1
|
Grancher A, Cuissy S, Girot H, Gillibert A, Di Fiore F, Guittet L. Where do we stand with screening for colorectal cancer and advanced adenoma based on serum protein biomarkers? A systematic review. Mol Oncol 2024; 18:2629-2648. [PMID: 39344882 PMCID: PMC11547240 DOI: 10.1002/1878-0261.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) screening has been proven to reduce both mortality and the incidence of this disease. Most CRC screening programs are based on fecal immunochemical tests (FITs), which have a low participation rate. Searching for blood protein biomarkers can lead to the development of a more accepted screening test. The aim of this systematic review was to compare the diagnostic potential of the most promising serum protein biomarkers. A systematic review based on PRISMA guidelines was conducted in the PubMed and Web of Science databases between January 2010 and December 2023. Studies assessing blood protein biomarkers for CRC screening were included. The sensitivity, specificity, and area under the ROC curve of each biomarker were collected. Among 4685 screened studies, 94 were considered for analysis. Most of them were case-control studies, leading to an overestimation of the performance of candidate biomarkers. The performance of no protein biomarker or combination of biomarkers appears to match that of the FIT. Studies with a suitable design and population, testing new assay techniques, or based on algorithms combining FIT with serum tests are needed.
Collapse
Affiliation(s)
- Adrien Grancher
- U1086 "ANTICIPE" INSERM-University of Caen Normandy, Centre François Baclesse, Caen, France
- Department of Hepato-Gastroenterology and Digestive Oncology, Rouen University Hospital, France
| | - Steven Cuissy
- Department of Hepato-Gastroenterology and Digestive Oncology, Rouen University Hospital, France
| | - Hélène Girot
- Department of Medical Biochemistry, Rouen University Hospital, France
| | - André Gillibert
- Department of Biostatistics, Rouen University Hospital, France
| | - Frédéric Di Fiore
- Department of Hepato-Gastroenterology and Digestive Oncology, Rouen University Hospital, France
| | - Lydia Guittet
- U1086 "ANTICIPE" INSERM-University of Caen Normandy, Centre François Baclesse, Caen, France
- Public Health Department, Caen University Hospital, France
| |
Collapse
|
2
|
Peng B, Qiu X, Dong Z, Zhang J, Pei Y, Wang T. Proteomic profiling of biomarkers by MALDI-TOF mass spectrometry for the diagnosis of tracheobronchial stenosis after tracheobronchial tuberculosis. Exp Ther Med 2020; 21:63. [PMID: 33365063 PMCID: PMC7716632 DOI: 10.3892/etm.2020.9495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Tracheobronchial tuberculosis (TB) leads to airway stenosis, irreversible airway damage and even death. The present study aimed to identify biomarkers for the diagnosis of tracheobronchial stenosis (TBS) secondary to tracheobronchial TB. A cohort was recruited, including patients with TBS after tracheobronchial TB, TBS after tracheal intubation or tracheotomy (TIT) and no stenosis of early-stage lung cancer,. Proteomic profiling was performed to gain insight into the mechanisms of the pathological processes. Differentially expressed proteins in the serum and bronchial alveolar lavage fluid (BALF) from patients were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Subsequently, ELISA was performed to validate the changes of protein levels in an additional cohort. MALDI-TOF MS revealed that 8 peptides in the serum, including myeloid-associated differentiation marker, keratin type I cytoskeletal 18, fibrinogen α-chain, angiotensinogen (AGT), apolipoprotein A-I (APOAI), clusterin and two uncharacterized peptides, and nine peptides in BALF, including argininosuccinate lyase, APOAI, AGT and five uncharacterized peptides, were differentially expressed (molecular-weight range, 1,000-10,000 Da) in the TB group compared with the TIT group. The ELISA results indicated that the changes in the protein levels had a similar trend as those identified by proteomic profiling. In conclusion, the present study identified proteins that may serve as potential biomarkers and provide novel insight into the molecular mechanisms underlying TBS after tracheobronchial TB.
Collapse
Affiliation(s)
- Bihao Peng
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaojian Qiu
- Department of Pulmonary Diseases, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhiwu Dong
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Jinshan Branch, Shanghai 201599, P.R. China
| | - Jie Zhang
- Department of Pulmonary Diseases, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yinghua Pei
- Department of Pulmonary Diseases, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ting Wang
- Department of Pulmonary Diseases, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
3
|
Uchiyama K, Naito Y, Yagi N, Mizushima K, Higashimura Y, Hirai Y, Dohi O, Okayama T, Yoshida N, Katada K, Kamada K, Handa O, Ishikawa T, Takagi T, Konishi H, Nonaka D, Asada K, Lee LJ, Tanaka K, Kuriu Y, Nakanishi M, Otsuji E, Itoh Y. Selected reaction monitoring for colorectal cancer diagnosis using a set of five serum peptides identified by BLOTCHIP ®-MS analysis. J Gastroenterol 2018; 53:1179-1185. [PMID: 29497816 DOI: 10.1007/s00535-018-1448-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/23/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most predominant types of cancer, and it is the fourth most common cause of cancer-related death and it is important to diagnose CRC in early stage to decrease the mortality by CRC. In our previous study, we identified a combination of five peptides as a biomarker candidate to diagnose CRC by BLOTCHIP®-MS analysis using a set of healthy control subjects and CRC patients (stage II-IV). The aim of the present study was to validate the serum biomarker peptides reported in our previous study using a second cohort and to establish their potential usefulness in CRC diagnosis. METHODS A total of 56 patients with CRC (n = 14 each of stages I-IV), 60 healthy controls, and 60 patients with colonic adenoma were included in this study. The five peptides were extracted and analyzed by selected reaction monitoring using ProtoKey® Colorectal Cancer Risk Test Kit (Protosera, Inc., Amagasaki, Japan). RESULTS The results clearly showed that the four CRC groups, stages I-IV, could be sufficiently discriminated from the control group and colonic polyp group. This five-peptide set could identify CRC at each stage compared to the control population in this validation cohort, including those with early-stage disease. The AUC values for each stage of CRC compared to the control population were 0.779, 0.946, 0.852, and 0.973 for stages I, II, III, and IV, respectively. CONCLUSIONS In this case-control validation study, we confirmed high diagnostic performance for CRC using five peptides that were identified in our previous study as serum biomarker candidates for the detection of CRC.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan.
- Department of Endoscopy and Ultrasound Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Nobuaki Yagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, 3-23 Hashimotocho, Gifu, Gifu, 500-8523, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuki Higashimura
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuko Hirai
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Handa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Daisuke Nonaka
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, 660-0083, Japan
| | - Kyoichi Asada
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, 660-0083, Japan
| | - Lyang-Ja Lee
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, 660-0083, Japan
| | - Kenji Tanaka
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, 660-0083, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masayoshi Nakanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
4
|
Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJ. Proteins are potent biomarkers to detect colon cancer progression. Saudi J Biol Sci 2017; 24:1212-1221. [PMID: 28855814 PMCID: PMC5562385 DOI: 10.1016/j.sjbs.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 01/11/2023] Open
Abstract
Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
Collapse
Affiliation(s)
- Palaniselvam Kuppusamy
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Natanamurugaraj Govindan
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Mashitah M. Yusoff
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Solachuddin J.A. Ichwan
- Kulliyyah of Dentistry, International Islamic University Malaysia, Bandar Indera Mahkota 125200, Kuantan, Pahang, Malaysia
| |
Collapse
|
5
|
Wang H, Luo C, Zhu S, Fang H, Gao Q, Ge S, Qu H, Ma Q, Ren H, Wang Y, Wang W. Serum peptidome profiling for the diagnosis of colorectal cancer: discovery and validation in two independent cohorts. Oncotarget 2017; 8:59376-59386. [PMID: 28938643 PMCID: PMC5601739 DOI: 10.18632/oncotarget.19587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Except for the existing fecal occult blood test, colonoscopy and sigmoidoscopy, no widely accepted in vitro diagnostic methods have been available. To identify potential peptide biomarkers for CRC, serum samples from a discovery cohort (100 CRC patients and 100 healthy controls) and an independent validation cohort (91 CRC patients and 91 healthy controls) were collected. Peptides were fractionated by weak cation exchange magnetic beads (MB-WCX) and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Five peptides (peaks at m/z 1895.3, 2020.9, 2080.7, 2656.8 and 3238.5) were identified as candidate biomarkers for CRC. A diagnostic panel based on the five peptides can discriminate CRC patients from healthy controls, with an accuracy of 91.8%, sensitivity of 95.6%, and specificity of 87.9% in the validation cohort. Peptide peaks at m/z 1895.3, 2020.9 and 3238.5 were identified as the partial sequences of complement component 4 (C4), complement component 3 (C3) and fibrinogen α chain (FGA), respectively. This study potentiated peptidomic analysis as a promising in vitro diagnostic tool for diagnosis of CRC. The identified peptides suggest the involvement of the C3, C4 and FGA in CRC pathogenesis.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Chenghua Luo
- Department of Retroperitoneal Tumors Surgery, Peking University International Hospital, Beijing 102206, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100069, China.,National Center for Clinical Medical Research of Digestive Diseases, Beijing 100069, China
| | - Honghong Fang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qing Gao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Siqi Ge
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.,School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Haixia Qu
- Bioyong (Beijing) Technology Co., Ltd., Beijing 100085, China
| | - Qingwei Ma
- Bioyong (Beijing) Technology Co., Ltd., Beijing 100085, China
| | - Hongwei Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.,School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
6
|
Li H, Tang Z, Zhu H, Ge H, Cui S, Jiang W. Proteomic study of benign and malignant pleural effusion. J Cancer Res Clin Oncol 2016; 142:1191-200. [PMID: 26945985 DOI: 10.1007/s00432-016-2130-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Lung adenocarcinoma can easily cause malignant pleural effusion which was difficult to discriminate from benign pleural effusion. Now there was no biomarker with high sensitivity and specificity for the malignant pleural effusion. PURPOSE This study used proteomics technology to acquire and analyze the protein profiles of the benign and malignant pleural effusion, to seek useful protein biomarkers with diagnostic value and to establish the diagnostic model. METHODS We chose the weak cationic-exchanger magnetic bead (WCX-MB) to purify peptides in the pleural effusion, used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to obtain peptide expression profiles from the benign and malignant pleural effusion samples, established and validated the diagnostic model through a genetic algorithm (GA) and finally identified the most promising protein biomarker. RESULTS A GA diagnostic model was established with spectra of 3930.9 and 2942.8 m/z in the training set including 25 malignant pleural effusion and 26 benign pleural effusion samples, yielding both 100 % sensitivity and 100 % specificity. The accuracy of diagnostic prediction was validated in the independent testing set with 58 malignant pleural effusion and 34 benign pleural effusion samples. Blind evaluation was as follows: the sensitivity was 89.6 %, specificity 88.2 %, PPV 92.8 %, NPV 83.3 % and accuracy 89.1 % in the independent testing set. The most promising peptide biomarker was identified successfully: Isoform 1 of caspase recruitment domain-containing protein 9 (CARD9), with 3930.9 m/z, was decreased in the malignant pleural effusion. CONCLUSIONS This model is suitable to discriminate benign and malignant pleural effusion and CARD9 can be used as a new peptide biomarker.
Collapse
Affiliation(s)
- Hongqing Li
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Zhonghao Tang
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Huili Zhu
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| | - Haiyan Ge
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Shilei Cui
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Weiping Jiang
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| |
Collapse
|
7
|
Wang RJ, Wu P, Cai GX, Wang ZM, Xu Y, Peng JJ, Sheng WQ, Lu HF, Cai SJ. Down-regulated MYH11 expression correlates with poor prognosis in stage II and III colorectal cancer. Asian Pac J Cancer Prev 2015; 15:7223-8. [PMID: 25227818 DOI: 10.7314/apjcp.2014.15.17.7223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The MYH11 gene may be related to cell migration and adhesion, intracellular transport, and signal transduction. However, its relationship with prognosis is still uncertain. The aim of this study was to investigate correlations between MYH11 gene expression and prognosis in 58 patients with stage II and III colorectal cancer. Quantitative real-time polymerase chain reaction was performed in fresh CRC tissues to examine mRNA expression, and immunohistochemistry was performed with paraffin-embedded specimens for protein expression. On univariate analysis, MYH11 expression at both mRNA and protein levels, perineural invasion and lymphovascular invasion were related to disease-free survival (p<0.05; log-rank test). Cancers with lower MYH11 expression were more likely to have a poor prognosis. Otherwise, MYH11 expression was unrelated to patient clinicopathological features. On multivariate analysis, low MYH11 expression proved to be an independent adverse prognosticator (p<0.05). These findings show that MYH11 can contribute to predicting prognosis in stage II and III colorectal cancers.
Collapse
Affiliation(s)
- Ren-Jie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu DM, Zhang P, Xu GC, Tong AP, Zhou C, Lang JY, Wang CT. Pemetrexed induces G1 phase arrest and apoptosis through inhibiting Akt activation in human non small lung cancer cell line A549. Asian Pac J Cancer Prev 2015; 16:1507-13. [PMID: 25743822 DOI: 10.7314/apjcp.2015.16.4.1507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pemetrexed is an antifolate agent which has been used for treating malignant pleural mesothelioma and non small lung cancer in the clinic as a chemotherapeutic agent. In this study, pemetrexed inhibited cell growth and induced G1 phase arrest in the A549 cell line. To explore the molecular mechanisms of pemetrexed involved in cell growth, we used a two-dimensional polyacrylamide gel electrophoresis (2-DE) proteomics approach to analyze proteins changed in A549 cells treated with pemetrexed. As a result, twenty differentially expressed proteins were identified by ESI-Q-TOF MS/MS analysis in A549 cells incubated with pemetrexed compared with non-treated A549 cells. Three key proteins (GAPDH, HSPB1 and EIF4E) changed in pemetrexed treated A549 cells were validated by Western blotting. Accumulation of GAPDH and decrease of HSPB1 and EIF4E which induce apoptosis through inhibiting phosphorylation of Akt were noted. Expression of p-Akt in A549 cells treated with pemetrexed was reduced. Thus, pemetrexed induced apoptosis in A549 cells through inhibiting the Akt pathway.
Collapse
Affiliation(s)
- Dong-Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
9
|
Kotawong K, Thitapakorn V, Roytrakul S, Phaonakrop N, Viyanant V, Na-Bangchang K. Plasma phosphoproteome and differential plasma phosphoproteins with opisthorchis viverrini-related cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 16:1011-1018. [PMID: 25735322 DOI: 10.7314/apjcp.2015.16.3.1011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
This study was conducted to investigate the plasma phosphoproteome and differential plasma phosphoproteins in cases of of Opisthorchis viverrini (OV)-related cholangiocarcinoma (CCA). Plasma phosphoproteomes from CCA patients (10) and non-CCA subjects (5 each for healthy subjects and OV infection) were investigated using gel-based and solution-based LC-MS/MS. Phosphoproteins in plasma samples were enriched and analyzed by LC-MS/MS. STRAP, PANTHER, iPath, and MeV programs were applied for the identification of their functions, signaling and metabolic pathways; and for the discrimination of potential biomarkers in CCA patients and non-CCA subjects, respectively. A total of 90 and 60 plasma phosphoproteins were identified by gel-based and solution-based LC-MS/MS, respectively. Most of the phosphoproteins were cytosol proteins which play roles in several cellular processes, signaling pathways, and metabolic pathways (STRAP, PANTHER, and iPath analysis). The absence of serine/arginine repetitive matrix protein 3 (A6NNA2), tubulin tyrosine ligase-like family, member 6, and biorientation of chromosomes in cell division protein 1-like (Q8NFC6) in plasma phosphoprotein were identified as potential biomarkers for the differentiation of healthy subjects from patients with CCA and OV infection. To differentiate CCA from OV infection, the absence of both serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit beta isoform and coiled-coil domain-containing protein 126 precursor (Q96EE4) were then applied. A combination of 5 phosphoproteins may new alternative choices for CCA diagnosis.
Collapse
Affiliation(s)
- Kanawut Kotawong
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand E-mail :
| | | | | | | | | | | |
Collapse
|