1
|
Apanovich N, Peters M, Apanovich P, Mansorunov D, Markova A, Matveev V, Karpukhin A. The Genes-Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer. Diagnostics (Basel) 2020; 10:diagnostics10010030. [PMID: 31936274 PMCID: PMC7168144 DOI: 10.3390/diagnostics10010030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular prognostic markers of metastasis are important for personalized approaches to clear cell renal cell carcinoma (ccRCC) treatment but markers for practical use are still missing. To address this gap we studied the expression of ten genes—CA9, NDUFA4L2, VWF, IGFBP3, BHLHE41, EGLN3, SAA1, CSF1R, C1QA, and FN1—through RT-PCR, in 56 ccRCC patients without metastases and with metastases. All of these, excluding CSF1R, showed differential and increased (besides SAA1) expression in non-metastasis tumors. The gene expression levels in metastasis tumors were decreased, besides CSF1R, FN1 (not changed), and SAA1 (increased). There were significant associations of the differentially expressed genes with ccRCC metastasis by ROC analysis and the Fisher exact test. The association of the NDUFA4L2, VWF, EGLN3, SAA1, and C1QA expression with ccRCC metastasis is shown for the first time. The CA9, NDUFA4L2, BHLHE4, and EGLN3 were distinguished as the strongest candidates for ccRCC metastasis biomarkers. We used an approach that presupposed that the metastasis marker was the expression levels of any three genes from the selected panel and received sensitivity (88%) and specificity (73%) levels with a relative risk of RR > 3. In conclusion, a panel of selected genes—the candidates in biomarkers of ccRCC metastasis—was created for the first time. The results might shed some light on the ccRCC metastasis processes.
Collapse
Affiliation(s)
- Natalya Apanovich
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Maria Peters
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Pavel Apanovich
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Danzan Mansorunov
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Anna Markova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Vsevolod Matveev
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Alexander Karpukhin
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
- Correspondence: ; Tel.: +7-499-324-12-39
| |
Collapse
|
2
|
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BackgroundProtein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised.Design and methodsThe study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes.ResultsThe methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs.ConclusionsThe limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics.Trial registrationCurrent Controlled Trials ISRCTN74815110, UKCRN ID 9954 and UKCRN ID 11930.FundingThis project was funded by the NIHR Programme Grants for Applied Research programme and will be published in full inProgramme Grants for Applied Research; Vol. 6, No. 3. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter J Selby
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - William Rosenberg
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christopher McCabe
- Department of Emergency Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Julie Parkes
- Primary Care and Population Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | | | - Maureen Twiddy
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Tilly Hale
- LIVErNORTH Liver Patient Support, Newcastle upon Tyne, UK
| | - Jacqueline Dinnes
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Jones
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | | | - Vicky Napp
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Alice Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sudeep Tanwar
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Naveen S Vasudev
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sue Bell
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Neil Corrigan
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Heudtlass
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nick Hornigold
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Claire Hulme
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carys Lippiatt
- Department of Specialist Laboratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Roberta Longo
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Matthew Potton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sheryl Sim
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sebastian Trainor
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Neuberger
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul Richardson
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - John Christie
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Neil Sheerin
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William McKane
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Gibbs
- Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Naeem Soomro
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Grant D Stewart
- NHS Lothian, Edinburgh, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| | - David Hrouda
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
5
|
Ren P, Sun D, Xin D, Ma W, Chen P, Gao H, Zhang S, Gong M. Serum amyloid A promotes osteosarcoma invasion via upregulating αvβ3 integrin. Mol Med Rep 2014; 10:3106-12. [PMID: 25323768 DOI: 10.3892/mmr.2014.2635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/22/2014] [Indexed: 11/05/2022] Open
Abstract
Serum amyloid A (SAA) is regarded as an important acute phase protein involved in tumor progression and metastasis. However, at present there is no evidence of its involvement in osteosarcoma. The present study aimed to investigate the effect of SAA on the invasion of osteosarcoma cells. The effects of SAA on the migration and invasion of osteosarcoma cells were detected using scratch wound healing and transwell assays, respectively. The expression of αvβ3 integrin was detected at the protein and mRNA levels in U2OS cells. Agonists, inhibitors or siRNA of formyl peptide receptor like‑1 (FPRL‑1), mitogen‑activated protein kinases and αvβ3 integrin were used to investigate the mechanism underlying the effects of SAA on the regulation of U2OS cell migration and invasion. The present study revealed that SAA promoted osteosarcoma cell migration and invasion. SAA upregulated the expression of αvβ3 integrin in a concentration‑ and time‑dependent manner. When inhibiting αvβ3 integrin with its antagonist, the migration and invasion abilities of the U2OS cells were markedly inhibited. SAA‑induced αvβ3 integrin production was significantly downregulated by inhibiting FPRL‑1 with siRNA and inhibitors. The present study also found that extracellular signal‑regulated kinase (ERK) 1/2, but not c‑Jun N‑terminal kinase or p38, was important in this process. These findings demonstrated that SAA regulated osteosarcoma cell migration and invasion via the FPRL‑1/ERK/αvβ3 integrin pathway.
Collapse
Affiliation(s)
- Peng Ren
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Deshun Sun
- Department of Osteology, Zhangqiu City Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Dajiang Xin
- Department of Osteology, Mount Yantai Hospital, Yantai, Shandong 264000, P.R. China
| | - Wanli Ma
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Peng Chen
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongwei Gao
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shouqiang Zhang
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Mingzhi Gong
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|