1
|
Somu P, Basavegowda N, Gomez LA, Jayaprakash HV, Puneetha GK, Yadav AK, Paul S, Baek KH. Crossroad between the Heat Shock Protein and Inflammation Pathway in Acquiring Drug Resistance: A Possible Target for Future Cancer Therapeutics. Biomedicines 2023; 11:2639. [PMID: 37893013 PMCID: PMC10604354 DOI: 10.3390/biomedicines11102639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multidrug resistance (MDR) against chemotherapeutic agents has become a major impediment in cancer therapy. Understanding the underlying mechanism behind MDR can guide future treatment for cancer with better therapeutic outcomes. Recent studies evidenced that crossroads interaction between the heat shock proteins (HSP) and inflammatory responses under the tumor microenvironment plays a pivotal role in modulating drug responsiveness and drug resistance through a complex cytological process. This review aims to investigate the interrelationship between inflammation and HSP in acquiring multiple drug resistance and investigate strategies to overcome the drug resistance to improve the efficacy of cancer treatment. HSP plays a dual regulatory effect as an immunosuppressive and immunostimulatory agent, involving the simultaneous blockade of multiple signaling pathways in acquiring MDR. For example, HSP27 shows biological effects on monocytes by causing IL10 and TNFα secretion and blocking monocyte differentiation to normal dendritic cells and tumor-associated macrophages to promote cancer progression and chemoresistance. Thus, the HSP function and immune-checkpoint release modalities provide a therapeutic target for a therapeutically beneficial approach for enhancing anti-tumor immune responses. The interconnection between inflammation and HSP, along with the tumor microenvironment in acquiring drug resistance, has become crucial for rationalizing the effect of HSP immunomodulatory activity with immune checkpoint blockade. This relationship can overcome drug resistance and assist in the development of novel combinatorial cancer immunotherapy in fighting cancer with decreasing mortality rates.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Bioscience, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641114, India;
| | | | | | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
| | - Subhankar Paul
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
2
|
Effects of co-administration of arsenic trioxide and Schiff base oxovanadium complex on the induction of apoptosis in acute promyelocytic leukemia cells. Biometals 2021; 34:1067-1080. [PMID: 34255251 DOI: 10.1007/s10534-021-00330-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Acute promyelocytic leukaemia (APL) is commonly treated with arsenic trioxide (As2O3) that has many side effects. Given the increasing trend of studies on beneficial therapeutic properties of synthetic compounds containing vanadium, the present study sought to use Schiff base oxovanadium complex to reduce the needed concentration of arsenic trioxide. The HL-60 cell line, which is a model of APL, was selected and the effects of arsenic trioxide and Schiff base oxovanadium complex were individually and simultaneously evaluated on the cell viability by the MTT assay. Flow cytometry and Real-time RT-PCR were also performed to investigate the rate of apoptosis and the expression of P53 and P21 genes, respectively. The IC50 of arsenic trioxide and Schiff base oxovanadium complex on Hl-60 cells was 8.37 ± 0.36 µM and 34.12 ± 1.52 µg/ml, respectively. At the simultaneous administration of both compounds, the maximum decrease in the cell viability was seen in co-administration of 40 µg/ml of Schiff base oxovanadium complex and 0.001 µM of arsenic trioxide. Real-time RT-PCR indicated that the co-administration of Schiff base oxovanadium complex 40 µg/ml and arsenic trioxide 0.001 µM could increase the expression of P53 and P21 genes by 3.76 ± 0.19 and 6.57 ± 1.29 fold change, respectively to the control sample. The flow cytometry studies also indicated that this co-administration could induce apoptosis up to 67% ± 0.9% significantly higher than the control sample. The use of Schiff base oxovanadium complex could significantly reduce the required dose of arsenic trioxide to induce apoptosis in HL-60 cells.
Collapse
|
3
|
Keyvani V, Nasserifar Z, Saberi MR, Mohajeri SA, Arabzadeh S, Shahriari Ahmadi F, Hosseinzadeh H, Shariat Razavi SM, Kalalinia F. Evaluation the interaction of ABC multidrug transporter MDR1 with thymoquinone: substrate or inhibitor? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1360-1366. [PMID: 33149871 PMCID: PMC7585528 DOI: 10.22038/ijbms.2020.44216.10381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective(s): Thymoquinone (TQ) has valuable medical properties like anticancer effects. Development of multidrug resistance (MDR) phenotype is one of the most important factors in failure of cancer chemotherapy. The aim of this study was to evaluate the mode of interaction of TQ and MDR1, a major MDR-related protein in gastric cancer drug resistant EPG85-257RDB cells, and its parental non-resistant EPG85-257 cells. Materials and Methods: MTT assay was used to assess the effects of TQ and doxorubicin (DOX) on cell viability of tested cell lines and TQ effect on pump performance. HPLC analyses were used to measure the input and output of TQ in EPG85-257RDB cells. Molecular docking studies were used to identify interactions between TQ and MDR1. Results: TQ inhibited cell viability in a time and concentration-dependent manner. Co-treatment of the cells with TQ and DOX did not significantly affect the amount of cell viability in comparison with DOX treatment alone. The HPLC analyses showed that more than 90% of TQ entered to EPG85-257RDB during 1 hr of treatment with TQ, but it was unable to exit from the cells. Moreover, there was no difference between influx and efflux amount of TQ in cells with inhibited and non-inhibited MDR1 transporters. Molecular docking studies revealed that TQ had a higher inhibitory constant to bind to active site of MDR1 protein as compared to specific inhibitor (verapamil) and substrate (vinblastine) of this transporter. Conclusion: These results proposed that TQ does not work as an inhibitor or a substrate of MDR1 transporter.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zeinab Nasserifar
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad-Reza Saberi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Arabzadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farajollah Shahriari Ahmadi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Shariat Razavi SM, Mahmoudzadeh Vaziri R, Karimi G, Arabzadeh S, Keyvani V, Behravan J, Kalalinia F. Crocin Increases Gastric Cancer Cells' Sensitivity to Doxorubicin. Asian Pac J Cancer Prev 2020; 21:1959-1967. [PMID: 32711421 PMCID: PMC7573416 DOI: 10.31557/apjcp.2020.21.7.1959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 11/27/2022] Open
Abstract
Background: Crocin is one of the substantial constituents of saffron extract. It has multiple clinical effects including anti-cancer effects. The development of the multidrug resistance (MDR) phenotype is one of the principal causes of cancer chemotherapy failure. The multidrug resistance protein 1 (MDR1) is one of the MDR-related protein and is often overexpressed in different cancers. In the present study, we aimed to evaluate the influence of crocin on the expression and function of MDR1 protein in EPG85-257 and EPG85-257RDB gastric cancer cell lines. Methods: The cytotoxicity effect of crocin was evaluated by the MTT assay. The impacts of crocin on the expression and function of MDR1 were assessed by Real-time RT-PCR and MTT assay, respectively. Results: The results demonstrated that crocin decreased cell viability in a dose-dependent manner with higher intensity on the EPG85-257 than the EPG85-257RDB cells. Crocin did not make any significant changes in the MDR1 gene expression level in EPG85-257 and EPG85-257RDB cell lines. In contrast, crocin increased doxorubicin cytotoxicity in drug-resistant cells, which might be induced by reduced MDR1 activity. Conclusion: In summary, although crocin did not affect mRNA expression of MDR1, results of MTT assay suggest that it might inhibit the MDR1 function.
Collapse
Affiliation(s)
- Seyedeh Mahya Shariat Razavi
- Medical Genetics Research Center, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gholamreza Karimi
- Medical Toxicology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Arabzadeh
- 4Biotechnology Research Center,
Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Javad Behravan
- 4Biotechnology Research Center,
Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- 4Biotechnology Research Center,
Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235:116825. [PMID: 31494169 DOI: 10.1016/j.lfs.2019.116825] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistances against chemotherapeutics are among the major challenges related to cancer treatment. Recent studies have demonstrated that different conditions may tune the expression and activity of MDR transporters. For instance, inflammation occurs through a complex cytological process and chemical reactions in the most tumor microenvironment; it can play a critical role in cancer development and is capable of altering the expression and function of MDR transporters. Cytokines, interleukins, and prostaglandins are potent inflammatory mediators that can modulate the expression of MDRs at transcriptional and post-transcriptional levels in the most human cancer cells and tissues and potentially contribute to balance bioavailability of chemotherapeutic agents. Since cancer cases are usually accompanied by inflammatory responses, glucocorticoids and NSAIDs are the primary useful combination chemotherapies in a variety of cancer treatment protocols. In addition to the anti-inflammatory activities of these agents, they exert diverse modulatory effects on MDR-mediated drug resistance via specific mechanisms. Several factors, including cell and MDR-protein types, pharmacokinetics, and pharmacogenetics, mainly influence the regulatory mechanisms. Uncovering the networks between inflammation and multidrug resistance will be clinically helpful in the treatment of malignant cancers and decreasing the cancer mortality rates.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Dinmohammadi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Taheri T, Jamialahmadi K, Khadijeh F. Unexpected Lower Expression of Oncoprotein Gankyrin in Drug Resistant ABCG2 Overexpressing Breast Cancer Cell Lines. Asian Pac J Cancer Prev 2017; 18:3413-3418. [PMID: 29286612 PMCID: PMC5980903 DOI: 10.22034/apjcp.2017.18.12.3413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Development of a multidrug resistance (MDR) phenotype to chemotherapy remains a major barrier in
the treatment of cancer. Gankyrin (p28, p28GANK or PSMD10) is an oncoprotein overexpressed in different carcinoma
cell lines. The aim of this study was to compare Gankyrin expression level in MDR cells (MCF-7/ADR and MCF-7/
MX) and non-MDR counterparts (MCF-7). Methods: Gankyrin, MDR1 (also known as ABCB1; the ATP-binding
cassette sub-family B member 1) and ABCG2 (also known as BCRP; the human breast cancer resistance protein)
mRNA levels were analyzed by real-time RT-PCR. Western blot analysis was used to detect the protein expression
levels of Gankyrin. Results: The PCR results showed that the expression of Gankyrin was significantly lower in the
ABCG2 overexpressing cell line MCF-7/MX than in non-resistanct MCF-7 cells. In contrast, there were no significant
differences in mRNA expression of Gankyrin in the MDR1 overexpressing cell line MCF-7/ADR in comparison with
MCF-7 cells. Similarly, Western blot analysis confirmed lower expression of Gankyrin protein in the MCF-7/MX cell
line (26% compared to controls) but not in MCF-7/ADR cells. Conclusion: These findings showed that there may be
a relation between down-regulation of Gankyrin and overexpression of ABCG2 but without any clear relationship with
MDR1 expression in breast cancer cell lines.
Collapse
Affiliation(s)
- Taheri Taheri
- Department of Biochemistry, Faculty of Science, Payam Noor University of Mashhad, Mashhad, Iran.,Department of Stem Cells and Developmental Biology, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
| | | | | |
Collapse
|
7
|
Hasanabady MH, Kalalinia F. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. J Biosci 2016; 41:313-24. [DOI: 10.1007/s12038-016-9601-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Abera MB, Kazanietz MG. Protein kinase Cα mediates erlotinib resistance in lung cancer cells. Mol Pharmacol 2015; 87:832-41. [PMID: 25724832 PMCID: PMC4407729 DOI: 10.1124/mol.115.097725] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/27/2015] [Indexed: 12/25/2022] Open
Abstract
Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non-small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Mahlet B Abera
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Yang X, Zhao F, Li YH, Huang M, Huang Y, Yi C. Lack of Association of the Cyclooxygenase-2 Gene 8473T>C Polymorphism with Breast Cancer Risk: a Meta-analysis. Asian Pac J Cancer Prev 2014; 15:9693-8. [DOI: 10.7314/apjcp.2014.15.22.9693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Niero EL, Rocha-Sales B, Lauand C, Cortez BA, de Souza MM, Rezende-Teixeira P, Urabayashi MS, Martens AA, Neves JH, Machado-Santelli GM. The multiple facets of drug resistance: one history, different approaches. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:37. [PMID: 24775603 PMCID: PMC4041145 DOI: 10.1186/1756-9966-33-37] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated.
Collapse
Affiliation(s)
- Evandro Luís Niero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av, Prof, Lineu Prestes, 1524, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu L, Zuo LF, Guo JW. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol Med Rep 2014; 9:1299-304. [PMID: 24535197 DOI: 10.3892/mmr.2014.1949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/29/2014] [Indexed: 11/06/2022] Open
Abstract
Resistance to chemotherapeutic agents is the main reason for treatment failure in patients with cancer. The primary mechanism of multidrug resistance (MDR) is the overexpression of drug efflux transporters, including ATP‑binding cassette transporter G2 (ABCG2). To the best of our knowledge, the MDR mechanisms of esophageal cancer have not been described. An adriamycin (ADM)-resistant subline, Eca109/ADM, was generated from the Eca109 esophageal cancer cell line by a stepwise selection in ADM from 0.002 to 0.02 ng/µl. The resulting subline, designated Eca109/ADM, revealed a 3.29-fold resistance against ADM compared with the Eca109 cell line. The ABCG2 gene expression in the Eca109/ADM cells was increased compared with that of the Eca109 cells. The cellular properties of the Eca109/ADM cells were detected by reverse transcription polymerase chain reaction (RT-PCR), flow cytometry and western blotting. The ABCG2 expression levels were detected by RT-PCR and flow cytometry, and the drug efflux effect was detected by flow cytometry. The present study detected the correlation between ABCG2 and the multidrug resistance of esophageal cancer. ABCG2 gene expression and the drug efflux effect of the Eca109/ADM cells were increased compared with those of the Eca109 cells. Collectively, the results of this study indicated that the overexpression of ABCG2 in the Eca109/ADM cells resulted in drug efflux, which may be responsible for the development of esophageal cancer MDR.
Collapse
Affiliation(s)
- Liang Liu
- Department of Flow Cytometry Analysis, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lian Fu Zuo
- Department of Flow Cytometry Analysis, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian Wen Guo
- Department of Flow Cytometry Analysis, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|