ROS-dependent Ubiquitin-proteasomal Degradation Pathway. ACTA ACUST UNITED AC 2013; Suppl 6:005. [PMID: 24877026 DOI: 10.4172/2157-2518.s6-005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pristimerin is a quinonemethide triterpenoid with the potential of a promising anticancer agent. Pristimerin (PM) has shown anticancer activity against a range of cancer cell lines, but its activity for prostate cancer has not been adequately investigated. In the present study we have examined the underlying mechanisms of the apoptotic response of the hormone-sensitive (LNCaP) and hormone-refractory (PC-3) prostate cancer cell lines to PM. Treatment with PM induced apoptosis in both cell lines as characterized by increased annexin V-binding and cleavage of PARP-1 and procaspases-3 and -9. It also induced mitochondrial depolarization, cytochrome c release from mitochondria and generation of reactive oxygen species (ROS). Response to PM is regulated by Bcl-2 since it down-regulated Bcl-2 expression and overexpression of Bcl-2 rendered prostate cancer cells resistant to PM. ROS plays a role in down-regulation of Bcl-2, since treatment with PM in the presence of various ROS modulators, e.g., n-acetylcysteine (NAC), a general purpose antioxidant; diphenylene iodonium (DPI), a NADPH inhibitor; rotenone (ROT), a mitochondrial electron transport chain interrupter rotenone or MnTBAP, a O2 scavenger, attenuated the down-regulation of Bcl-2. Furthermore, ROS is also involved in the ubiquitination and proteasomal degradation of Bcl-2 as both of these events were blocked by O 2- scavenger MnTBAP. Thus, pristimerin induces apoptosis in prostate cancer cells predominately through the mitochondrial apoptotic pathway by inhibiting antiapoptic Bcl-2 through a ROS-dependent ubiquitin-proteasomal degradation pathway.
Collapse
Affiliation(s)
- Yong Bo Liu
- Departments of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Xiaohua Gao
- Departments of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Dorrah Deeb
- Departments of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ali S Arbab
- Department of Radiology, Henry Ford Health System, Detroit, Michigan, USA
| | - Subhash C Gautam
- Departments of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|