1
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Aderinto N, Abdulbasit MO, Olatunji D. Stem cell-based combinatorial therapies for spinal cord injury: a narrative review of current research and future directions. Ann Med Surg (Lond) 2023; 85:3943-3954. [PMID: 37554849 PMCID: PMC10406006 DOI: 10.1097/ms9.0000000000001034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that can result in lifelong disability. Despite significant progress in SCI research, current treatments only offer limited functional recovery. Stem cell-based combinatorial therapies have emerged promising to enhance neural repair and regeneration after SCI. Combining stem cells with growth factors, biomaterials, and other therapeutic agents can improve outcomes by providing a multifaceted approach to neural repair. However, several challenges must be addressed before these therapies can be widely adopted in clinical practice. Standardisation of stem cell isolation, characterisation, and production protocols ensures consistency and safety in clinical trials. Developing appropriate animal models that accurately mimic human SCI is crucial for successfully translating these therapies. Additionally, optimal delivery methods and biomaterials that support the survival and integration of stem cells into injured tissue must be identified. Despite these challenges, stem cell-based combinatorial therapies for SCI hold great promise. Innovative approaches such as gene editing and the use of neural tissue engineering may further enhance the efficacy of these therapies. Further research and development in this area are critical to advancing the field and providing effective therapies for SCI patients. This paper discusses the current evidence and challenges from the literature on the potential of stem cell-based combinatorial therapies for SCI.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | - Deji Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
3
|
Park S, Kwon W, Kim HY, Ji YR, Kim D, Kim W, Han JE, Cho GJ, Yun S, Kim MO, Ryoo ZY, Han SH, Park JK, Choi SK. Knockdown of Maged1 inhibits cell cycle progression and causes cell death in mouse embryonic stem cells. Differentiation 2022; 125:18-26. [DOI: 10.1016/j.diff.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
4
|
Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021; 10:cells10050975. [PMID: 33919377 PMCID: PMC8143357 DOI: 10.3390/cells10050975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Wolfgang Mende
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rebekka Götzl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Tim Ruhl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justus P Beier
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
5
|
Krasic J, Skara L, Ulamec M, Katusic Bojanac A, Dabelic S, Bulic-Jakus F, Jezek D, Sincic N. Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source. Cancers (Basel) 2020; 12:cancers12113416. [PMID: 33217978 PMCID: PMC7698704 DOI: 10.3390/cancers12113416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Testicular germ cell tumors are the most common neoplasms in young male populations, with a rising incidence. Among them, teratomas may often be very aggressive and resistant to therapy. Our aim was to investigate the impact of two potential anti-tumor epigenetic drugs (Valproate and Trichostatin A) in a mammalian model of teratoma development from an early trilaminar mouse embryo. Both drugs applied to the embryonic tissue had a significant negative impact on the teratoma growth in a three-dimensional in vitro culture. However, Trichostatin A did not diminish some potentially dangerous features of teratomas in contrast to Valproate. This research is an original contribution to the basic knowledge of the origin and development of teratomas. Such knowledge is necessary for envisioning therapeutic strategies against human testicular tumors. Abstract Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10 000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Floriana Bulic-Jakus
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-45-66-806; Fax: +385-45-960-199
| |
Collapse
|
6
|
Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A. A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:23-36. [PMID: 29725971 DOI: 10.1007/5584_2018_205] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Osteoarthritis (OA) is an age related joint disease associated with degeneration and loss of articular cartilage. Consequently, OA patients suffer from chronic joint pain and disability. Weight bearing joints and joints that undergo repetitive stress and excessive 'wear and tear' are particularly prone to developing OA. Cartilage has a poor regenerative capacity and current pharmacological agents only provide symptomatic pain relief. OA patients that respond poorly to conventional therapies are ultimately treated with surgical procedures to promote cartilage repair by implantation of artificial joint structures (arthroplasty) or total joint replacement (TJR). In the last two decades, stem cells derived from various tissues with varying differentiation and tissue regeneration potential have been used for the treatment of OA either alone or in combination with natural or synthetic scaffolds to aid cartilage repair. Although stem cells can be differentiated into chondrocytes in vitro or aid cartilage regeneration in vivo, their potential for OA management remains limited as cartilage regenerated by stem cells fails to fully recapitulate the structural and biomechanical properties of the native tissue. Efficient tissue regeneration remains elusive despite the simple design of cartilage, which unlike most other tissues is avascular and aneural, consisting of a single cell type. In this article, we have comprehensively reviewed the types of stem cells that have been proposed or tested for the management of OA, their potential efficacy as well as their limitations. We also touch on the role of biomaterials in cartilage tissue engineering and examine the prospects for their use in cell-based therapies.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Emma Budd
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Mohammed Abbas
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Mobasheri
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. .,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, UK. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
7
|
Abstract
Basic science and experimental research on stem cells has increased exponentially in the last decade. Our present knowledge about stem cell biology is better than ever before. This new paradigm shift in research has been reflected in the field of orthopaedic surgery. Various experimental models have suggested a potential application of stem cells for different orthopaedic conditions, and early clinical results of stem cell use have been encouraging. These cells can be easily isolated, processed and made available for clinical use. From healing of bone defects caused by trauma, tumor or infection to cartilage defects, nerve, tendon and ligament healing, stem cell use has the potential to revolutionize orthopaedic practice. The purpose of this article is to orient a general orthopaedic surgeon towards the current use and clinical applications of stem cell based therapy in orthopaedics and to provide a complete overview of the clinical advances in this field.
Collapse
Affiliation(s)
- H H Maniar
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| | - A A Tawari
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| | - M Suk
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| | - D S Horwitz
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| |
Collapse
|
8
|
Katari R, Edgar L, Wong T, Boey A, Mancone S, Igel D, Callese T, Voigt M, Tamburrini R, Zambon JP, Perin L, Orlando G. Tissue-Engineering Approaches to Restore Kidney Function. Curr Diab Rep 2015; 15:69. [PMID: 26275443 DOI: 10.1007/s11892-015-0643-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney transplantation for the treatment of chronic kidney disease has established outcome and quality of life. However, its implementation is severely limited by a chronic shortage of donor organs; consequently, most candidates remain on dialysis and on the waiting list while accruing further morbidity and mortality. Furthermore, those patients that do receive kidney transplants are committed to a life-long regimen of immunosuppressive drugs that also carry significant adverse risk profiles. The disciplines of tissue engineering and regenerative medicine have the potential to produce alternative therapies which circumvent the obstacles posed by organ shortage and immunorejection. This review paper describes some of the most promising tissue-engineering solutions currently under investigation for the treatment of acute and chronic kidney diseases. The various stem cell therapies, whole embryo transplantation, and bioengineering with ECM scaffolds are outlined and summarized.
Collapse
Affiliation(s)
- Ravi Katari
- Section of Transplantation, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wanamaker CP, Fakhran S, Alhilali LM. Qualitative and quantitative analysis of MR imaging findings in patients with middle cerebral artery stroke implanted with mesenchymal stem cells. AJNR Am J Neuroradiol 2015; 36:1063-8. [PMID: 25655873 PMCID: PMC8013029 DOI: 10.3174/ajnr.a4232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Mesenchymal stem cells have potential as a regenerative therapy in ischemic stroke. We sought to determine MR imaging findings after mesenchymal stem cell implantation in chronic middle cerebral artery infarcts and to compare brain volume changes in patients with mesenchymal stem cells with those in age-matched healthy controls and controls with chronic stable MCA infarcts. MATERIALS AND METHODS We retrospectively identified 5 patients receiving surgical mesenchymal stem cell implantation to an MCA infarct from January 1, 2005, to July 1, 2013, with MR imaging immediately and 1 year postimplantation. Images at both time points were evaluated for any postimplantation complications. Structural image evaluation using normalization of atrophy software was used to determine volume changes between time points and compare them with those in healthy and age- and sex-matched controls with chronic, stable MCA infarcts by using Kruskal-Wallis and Mann-Whitney U tests. RESULTS Susceptibility signal loss and enhancement at the implantation site were seen. No teratoma, tumor, or heterotopia was identified. Volumetric analysis showed a trend toward less overall volume loss after mesenchymal stem cell implantation (0.736; 95% CI, -4.15-5.62) compared with that in age- and sex-matched controls with chronic, stable MCA infarcts (-3.59; 95% CI, -12.3 to -5.21; P = .09), with a significantly greater growth-to-loss ratio in infarcted regions (1.30 and 0.78, respectively, P = .02). A trend toward correlation of growth-to-loss ratio with improvement in physical examination findings was seen (r = 0.856, P = .06). CONCLUSIONS Postoperative changes consistent with stereotactic implantation were seen, but no teratoma, tumor, or heterotopia was identified. Initial findings suggest a trend toward less volume loss after mesenchymal stem cell implantation compared with that in age- and sex-matched controls with chronic, stable MCA infarcts, with a significantly greater growth-to-loss ratio in the infarcted tissue.
Collapse
Affiliation(s)
- C P Wanamaker
- From the Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - S Fakhran
- From the Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - L M Alhilali
- From the Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Asatrian G, Pham D, Hardy WR, James AW, Peault B. Stem cell technology for bone regeneration: current status and potential applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:39-48. [PMID: 25709479 PMCID: PMC4334288 DOI: 10.2147/sccaa.s48423] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Continued improvements in the understanding and application of mesenchymal stem cells (MSC) have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.
Collapse
Affiliation(s)
- Greg Asatrian
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA
| | - Dalton Pham
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Winters R Hardy
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA
| | - Aaron W James
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA ; UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA
| | - Bruno Peault
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA ; Medical Research Council Centre for Regenerative Medicine, Edinburgh, Scotland, UK
| |
Collapse
|
11
|
Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, Rogers J, Stratta RJ, Manzia TM, Orlando G. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther 2015; 15:547-58. [PMID: 25640286 DOI: 10.1517/14712598.2015.993376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dialysis and renal transplantation are the only two therapeutic options offered to patients affected by end-stage kidney disease; however, neither treatment can be considered definitive. In fact, dialysis is able to replace only the filtration function of the kidney without substituting its endocrine and metabolic roles, and dramatically impacts on patient's quality of life. On the other hand, kidney transplantation is severely limited by the shortage of transplantable organs, the need for immunosuppressive therapies and a narrow half-life. Regenerative medicine approaches are promising tools aiming to improve this condition. AREAS COVERED Cell therapies, bioartificial kidney, organ bioengineering, 3D printer and kidney-on-chip represent the most appealing areas of research for the treatment of end-stage kidney failure. The scope of this review is to summarize the state of the art, limits and directions of each branch. EXPERT OPINION In the future, these emerging technologies could provide definitive, curative and theoretically infinite options for the treatment of end-stage kidney disease. Progress in stem cells-based therapies, decellularization techniques and the more recent scientific know-how for the use of the 3D printer and kidney-on-chip could lead to a perfect cellular-based therapy, the futuristic creation of a bioengineered kidney in the lab or to a valid bioartificial alternative.
Collapse
Affiliation(s)
- Andrea Peloso
- Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qian DJ, Guo XK, Duan HC, Han ZH, Meng F, Liu J, Wang Y. An application of embryonic skin cells to repair diabetic skin wound: a wound reparation trail. Exp Biol Med (Maywood) 2014; 239:1630-7. [PMID: 25030484 DOI: 10.1177/1535370214542067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cell therapy has shown its power to promote diabetic chronic wound healing. However, problems of scar formation and loss of appendages have not yet been solved. Our study aims to explore the potential of using embryonic skin cells (ESkCs) to repair diabetic wounds. Circular wound was created on the back of the diabetic mice, and ESkCs stained with CM-DIL were transplanted into the wound. Wound area was recorded at the day 4, 7, 11, and 14 after transplantation. The tissue samples were obtained at week 1, 2, and 3, and the tissue sections were stained by transforming growth factor β1 (TGF-β1), TGF-β3, vascular endothelial growth factor (VEGF), and CD31. The new skin formed on the wound of the diabetic mice with ESkC treatment at week 1 but not on the wounds of the non-treatment group. The histological scores of diabetic group with ESkC treatment were significantly better than the non-treatment group (P < 0.05). The fluorescence examination of CM-DIL and CD31 staining indicated that the ESkCs participated in the tissue regeneration, hair follicles formation, and angiogenesis. The expression of TGF-β1 and VEGF in ESkC-treated groups was noticeable in week 1 but disappeared in week 2. TGF-β3 was not expressed at week 1 but expressed markedly around hair follicles in week 2 in ESkC-treated groups. Our study demonstrated that ESkCs are capable of developing new skin with appendage restoration to repair the diabetic wounds.
Collapse
Affiliation(s)
- De Jian Qian
- Department of Plastic and Reconstructive Surgery, Shandong Province Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China Department of Emergency Surgery, Shandong Province Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Xiang Kai Guo
- Department of Plastic and Reconstructive Surgery, Shandong Province Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250014, China
| | - Hui Chuan Duan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai 200011, China
| | - Zhi Hua Han
- Department of Cardiology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fei Meng
- Department of Plastic and Reconstructive Surgery, Shandong Province Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, 250014, China
| | - Yan Wang
- Department of Plastic and Reconstructive Surgery, Shandong Province Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|