1
|
Wang Z, Yan Y, Lou Y, Huang X, Liu L, Weng Z, Cui Y, Wu X, Cai H, Chen X, Ji Y. Diallyl trisulfide alleviates chemotherapy sensitivity of ovarian cancer via the AMPK/SIRT1/PGC1α pathway. Cancer Sci 2022; 114:357-369. [PMID: 36309839 PMCID: PMC9899624 DOI: 10.1111/cas.15627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Platinum-based chemotherapy promotes drug resistance in ovarian cancer. We investigated the antichemoresistance characteristics of diallyl trisulfide (DATS) in cisplatin-resistant ovarian cancer cells, in vitro and in vivo. Previous preclinical studies have revealed that DATS regulates distinct hallmark cancer-signaling pathways. The cell cycle pathway is the most investigated signaling pathway in DATS. Additionally, post-DATS treatment has been found to promote proapoptotic capacity through the regulation of intrinsic and extrinsic apoptotic pathway components. In the present study, we found that treating cisplatin-sensitive and cisplatin-resistant ovarian cell lines with DATS inhibited their proliferation and reduced their IC50. It induced cell apoptosis and promoted oxidative phosphorylation through the regulation of the AMPK/SIRT1/PGC1α pathway, OXPHOS, and enhanced chemotherapy sensitivity. DATS treatment alleviated glutamine consumption in cisplatin-resistant cells. Our findings highlight the role of DATS in overcoming drug resistance in ovarian cancer in vitro and in vivo. In addition, we elucidated the role of the AMPK/SIRT1/PGC1α signaling pathway as a potential target for the treatment of drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Zhaojun Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yi Yan
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina,Key Laboratory of Digestive Pathophysiology of Zhejiang ProvinceHangzhouChina
| | - Xiaoyan Huang
- Department of Spleen and Gastric DiseasesThe First Affiliated Hospital of Guangxi University of Chinese MedicineGuangxiChina
| | - Lijian Liu
- Department of Spleen and Gastric DiseasesThe First Affiliated Hospital of Guangxi University of Chinese MedicineGuangxiChina
| | - Zhuofan Weng
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yusheng Cui
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyue Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Huijun Cai
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaohui Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxi Ji
- Department of General PracticeThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
2
|
Rauf A, Abu-Izneid T, Thiruvengadam M, Imran M, Olatunde A, Shariati MA, Bawazeer S, Naz S, Shirooie S, Sanches-Silva A, Farooq U, Kazhybayeva G. Garlic (Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity, and Anticancer Properties. Curr Top Med Chem 2022; 22:957-972. [PMID: 34749610 DOI: 10.2174/1568026621666211105094939] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
The current review discuss the chemistry, nutritional composition, toxicity, and biological functions of garlic and its bioactive compounds against various types of cancers via different anticancer mechanisms. Several scientific documents were found in reliable literature and searched in databases viz Science Direct, PubMed, Web of Science, Scopus, and Research Gate were carried out using keywords such as "garlic", "garlic bioactive compounds", "anticancer mechanisms of garlic", "nutritional composition of garlic", and others. Garlic contains several phytoconstituents with activities against cancer, and compounds such as diallyl trisulfide (DATS), allicin, and diallyl disulfide (DADS), diallyl sulfide (DAS), and allyl mercaptan (AM). The influence of numerous garlic- derived products, phytochemicals, and nanoformulations on the liver, oral, prostate, breast, gastric, colorectal, skin, and pancreatic cancers has been studied. Based on our search, the bioactive molecules in garlic were found to inhibit the various phases of cancer. Moreover, the compounds in this plant also abrogate the peroxidation of lipids, activity of nitric oxide synthase, epidermal growth factor (EGF) receptor, nuclear factor-kappa B (NF-κB), protein kinase C, and regulate cell cycle and survival signaling cascades. Hence, garlic and its bioactive molecules exhibit the aforementioned mechanistic actions, and thus, they could be used to inhibit the induction, development, and progression of cancer. The review describes the nutritional composition of garlic, its bioactive molecules, and nanoformulations against various types of cancers, as well as the potential for developing these agents as antitumor drugs.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, KPK, Pakistan
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, United Arab Emirates
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| | - Muhammad Imran
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Punjab, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management [the First Cossack University], Moscow, Russian Federation
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research, 4485-655, Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad-campus, Pakistan
| | | |
Collapse
|
3
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids 2017; 49:1855-1866. [PMID: 28852876 PMCID: PMC5646106 DOI: 10.1007/s00726-017-2484-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023]
Abstract
The study was conducted to elucidate the mechanism of antiproliferative and antioxidative action of diallyl trisulfide (DATS), a garlic-derived organosulfur compound. Changes in the l-cysteine desulfuration, and the levels of cystathionine and non-protein thiols in DATS-treated human glioblastoma (U87MG) and neuroblastoma (SH-SY5Y) cells were investigated. The inhibition of proliferation of the investigated cells by DATS was correlated with an increase in the inactivated form of Bcl-2. In U87MG cells, an increased level of sulfane sulfur and an increased activity of 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese, the enzymes involved in sulfane sulfur generation and transfer, suggest that DATS can function as a donor of sulfane sulfur atom, transferred by sulfurtransferases, to sulfhydryl groups of cysteine residues of Bcl-2 and in this way lower the level of active form of Bcl-2 by S-sulfuration. Diallyl trisulfide antioxidative effects result from an increased level of cystathionine, a precursor of cysteine, and an increased glutathione level. MPST and rhodanese, the level of which is increased in the presence of DATS, can serve as antioxidant proteins.
Collapse
Affiliation(s)
- Halina Jurkowska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland.
| | - Maria Wróbel
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| |
Collapse
|
5
|
Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of glioma cells by inactivating Wnt/β-catenin signaling. Cell Tissue Res 2017; 370:379-390. [PMID: 28815294 DOI: 10.1007/s00441-017-2678-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling leads to increased cell proliferation and survival and promotes the development of various human tumors, including glioma, one of the most common primary brain tumors. The treatment efficacy of many anticancer drugs remains limited or unsatisfactory and it is urgently necessary to develop effective and low-toxicity anticancer drugs or strategies, especially for glioma. Here, we report that diallyl trisulfide suppresses survival, migration, invasion and angiogenesis in glioma cells. These effects were associated with inhibition of the Wnt/β-catenin signaling cascade, which was accompanied by decreased expression of LRP6, TRIM29 and Pygo2. A dual-luciferase reporter assay confirmed that DATS treatment decreased TCF/LEF-mediated transcription. Finally, a nude mouse tumorigenicity model was used to examine the biological effect of diallyl trisulfide in vivo. Consistent with the previous results, diallyl trisulfide inhibited proliferation, invasion and angiogenesis in glioma cells by suppressing Wnt/β-catenin signaling.
Collapse
|
6
|
Puccinelli MT, Stan SD. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment. Int J Mol Sci 2017; 18:ijms18081645. [PMID: 28788092 PMCID: PMC5578035 DOI: 10.3390/ijms18081645] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Michael T Puccinelli
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Silvia D Stan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Liu CJ, Zhang XL, Luo DY, Zhu WF, Wan HF, Yang JP, Yang XJ, Wan FS. Exogenous p53 upregulated modulator of apoptosis (PUMA) decreases growth of lung cancer A549 cells. Asian Pac J Cancer Prev 2015; 16:741-6. [PMID: 25684518 DOI: 10.7314/apjcp.2015.16.2.741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the influence of exogenous p53 upregulated modulator of apoptosis (PUMA) expression on cell proliferation and apoptosis in human non-small cell lung cancer A549 cells and transplanted tumor cell growth in nude mice. MATERIALS AND METHODS A549 cells were divided into the following groups: control, non- carrier (NC), PUMA (transfected with pCEP4- (HA) 2-PUMA plasmid), DDP (10 μg/mL cisplatin treatment) and PUMA+DDP (transfected with pCEP4-(HA)2-PUMA plasmid and 10 μg/mL cisplatin treatment). The MTT method was used to detect the cell survival rate. Cell apoptosis rates were measured by flow cytometry, and PUMA, Bax and Bcl-2 protein expression levels were measured by Western blotting. RESULTS Compared to the control group, the PUMA, DDP and PUMA+DDP groups all had significantly decreased A549 cell proliferation (p<0.01), with the largest reduction in the PUMA+DDP group. Conversely, the apoptosis rates of the three groups were significantly increased (P<0.01), and the PUMA and DDP treatments were synergistic. Moreover, Bax protein levels significantly increased (p<0.01), while Bcl-2 protein levels significantly decreased (p<0.01). Finally, both the volume and the weights of transplanted tumors were significantly reduced (p<0.01), and the inhibition ratio of the PUMA+DDP group was significantly higher than in the single DDP or PUMA groups. CONCLUSIONS Exogenous PUMA effectively inhibited lung cancer A549 cell proliferation and transplanted tumor growth by increasing Bax protein levels and reducing Bcl-2 protein levels.
Collapse
Affiliation(s)
- Chun-Ju Liu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Nan Chang University, Nanchang, Jiangxi, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Raj KG, Sambantham S, Manikanadan R, Arulvasu C, Pandi M. Fungal taxol extracted from Cladosporium oxysporum induces apoptosis in T47D human breast cancer cell line. Asian Pac J Cancer Prev 2015; 15:6627-32. [PMID: 25169499 DOI: 10.7314/apjcp.2014.15.16.6627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. MATERIALS AND METHODS Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. RESULTS Our results showed inhibition of T47D cell proliferation with an IC50 value of 2.5 μM/ml after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-?B, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. CONCLUSIONS We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Kathamuthu Gokul Raj
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India E-mail : ,
| | | | | | | | | |
Collapse
|
9
|
Attar R, Gasparri ML, Di Donato V, Yaylim I, Halim TA, Zaman F, Farooqi AA. Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action. Asian Pac J Cancer Prev 2014; 15:3359-62. [DOI: 10.7314/apjcp.2014.15.8.3359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|