1
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
2
|
Thazhackavayal Baby B, Kulkarni AM, Gayam PKR, Harikumar KB, Aranjani JM. Beyond cyclopamine: Targeting Hedgehog signaling for cancer intervention. Arch Biochem Biophys 2024; 754:109952. [PMID: 38432565 DOI: 10.1016/j.abb.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Hedgehog (Hh) signaling plays a significant role in embryogenesis and several physiological processes, such as wound healing and organ homeostasis. In a pathological setting, it is associated with oncogenesis and is responsible for disease progression and poor clinical outcomes. Hedgehog signaling mediates downstream actions via Glioma Associated Oncogene Homolog (GLI) transcription factors. Inhibiting Hh signaling is an important oncological strategy in which inhibitors of the ligands SMO or GLI have been looked at. This review briefly narrates the Hh ligands, signal transduction, the target genes involved and comprehensively describes the numerous inhibitors that have been evaluated for use in various neoplastic settings.
Collapse
Affiliation(s)
- Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| |
Collapse
|
3
|
Wang Y, Ali M, Zhang Q, Sun Q, Ren J, Wang W, Tang D, Wang D. ATF4 Transcriptionally Activates SHH to Promote Proliferation, Invasion, and Migration of Gastric Cancer Cells. Cancers (Basel) 2023; 15:1429. [PMID: 36900220 PMCID: PMC10000907 DOI: 10.3390/cancers15051429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is a DNA-binding protein widely generated in mammals, which has two biological characteristics that bind the cAMP response element (CRE). The mechanism of ATF4 as a transcription factor in gastric cancer affecting the Hedgehog pathway remains unclear. Here, we observed that ATF4 was markedly upregulated in gastric cancer (GC) using immunohistochemistry and Western blotting assays in 80 paraffin-embedded GC samples and 4 fresh samples and para-cancerous tissues. ATF4 knockdown using lentiviral vectors strongly inhibited the proliferation and invasion of GC cells. ATF4 upregulation using lentiviral vectors promoted the proliferation and invasion of GC cells. We predicted that the transcription factor ATF4 is bound to the SHH promoter via the JASPA database. Transcription factor ATF4 is bound to the promoter region of SHH to activate the Sonic Hedgehog pathway. Mechanistically, rescue assays showed that ATF4 regulated gastric cancer cells' proliferation and invasive ability through SHH. Similarly, ATF4 enhanced the tumor formation of GC cells in a xenograft model.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| | - Muhammad Ali
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| | - Qi Zhang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Qiannan Sun
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jun Ren
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wei Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Dong Tang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| | - Daorong Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| |
Collapse
|
4
|
Agarwal NK, Kim CH, Kunkalla K, Vaghefi A, Sanchez S, Manuel S, Bilbao D, Vega F, Landgraf R. Smoothened (SMO) regulates insulin-like growth factor 1 receptor (IGF1R) levels and protein kinase B (AKT) localization and signaling. J Transl Med 2022; 102:401-410. [PMID: 34893758 PMCID: PMC8969180 DOI: 10.1038/s41374-021-00702-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The oncoprotein Smoothened (SMO), a Frizzled-class-G-protein-coupled receptor, is the central transducer of hedgehog (Hh) signaling. While canonical SMO signaling is best understood in the context of cilia, evidence suggests that SMO has other functions in cancer biology that are unrelated to canonical Hh signaling. Herein, we provided evidence that elevated levels of human SMO show a strong correlation with elevated levels of insulin-like growth factor 1 receptor (IGF1R) and reduced survival in diffuse large B-cell lymphoma (DLBCL). As an integral component of raft microdomains, SMO plays a fundamental role in maintaining the levels of IGF1R in lymphoma and breast cancer cells as well IGF1R-associated activation of protein kinase B (AKT). Silencing of SMO increases lysosomal degradation and favors a localization of IGF1R to late endosomal compartments instead of early endosomal compartments from which much of the receptor would normally recycle. In addition, loss of SMO interferes with the lipid raft localization and retention of the remaining IGF1R and AKT, thereby disrupting the primary signaling context for IGF1R/AKT. This activity of SMO is independent of its canonical signaling and represents a novel and clinically relevant contribution to signaling by the highly oncogenic IGF1R/AKT signaling axis.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX
| | - Chae-Hwa Kim
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Kranthi Kunkalla
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Amineh Vaghefi
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sandra Sanchez
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Samantha Manuel
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francisco Vega
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA.
| | - Ralf Landgraf
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Takeda T, Yamamoto Y, Tsubaki M, Matsuda T, Kimura A, Shimo N, Nishida S. PI3K/Akt/YAP signaling promotes migration and invasion of DLD‑1 colorectal cancer cells. Oncol Lett 2022; 23:106. [DOI: 10.3892/ol.2022.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Yuuta Yamamoto
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Akihiro Kimura
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Natsumi Shimo
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| |
Collapse
|
6
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
7
|
The Role of Smoothened in Cancer. Int J Mol Sci 2020; 21:ijms21186863. [PMID: 32962123 PMCID: PMC7555769 DOI: 10.3390/ijms21186863] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Collapse
|
8
|
Xiao W, Liu Y, Dai M, Li Y, Peng R, Yu S, Liu H. Rotenone restrains colon cancer cell viability, motility and epithelial‑mesenchymal transition and tumorigenesis in nude mice via the PI3K/AKT pathway. Int J Mol Med 2020; 46:700-708. [PMID: 32626924 PMCID: PMC7307809 DOI: 10.3892/ijmm.2020.4637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Rotenone, a natural hydrophobic pesticide, has been reported to display anticancer activity in a variety of cancer cells. However, the mechanism of rotenone on colon cancer (CC) cell migration, invasion and metastasis is still unknown. In the present study, the cytotoxicity of rotenone on CC cells were detected by the Cell Counting Kit‑8 assay and confirmed by clone formation assay. The effects of rotenone on CC cell invasion and migration activity were determined in vitro by Transwell invasion and wound healing assays, respectively. In addition, to reveal whether rotenone affected the epithelial‑mesenchymal‑transition (EMT) process, reverse transcription‑quantitative PCR, western blotting and immunofluorescence assays were used to detect the expression of EMT markers. The expression levels of the key markers of the PI3K/AKT pathway after rotenone treatment alone or in combination with a PI3K/AKT signaling activator in CC were also detected by western blotting. Finally, the in vivo antitumor effects of rotenone were evaluated in a subcutaneous xenotransplant tumor model treated with an intraperitoneal injection of rotenone. The results of the present study demonstrated that rotenone treatment induced CC cell cytotoxicity and greater effects were observed with increasing concentrations and inhibited cell proliferation compared with untreated cells. In vitro cell function assays revealed that rotenone inhibited CC cell migration, invasion and EMT compared with untreated cells. Mechanically, the phosphorylation levels of AKT and mTOR were downregulated in rotenone‑treated CC cells compared with untreated cells. Additionally, AKT and mTOR phosphorylation levels were increased by the PI3K/AKT signaling activator insulin‑like growth factor 1 (IGF‑1), which was reversed by rotenone treatment. The cell function assays confirmed that the IGF‑1‑activated cell proliferation, migration and invasion were decreased by rotenone treatment. These results indicated that rotenone affected CC cell proliferation and metastatic capabilities by inhibiting the PI3K/AKT/mTOR signaling pathway. In addition, rotenone inhibited tumor growth and metastatic capability of CC, which was confirmed in a xenograft mouse model. In conclusion, the present study revealed that rotenone inhibited CC cell viability, motility, EMT and metastasis in vitro and in vivo by inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenbo Xiao
- Department of Digestion, University-Town Hospital of Chongqing Medical University, Chongqing 401331
| | | | | | - Yu Li
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402460
| | - Renqun Peng
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402460
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing 400038, P.R. China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402460
| |
Collapse
|
9
|
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments. Int J Mol Sci 2020; 21:ijms21030758. [PMID: 31979397 PMCID: PMC7037908 DOI: 10.3390/ijms21030758] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
During mammalian embryonic development, primary cilia transduce and regulate several signaling pathways. Among the various pathways, Sonic hedgehog (SHH) is one of the most significant. SHH signaling remains quiescent in adult mammalian tissues. However, in multiple adult tissues, it becomes active during differentiation, proliferation, and maintenance. Moreover, aberrant activation of SHH signaling occurs in cancers of the skin, brain, liver, gallbladder, pancreas, stomach, colon, breast, lung, prostate, and hematological malignancies. Recent studies have shown that the tumor microenvironment or stroma could affect tumor development and metastasis. One hypothesis has been proposed, claiming that the pancreatic epithelia secretes SHH that is essential in establishing and regulating the pancreatic tumor microenvironment in promoting cancer progression. The SHH signaling pathway is also activated in the cancer stem cells (CSC) of several neoplasms. The self-renewal of CSC is regulated by the SHH/Smoothened receptor (SMO)/Glioma-associated oncogene homolog I (GLI) signaling pathway. Combined use of SHH signaling inhibitors and chemotherapy/radiation therapy/immunotherapy is therefore key in targeting CSCs.
Collapse
|
10
|
Circular RNA SMO sponges miR-338-3p to promote the growth of glioma by enhancing the expression of SMO. Aging (Albany NY) 2019; 11:12345-12360. [PMID: 31895689 PMCID: PMC6949074 DOI: 10.18632/aging.102576] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most common tumors in the brain and complete cure still a challenge. The present research aimed to investigate the molecular mechanism of circular RNA SMO (circSMO742) in glioma, via targeting miR-338-3p and regulating SMO expression. QRT-PCR was utilized to examine the expression profiles of circSMO742 and microRNA-338-3p (miR-338-3p) in glioma. SMO protein in glioma was tested via western blot. RNA pulldown assay and dual luciferase reporter assays were used to explore the targeting correlation between RNAs. MTT assay, transwell assays and flow cytometry were used to investigate cell proliferation, migration and invasion, and apoptosis, respectively. Tumor xenograft was done to ascertain the effect of circSMO742 knocking down on tumor growth. CircSMO742 and SMO were highly expressed in glioma tissues, while miR-338-3p expression was reduced. CircSMO742 together with SMO could promote cells proliferation, migration and invasion while inhibit cells apoptosis, whereas miR-338-3p showed negative impacts on the cell activity. Knocking down of circSMO742 suppressed glioma growing in vivo. CircSMO742 promoted glioma growth by sponging miR-338-3p to regulate SMO expression. Our research revealed a new molecular mechanism of glioma growth and provide a fresh perspective on circRNAs in glioma progression.
Collapse
|
11
|
Kotulak-Chrzaszcz A, Klacz J, Matuszewski M, Kmiec Z, Wierzbicki PM. Expression of the Sonic Hedgehog pathway components in clear cell renal cell carcinoma. Oncol Lett 2019; 18:5801-5810. [PMID: 31788053 PMCID: PMC6865145 DOI: 10.3892/ol.2019.10919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and the most aggressive histopathological subtype of kidney cancer, with patients exhibiting high mortality rates for metastatic tumors. The Sonic Hedgehog (SHH) pathway serves a crucial role in embryonic development. The abnormal activity of SHH signaling is observed in a broad range of malignancies. However, its role in ccRCC is still undetermined. The aim of the present study was to assess the expression of the SHH pathway genes in ccRCC. Neoplastic and morphologically unchanged kidney tissues were obtained during radical nephrectomy from 37 patients with ccRCC. The SHH, PTCH1, SMO and GLI1 mRNA levels were assessed using the reverse transcription-quantitative PCR. Western blot analysis was used to assess the full-length and C-terminal SHH protein level. The mRNA levels of SHH, SMO and GLI1 were approximately 2-, 2,5- and 7-fold higher in ccRCC tissue compared with control kidney tissue, respectively. Correlational analysis between the mRNA levels of SHH pathway genes and patients' clinicopathological factors revealed decreased and increased mRNA levels of PTCH1 and SMO respectively, in tumor samples derived from older patients (age >62). Furthermore, the level of C-terminal SHH protein in ccRCC samples was significantly lower in a group of males compared with females. No correlation was exhibited between molecular data and patient survival. Western blot analysis indicated a ~3-fold higher level of SHH full-length protein, and a 4-fold lower level of the C-terminal SHH protein domain, in ccRCC tumor tissues compared with normal kidney samples. The current study indicated an involvement of the SHH pathway in ccRCC development.
Collapse
Affiliation(s)
- Anna Kotulak-Chrzaszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| | - Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80402, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80402, Poland
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| | - Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| |
Collapse
|
12
|
Niyaz M, Khan MS, Wani RA, Shah OJ, Besina S, Mudassar S. Nuclear localization and Overexpression of Smoothened in Pancreatic and Colorectal Cancers. J Cell Biochem 2019; 120:11941-11948. [PMID: 30784110 DOI: 10.1002/jcb.28477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Smoothened (SMO) is a significant signalling protein which functions as a key transducer for the hedgehog signalling pathway, an important signalling mechanism with key roles in development and oncogenesis. The correlation of expression dynamics of SMO with pancreatic and colorectal cancer genesis has been known but with ambiguity. Therefore, in this study, we investigated messenger RNA (mRNA) and protein expression of SMO in pancreatic and colorectal cancers in our population and assessed relationship with various clinicopathological parameters. Surgically resected tumour and adjacent histologically normal tissues from 33 and 61 pancreatic and colorectal cancer patients were investigated in the present study. Expression of SMO was analysed by quantitative real-time polymerase chain reaction and immunohistochemistry. At mRNA level, SMO was overexpressed in 72.72% (24 of 33) and 50.81% (31 of 61) of the pancreatic and colorectal cancer cases as compared with their adjacent normal tissues. SMO immunohistochemical analysis revealed nuclear localization and overexpression was observed in 51.51% (17 of 33) and 40.98% (25 of 61) of pancreatic and colorectal cancer tissues. SMO overexpression was significantly associated with smoking, late-stage disease and lymph node metastasis in patients with Colorectal cancer. Our results showed that SMO is dysregulated in pancreatic and colorectal cancers and may be considered as a target in cancer therapeutics.
Collapse
Affiliation(s)
- Madiha Niyaz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, India
| | - Mosin S Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, India
| | - Rauf A Wani
- Department of General and Minimal Invasive Surgery, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, India
| | - Omar J Shah
- Department of Surgical Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, India
| | - Syed Besina
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, India
| |
Collapse
|
13
|
Cao LL, Pei XF, Qiao X, Yu J, Ye H, Xi CL, Wang PY, Gong ZL. SERPINA3 Silencing Inhibits the Migration, Invasion, and Liver Metastasis of Colon Cancer Cells. Dig Dis Sci 2018; 63:2309-2319. [PMID: 29855767 DOI: 10.1007/s10620-018-5137-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the impact of SERPINA3 on the migration, invasion, and liver metastasis of colon cancer cells. METHODS Immunohistochemical staining was conducted to determine SERPINA3 expression in the cancer and adjacent normal tissues of 131 patients suffering from colon cancer. In vitro experiment, colon cancer cells with low (HT-29P), intermediate (KM-12C), and high (HT-29LMM, KM-12L4) metastatic potential were obtained to examine SERPINA3 expression levels. Besides, quantitative real-time PCR (qRT-PCR) and Western Blot were performed to detect SERPINA3 expression in HT-29LMM and KM-12L4 cells transfected with SERPINA3 siRNA; Wound-healing and Transwell assays to measure cell migration and invasion, respectively; and ELISA to detect MMP-2 and MMP-9 levels. In vivo experiment, mice with liver metastasis of colon cancer were established to observe the effect of SERPINA3 silencing on liver metastasis. Immunohistochemical assay was applied to evaluate the expressions of Serpina3, Mmp-2, Mmp-9, and proliferating cell nuclear antigen (Pcna) in liver metastasis tissues. RESULTS SERPINA3 in colon cancer tissues was higher than in adjacent normal tissues, which was associated with patients' clinicopathological features. Besides, SERPINA3 expression showed a rising trend in low, intermediate, and high metastatic potential colon cancer cells. After KM-12L4 and HT-29LMM cells transfected with SERPINA3 siRNA, the migration and invasive ability of cells, as well as the expression levels of MMP-2 and MMP-9 were all decreased. Moreover, SERPINA3 siRNA could not only reduce live metastasis of mice, but also down-regulate the expression of Mmp-2 and Mmp-9 in liver metastasis tissues. CONCLUSION SERPINA3 silencing could inhibit the migration, invasion, and liver metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Long-Lei Cao
- Department of Anal-colorectal Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Renmin Road 1, Jingzhou, 434020, China
| | - Xu-Feng Pei
- Department of Emergency Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, 434020, China
| | - Xu Qiao
- Department of Gastroenterology, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, 434020, China
| | - Jie Yu
- Department of Anal-colorectal Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Renmin Road 1, Jingzhou, 434020, China
| | - Hui Ye
- Department of Anal-colorectal Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Renmin Road 1, Jingzhou, 434020, China
| | - Chang-Lei Xi
- Department of Anal-colorectal Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Renmin Road 1, Jingzhou, 434020, China
| | - Pei-Yun Wang
- Department of Anal-colorectal Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Renmin Road 1, Jingzhou, 434020, China
| | - Zhi-Lin Gong
- Department of Anal-colorectal Surgery, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Renmin Road 1, Jingzhou, 434020, China.
| |
Collapse
|
14
|
Wu C, Zhu X, Liu W, Ruan T, Tao K. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther 2017; 10:3249-3259. [PMID: 28721076 PMCID: PMC5501640 DOI: 10.2147/ott.s139639] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. It is a complicated and often fatal cancer, and is related to a high disease-related mortality. Around 90% of mortalities are caused by the metastasis of CRC. Current treatment statistics shows a less than 5% 5-year survival for patients with metastatic disease. The development and metastasis of CRC involve multiple factors and mechanisms. The Hedgehog (Hh) signaling plays an important role in embryogenesis and somatic development. Abnormal activation of the Hh pathway has been proven to be related to several types of human cancers. The role of Hh signaling in CRC, however, remains controversial. In this review, we will go through previous literature on the Hh signaling and its functions in the formation, proliferation, and metastasis of CRC. We will also discuss the potential of targeting Hh signaling pathway in the treatment, prognosis, and prevention of CRC.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Papadopoulos V, Tsapakidis K, Riobo Del Galdo NA, Papandreou CN, Del Galdo F, Anthoney A, Sakellaridis N, Dimas K, Kamposioras K. The Prognostic Significance of the Hedgehog Signaling Pathway in Colorectal Cancer. Clin Colorectal Cancer 2016; 15:116-27. [PMID: 27032873 DOI: 10.1016/j.clcc.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Despite significant advances in the management of colorectal cancer (CRC) the identification of new prognostic biomarkers continues to be a challenge. Since its initial discovery, the role of the Hedgehog (Hh) signaling pathway in carcinogenesis has been extensively studied. We herein review and comment on the prognostic significance of the Hh signaling pathway in CRC. The differential expression of Hh pathway components between malignant and nonmalignant conditions as well as correlation of Hh activation markers with various clinicopathological parameters and the effect on disease-free survival, overall survival, and disease recurrence in patients with CRC is summarized and discussed. According to the studies reviewed herein the activation of the Hh pathway seems to be correlated with adverse clinicopathological features and worse survival. However, to date study results show significant variability with regard to the effect on outcomes. Such results need to be interpreted carefully and emphasize the need for further well designed studies to characterize the actual influence of the Hh pathway in CRC prognosis.
Collapse
Affiliation(s)
| | | | - Natalia A Riobo Del Galdo
- Department of Biochemistry and Molecular Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Francesco Del Galdo
- Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine, LMBRU, University of Leeds, Leeds, United Kingdom
| | - Alan Anthoney
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom.
| |
Collapse
|
16
|
Xavier-Ferrucio JM, Pericole FV, Lopes MR, Latuf-Filho P, Barcellos KSA, Dias AI, Campos PDM, Traina F, Vassallo J, Saad STO, Favaro P. Abnormal Hedgehog pathway in myelodysplastic syndrome and its impact on patients' outcome. Haematologica 2015; 100:e491-3. [PMID: 26294731 DOI: 10.3324/haematol.2015.124040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Juliana M Xavier-Ferrucio
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fernando Vieira Pericole
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Matheus Rodrigues Lopes
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Paulo Latuf-Filho
- Laboratory of Investigative Pathology, Department of Anatomic Pathology, Hospital AC Camargo, São Paulo, Brazil Laboratory of Investigative and Molecular Pathology, Center for Investigation in Pediatrics (Ciped), Diadema, São Paulo, Brazil
| | - Karin Spät Albino Barcellos
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Amanda Inácio Dias
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Paula de Melo Campos
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Jose Vassallo
- Laboratory of Investigative Pathology, Department of Anatomic Pathology, Hospital AC Camargo, São Paulo, Brazil Laboratory of Investigative and Molecular Pathology, Center for Investigation in Pediatrics (Ciped), Diadema, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
17
|
Wang RJ, Wu P, Cai GX, Wang ZM, Xu Y, Peng JJ, Sheng WQ, Lu HF, Cai SJ. Down-regulated MYH11 expression correlates with poor prognosis in stage II and III colorectal cancer. Asian Pac J Cancer Prev 2015; 15:7223-8. [PMID: 25227818 DOI: 10.7314/apjcp.2014.15.17.7223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The MYH11 gene may be related to cell migration and adhesion, intracellular transport, and signal transduction. However, its relationship with prognosis is still uncertain. The aim of this study was to investigate correlations between MYH11 gene expression and prognosis in 58 patients with stage II and III colorectal cancer. Quantitative real-time polymerase chain reaction was performed in fresh CRC tissues to examine mRNA expression, and immunohistochemistry was performed with paraffin-embedded specimens for protein expression. On univariate analysis, MYH11 expression at both mRNA and protein levels, perineural invasion and lymphovascular invasion were related to disease-free survival (p<0.05; log-rank test). Cancers with lower MYH11 expression were more likely to have a poor prognosis. Otherwise, MYH11 expression was unrelated to patient clinicopathological features. On multivariate analysis, low MYH11 expression proved to be an independent adverse prognosticator (p<0.05). These findings show that MYH11 can contribute to predicting prognosis in stage II and III colorectal cancers.
Collapse
Affiliation(s)
- Ren-Jie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li T, Liao X, Lochhead P, Morikawa T, Yamauchi M, Nishihara R, Inamura K, Kim SA, Mima K, Sukawa Y, Kuchiba A, Imamura Y, Baba Y, Shima K, Meyerhardt JA, Chan AT, Fuchs CS, Ogino S, Qian ZR. SMO expression in colorectal cancer: associations with clinical, pathological, and molecular features. Ann Surg Oncol 2014; 21:4164-73. [PMID: 25023548 PMCID: PMC4221469 DOI: 10.1245/s10434-014-3888-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Smoothened, frizzled family receptor (SMO) is an important component of the hedgehog signaling pathway, which has been implicated in various human carcinomas. However, clinical, molecular, and prognostic associations of SMO expression in colorectal cancer remain unclear. METHODS Using a database of 735 colon and rectal cancers in the Nurse's Health Study and the Health Professionals Follow-up Study, we examined the relationship of tumor SMO expression (assessed by immunohistochemistry) to prognosis, and to clinical, pathological, and tumor molecular features, including mutations of KRAS, BRAF, and PIK3CA, microsatellite instability, CpG island methylator phenotype (CIMP), LINE-1 methylation, and expression of phosphorylated AKT and CTNNB1. RESULTS SMO expression was detected in 370 tumors (50 %). In multivariate logistic regression analysis, SMO expression was independently inversely associated with phosphorylated AKT expression [odds ratio (OR) 0.48; 95 % confidence interval (CI) 0.34-0.67] and CTNNB1 nuclear localization (OR 0.48; 95 % CI 0.35-0.67). SMO expression was not significantly associated with colorectal cancer-specific or overall survival. However, in CIMP-high tumors, but not CIMP-low/0 tumors, SMO expression was significantly associated with better colorectal cancer-specific survival (log-rank P = 0.012; multivariate hazard ratio, 0.36; 95 % CI 0.13-0.95; P interaction = 0.035, for SMO and CIMP status). CONCLUSIONS Our data reveal novel potential associations between the hedgehog, the WNT/CTNNB1, and the PI3K (phosphatidylinositol-4,5-bisphosphonate 3-kinase)/AKT pathways, supporting pivotal roles of SMO and hedgehog signaling in pathway networking. SMO expression in colorectal cancer may interact with tumor CIMP status to affect patient prognosis, although confirmation by future studies is needed.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bozkurt O, Inanc M, Turkmen E, Karaca H, Berk V, Duran AO, Ozaslan E, Ucar M, Hacibekiroglu I, Eker B, Baspinar O, Ozkan M. Clinicopathological Characteristics and Prognosis of Patients According to Recurrence Time After Curative Resection for Colorectal Cancer. Asian Pac J Cancer Prev 2014; 15:9277-81. [DOI: 10.7314/apjcp.2014.15.21.9277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Im S, Choi HJ, Yoo C, Jung JH, Jeon YW, Suh YJ, Kang CS. Hedgehog related protein expression in breast cancer: gli-2 is associated with poor overall survival. KOREAN JOURNAL OF PATHOLOGY 2013; 47:116-23. [PMID: 23667370 PMCID: PMC3647123 DOI: 10.4132/koreanjpathol.2013.47.2.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 11/17/2022]
Abstract
Background The hedgehog (Hh) signaling pathway is known to play a critical role in various malignancies, but its clinicopathologic role in breast cancer is yet to be established. Methods Tissue microarray blocks from 334 cases of breast cancer were prepared. The expression of six Hh signaling proteins including sonic hedgehog (Shh), patched (Ptch), smoothened (Smo), and the glioma-associated oncogene (Gli)-1, Gli-2, and Gli-3 were analyzed immunohistochemically. Results The expression of Hh signaling proteins was significantly correlated with some prognostic factors including the correlation of lymph node metastasis with the expression of Shh (p=0.001) and Ptch (p=0.064), the correlation of the stages with Shh and Gli-3 expression (p=0.007 and p=0.024, respectively), the correlation of the nuclear grade with the Smo (p=0.004) and Gli-3 (p=0.000), and the correlation of the histologic grade with the Ptch (p=0.016), Smo (p=0.007), and Gli-3 (p=0.000). The Shh, Ptch, Smo, Gli-1, and Gli-2 expression was significantly different between the phenotypes (p=0.000, p=0.001, p=0.004, p=0.039, and p=0.031, respectively). Gli-2 expression was correlated with a worse overall survival outcome (p=0.012). Conclusions Hh pathway activation is correlated with a more aggressive clinical behavior in breast carcinomas. The comparison of phenotypes suggested that the Hh pathway may be a useful therapeutic target for breast carcinoma. Patients with Gli-2 expression had a significantly lower overall survival rate and, therefore, it showed promise as a prognostic marker.
Collapse
Affiliation(s)
- Soyoung Im
- Department of Hospital Pathology, St. Vincent's Hospital, The Catholic University of Korea College of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|