1
|
Khaled SS, Soliman HA, Abdel-Gabbar M, Ahmed NA, El-Nahass ES, Ahmed OM. Naringin and naringenin counteract taxol-induced liver injury in Wistar rats via suppression of oxidative stress, apoptosis and inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90892-90905. [PMID: 37466839 PMCID: PMC10439847 DOI: 10.1007/s11356-023-28454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
This research aimed to evaluate the preventing effects of naringin, naringenin, and their combination on liver injury induced by Taxol (paclitaxel) in Wistar rats. Male Wistar rats received 2 mg/kg Taxol intraperitoneal injections twice weekly on the second and fifth days of each week for 6 weeks. During the same period as Taxol administration, rats were given naringin, naringenin, or a combination of the two (10 mg/kg b.wt) every other day. Treatment with naringin and/or naringenin reduced the abnormally high serum levels of total bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase in Taxol-treated rats. It also significantly increased the level of serum albumin, indicating an improvement in the liver. The perturbed histological liver changes were markedly improved due to the naringin and/or naringenin treatment in Taxol-administered rats. Additionally, the treatments reduced high hepatic lipid peroxidation and increased liver glutathione content as well as the activities of superoxide dismutase and glutathione peroxidase. Furthermore, the treatments reduced the levels of alpha-fetoprotein and caspase-3, a pro-apoptotic mediator. The naringin and naringenin mixture appeared more effective in improving organ function and structural integrity. In conclusion, naringin and naringenin are suggested to employ their hepatoprotective benefits via boosting the body's antioxidant defense system, reducing inflammation, and suppressing apoptosis.
Collapse
Affiliation(s)
- Shimaa S. Khaled
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
2
|
The Cdc2/Cdk1 inhibitor, purvalanol A, enhances the cytotoxic effects of taxol through Op18/stathmin in non-small cell lung cancer cells in vitro. Int J Mol Med 2017; 40:235-242. [PMID: 28534969 DOI: 10.3892/ijmm.2017.2989] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
Purvalanol A is a highly selective inhibitor of Cdc2 [also known as cyclin-dependent kinase 1 (CDK1)]. Taxol is an anti-tumor chemotherapeutic drug which is widely used clinically. In this study, the CDK1 inhibitor, purvalanol A was applied to explore the relevance of Cdc2 signaling and taxol sensitivity through analyses, such as cellular proliferation and apoptosis assays, ELISA, western blot analysis and immunoprecipitation. We demonstrated that purvalanol A effectively enhanced the taxol-induced apoptosis of NCI-H1299 cells, as well as its inhibitory effects on cellular proliferation and colony formation. In combination, purvalanol A and taxol mainly decreased the expression of oncoprotein 18 (Op18)/stathmin and phosphorylation at Ser16 and Ser38, while purvalanol A alone inhibited the phosphorylation of Op18/stathmin at all 4 serine sites. Co-treatment with purvalanol A and taxol weakened the expression of Bcl-2 and activated the extrinsic cell death pathway through the activation of caspase-3 and caspase-8. Further experiments indicated that Cdc2 kinase activities, including the expression of Cdc2 and the level of phospho-Cdc2 (Thr161) were significantly higher in taxol-resistant NCI-H1299 cells compared with the relatively sensitive CNE1 cells before and following treatment with taxol. These findings suggest that Cdc2 is positively associatd with the development of taxol resistance. The Cdc2 inhibitor, purvalanol A, enhanced the cytotoxic effects of taxol through Op18/stathmin. Our findings may prove to be useful in clinical practice, as they may provide a treatment strategy with which to to reduce the doses of taxol applied clinically, thus alleviating the side-effects.
Collapse
|
3
|
Zhu X, Ju S, Yuan F, Chen G, Shu Y, Li C, Xu Y, Luo J, Xia L. microRNA-664 enhances proliferation, migration and invasion of lung cancer cells. Exp Ther Med 2017; 13:3555-3562. [PMID: 28588679 DOI: 10.3892/etm.2017.4433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Altered microRNA (miR) expression serves an important role in the development and progression of lung cancer. In the present study, the effect of miR-664 on proliferation, migration and invasion of lung cancer cells was assessed. The proliferation of lung cancer cells with an overexpression of miR-664 was examined via MTT assay. The Caspase-Glo3/7 assay was used to examine the effect of miR-664 on cisplatin-induced apoptosis in lung cancer cells. The migration and invasion of lung cancer cells were assessed by Transwell migration and matrigel invasion assays. Western blot analysis was used to examine the protein expression levels. miR-664 improved the proliferation of lung cancer cells and inhibited cisplatin-induced apoptosis of A549 and A427 cells. Furthermore, altered expression of miR-664 affected migration and invasion of lung cancer cells. In addition, a miR-664 mimic decreased E-cadherin expression and increased vementin and Snail expression in lung cancer cells. Notably, the expression level of protein kinase B in A549 cells was changed following altered expression of miR-664. The results of the present study suggest that miR-664 serves an essential role in tumor development and progression in lung cancer.
Collapse
Affiliation(s)
- Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Sheng Ju
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Feng Yuan
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Guoping Chen
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Yue Shu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Chuanchuan Li
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
4
|
Li P, Wang YD, Cheng J, Chen JC, Ha MW. Association between polymorphisms of BAG-1 and XPD and chemotherapy sensitivity in advanced non-small-cell lung cancer patients treated with vinorelbine combined cisplatin regimen. Tumour Biol 2015; 36:9465-73. [PMID: 26124006 DOI: 10.1007/s13277-015-3672-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022] Open
Abstract
BCL-2 Associated athanogene 1 (BAG-1) and Xeroderma pigmentosum group D (XPD) are involved in the nucleotide excision repair pathway and DNA repair. We aimed to investigate whether polymorphisms in BAG-1 and XPD have effects on chemotherapy sensitivity and survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with vinorelbine combined cisplatin (NP) regimen. A total of 142 patients with diagnosed advanced NSCLC were recruited in the current study. NP regimen was applied for all eligible patients. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for BAG-1 (codon 324) and XPD (codons 312 and 751) genotyping. The treatment response was evaluated according to the RECIST guidelines. Progression-free survival (PFS) and overall survival (OS) were record as median and end point, respectively. As for BAG-1 codon 324, the chemotherapy sensitivity in NSCLC patients with CT genotype was 0.383 times of those with CC genotype (P < 0.05). With respect to XPD codon 751, the chemotherapy sensitivity in NSCLC patients with Lys/Gln genotype was 0.400 times of those with Lys/Lys genotype (P < 0.05). In addition, NSCLC patients carrying combined C/C genotype at codon 324 in BAG-1, Asp/Asp of XPD codon 312, and Lys/Lys of XPD codon 751 produced a higher efficacy of NP chemotherapy compared to those carrying mutation genotypes (all P < 0.05). Further, there were significant differences in PFS between patients with combined C/C genotype of BAG-1 codon 324, Lys/Lys genotype of XPD codon 751, and Asp/Asp genotype of XPD codon 312 and patients carrying BAG-1 codon 324 C/T genotype, XPD codon751 Lys/Gln genotype, and XPD codon312 Asp/Asn genotype (P < 0.05). Multivariate Cox regression analysis indicated that the combined wild-type of codon 324 XPD, codon 751 XPD, and codon 312 BAG-1 is the protective factor for OS and PFS, and clinical stages is the risk factor for OS and PFS. In conclusion, our research demonstrated the combined effects of BAG-1 and XPD polymorphisms on chemotherapy sensitivity and survival in patients with advanced NSCLC, which might be the important predictive markers for platinum-based chemotherapy efficacy.
Collapse
Affiliation(s)
- Ping Li
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Five Section of Renmin Street No. 2, Guta District, Jinzhou, 121000, People's Republic of China
| | - Ya-Di Wang
- Department of Oncology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou, 121000, People's Republic of China
| | - Jian Cheng
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Jun-Chen Chen
- Department of Thoracic Surgery, Hubei Rongjun Hospital, Wuhan, 430079, People's Republic of China
| | - Min-Wen Ha
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Five Section of Renmin Street No. 2, Guta District, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
5
|
Cui L, Liu XX, Jiang Y, Liu JJ, Zhou XR, He XJ, Chen J, Huang XE. Phase II study on dose escalating schedule of paclitaxel concurrent with radiotherapy in treating patients with locally advanced non-small cell lung cancer. Asian Pac J Cancer Prev 2014; 15:1699-702. [PMID: 24641393 DOI: 10.7314/apjcp.2014.15.4.1699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To evaluate clinical efficacy of a dose escalating schedule of paclitaxel concurrent with radiotherapy in treating patients with locally advanced non-small cell lung (NSCLC). METHODS Patients with locally advanced NSCLC were treated with conventional fractionated radiotherapy or three dimensional conformal radiotherapy (3 DCRT), concurrently with a dose escalating schedule of paclitaxel. All patients were divided into three groups, A with paclitaxel 30 mg/m2, B with paclitaxel 60 mg/m2 and C with paclitaxel 90 mg/m2. Paclitaxel was repeated every week for a total of 4 or 6 weeks. RESULTS Among 109 patients, response rates were 68.8%, 71.1% and 71.8% (p>0.05) for group A (n=32), B (n=38), and C (n=39) respectively. Accordingly, disease control rates were 81.3%, 81.6% and 82.1% (p>0.05). Progression-free survival time was 8.0 ± 5.0 months, 11.6 ± 6.1 months, and 14.8 ± 7.9 months (p<0.05), respectively. Overall survival time was 15. 4 ± 7.6 months, 18.2 ± 8.0 months, and 22.0 ± 7.6 months (p<0.05), one-year survival rates were 62.5%, 73.1% and 90.0% (p>0.05) and two-year survival rates were 31.3%, 38.5% and 50.0% (p<0.05) . Main side-effects were bone marrow suppression, radiation related esophagitis and gastrointestinal reaction. CONCLUSION In treating patients with NSCLC, concurrent chemoradiotherapy with paclitaxel improves early response compared with conventional fractionated radiotherapy or 3 DCRT. The survival rate was improved with the addition of paclitaxel, but there was an increase in adverse reactions when the dose of paclitaxel was increased.
Collapse
Affiliation(s)
- Lin Cui
- Department of Oncology, Taizhou Second People's Hospital, the Affiliated Hospital of Yangzhou University, Taizhou, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lin X, Liao Y, Xie J, Liu S, Su L, Zou H. Op18/Stathmin Is Involved in the Resistance of Taxol Among Different Epithelial Carcinoma Cell Lines. Cancer Biother Radiopharm 2014; 29:376-86. [DOI: 10.1089/cbr.2014.1649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Xuechi Lin
- Department of Medical Laboratory, Changsha Medical University, Changsha, China
| | - Ying Liao
- Department of Medical Laboratory, Changsha Medical University, Changsha, China
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China
| | - Juan Xie
- Department of Medical Laboratory, Changsha Medical University, Changsha, China
| | - Shuangling Liu
- Department of Medical Laboratory, Changsha Medical University, Changsha, China
| | - Lijun Su
- Department of Medical Laboratory, Changsha Medical University, Changsha, China
| | - Haijiao Zou
- Department of Medical Laboratory, Changsha Medical University, Changsha, China
| |
Collapse
|
7
|
Zhang YM, Li YQ, Liu ZH, Liao XL, Liang R, Lin Y, Yuan CL, Liao SN, Liang CY, Li Q, Li LQ. Clinical Efficacy of Bevacizumab Concomitant with Pemetrexed in Patients with Advanced Non-small Cell Lung Cancer. Asian Pac J Cancer Prev 2014; 15:3447-50. [DOI: 10.7314/apjcp.2014.15.8.3447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Wang L, Wang R, Pan Y, Sun Y, Zhang J, Chen H. The pemetrexed-containing treatments in the non-small cell lung cancer is -/low thymidylate synthase expression better than +/high thymidylate synthase expression: a meta-analysis. BMC Cancer 2014; 14:205. [PMID: 24641970 PMCID: PMC3994655 DOI: 10.1186/1471-2407-14-205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/13/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The predictive value of thymidylate synthase (TS) for clinical sensitivity to pemetrexed-containing chemotherapy in patients with non-small cell lung cancer (NSCLC) remains controversial. This meta-analysis is performed to provide an assessment of whether expression variations of TS are associated with objective response in patients with NSCLC treated with pemetrexed-containing chemotherapy. METHODS An electronic search was conducted using the databases MEDLINE, EMBASE and CNKI, from inception to June 10th, 2013. A systemic review of the studies on the association between TS expression in NSCLC and objective response of pemetrexed-containing regimen was performed. Pooled odds ratios (OR) for the response rate were calculated using the software Revman 5.0. RESULTS There were a total of 526 patients in the eight studies that met our criteria for evaluation. +/high expression of TS was found in 269 patients (51.1%), and -/low expression for this gene was found in 257 (48.9%) patients. The objective response rate for pemetrexed-containing chemotherapy was significantly higher in patients with -/low expression TS expression (OR = 0.45; 95% CI, 0.29-0.70; p = 0.0004). Although patients with -/low expression of TS have a longer median overall survival time and progression free survival time than those with +/high expression of TS, the difference was not statistically significant. CONCLUSIONS -/low expression of TS was associated with higher objective response in NSCLC patients treated with pemetrexed-containing chemotherapy. TS may be a suitable marker of sensitivity to pemetrexed-based chemotherapy in patients with NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Jie Zhang
- Department of Thoracic Surgery, Shanghai Medical College, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China.
| | | |
Collapse
|
9
|
Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:726375. [PMID: 23586056 PMCID: PMC3615596 DOI: 10.1155/2013/726375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/17/2013] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μM, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.
Collapse
|