1
|
Wu X, Xu LY, Li EM, Dong G. Molecular dynamics simulation study on the structures of fascin mutants. J Mol Recognit 2023; 36:e2998. [PMID: 36225126 DOI: 10.1002/jmr.2998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
Fascin is a filamentous actin (F-actin) bundling protein, which cross-links F-actin into bundles and becomes an important component of filopodia on the cell surface. Fascin is overexpressed in many types of cancers. The mutation of fascin affects its ability to bind to F-actin and the progress of cancer. In this paper, we have studied the effects of residues of K22, K41, K43, K241, K358, K399, and K471 using molecular dynamics (MD) simulation. For the strong-effect residues, that is, K22, K41, K43, K358, and K471, our results show that the mutation of K to A leads to large values of root mean square fluctuation (RMSF) around the mutated residues, indicating those residues are important for the flexibility and thermal stability. On the other hand, based on residue cross-correlation analysis, alanine mutations of these residues reinforce the correlation between residues. Together with the RMSF data, the local flexibility is extended to the entire protein by the strong correlations to influence the dynamics and function of fascin. By contrast, for the mutants of K241A and K399A those do not affect the function of fascin, the RMSF data do not show significant differences compared with wild-type fascin. These findings are in a good agreement with experimental studies.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, People's Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, People's Republic of China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
2
|
Liu L, Liu A, Liu X. PRRX2 predicts poor survival prognosis, and promotes malignant phenotype of lung adenocarcinoma via transcriptional activates PSMD1. Transl Oncol 2022; 27:101586. [PMID: 36379103 PMCID: PMC9661514 DOI: 10.1016/j.tranon.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Paired-related homeobox transcription factor 2 (PRRX2) has been proved involves in the pathogenesis of tumors, but the role of PRRX2 in lung adenocarcinoma (LUAD) is basically not clear. MATERIALS AND METHODS LUAD datasets were obtained from Gene Expression Omnibus datasets. Functional enrichment analyses were performed based on R language. Several online analysis tools were used for PRRX2 expression, survival curves, and immune cell infiltration analyses. CCK-8, flow cytometry assays were used to detect the cell proliferation and apoptosis. Dual luciferase reporter system and chromatin immunoprecipitation were used to explore the interaction of PRRX2 and Proteasome 26S subunit, non-ATPases 1 (PSMD1). Xenograft in nude mice was used to assess the function of PRRX2 regulation in vivo. RESULTS AND DISCUSSION Bioinformatics analyses found that PRRX2 was highly expressed in LUAD tissues and the high PRRX2 expression had a poor prognostic value. PRRX2 was highly expressed in LUAD clinical samples and cell lines. PRRX2 acted as a positive regulator of cell proliferation and a negative regulator of apoptosis. PRRX2 could bind with the PSMD1 promoter and regulate PSMD1 expression, thereby affected LUAD cells' malignant phenotype. Result of xenografts in nude mice confirmed that PRRX2 promotes LUAD tumor growth in vivo. Summary, our study results reveal the crucial roles for PRRX2 in the proliferation and apoptosis of LUAD progression and suggest that PRRX2 may regulate PSMD1 expression by combining with the PSMD1 promoter, thereby participating in the malignant behavior of LUAD.
Collapse
Affiliation(s)
- Lihua Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Corresponding author.
| |
Collapse
|
3
|
Wu X, Wen B, Lin L, Shi W, Li D, Cheng Y, Xu LY, Li EM, Dong G. New insights into the function of Fascin in actin bundling: A combined theoretical and experimental study. Int J Biochem Cell Biol 2021; 139:106056. [PMID: 34390855 DOI: 10.1016/j.biocel.2021.106056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/05/2023]
Abstract
Fascin, one of actin bundling proteins, plays an important role in the cross-linking of actin filaments (F-actin). Phosphorylation of Fascin is an important posttranslational modification to affect its structure and function. For example, a phosphomimetic mutation of Fascin-S39D decrease its bundling ability with F-actin significantly. In this paper, we studied the actin-bundling activity of Fascin by using molecular dynamics (MD) simulations and biochemical methods. All single-site mutations from serine/threonine to aspartic acid were mimicked by MD simulations. For five mutants (S146D, S156D, S218D, T239D and S259D), the mutated residues in domain 2 of Fascin were found to form salt-bridge interactions with an adjacent residue, indicating that mutations of these residues could potentially reduce actin-bundling activity. Further, F-actin-bundling assays and immunofluorescence technique showed S146D and T239D to have a strong effect on Fascin bundling with F-actin. Finally, we show that single-site mutations do not change the general shape of Fascin, but local structures near the mutated residues in Fascin-S146D and T239D become unstable, thereby affecting the ability of Fascin to bind with F-actin. These findings suggest that targeting domain 2 of Fascin would be very useful for the drug design. In addition, our study indicates that MD simulation is a useful method to screening which residues on Fascin are important.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China
| | - Lirui Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Wenqi Shi
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Dajia Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Yinwei Cheng
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China.
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou, 515041, PR China.
| |
Collapse
|
4
|
Chai WX, Sun LG, Dai FH, Shao HS, Zheng NG, Cai HY. Inhibition of PRRX2 suppressed colon cancer liver metastasis via inactivation of Wnt/β-catenin signaling pathway. Pathol Res Pract 2019; 215:152593. [PMID: 31471104 DOI: 10.1016/j.prp.2019.152593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate whether PRRX2 may regulate the liver metastasis of colon cancer via the Wnt/β-catenin signaling pathway. PRRX2 and β-catenin in patients with the liver metastases of colon cancer was detected by immunochemistry. Colon cancer cells (CT-26 and CMT93) were divided into Normal, si-Ctrl, si-PRRX2 and si-PRRX2 +LiCl groups. Cell invasive and migrating abilities and the related proteins were detected. Liver-metastatic mice model was constructed consisting of Normal, NC shRNA and PRRX2 shRNA groups to examine the function of PRRX2 shRNA on liver metastasis. We found that PRRX2 and β-catenin positive rate was elevated in colon cancer tissues, especially in those tissues with liver metastasis, and there was a close relation between PRRX2 and the clinical staging, lymph node metastasis and numbers of liver metastases of colon cancer patients with liver metastasis. In vitro, the invasive and migrating abilities of CT-26 and CMT93 cells decreased apparently in the si-PRRX2 group, with down-regulation of PRRX2, p-GSK3βSer9/GSK3β, nucleus and cytoplasm β-catenin, TCF4 and Vimentin but up-regulation of E-cadherin. However, LiCl, the Wnt/β-catenin pathway activator, can reverse the inhibitory effect of si-PRRX2 on invasive and migrating ability of colon cancer cells. In vivo, the volume and weight of transplanted tumor and the number of liver metastases in the PRRX2 shRNA group were significantly reduced, with the similar protein expression patterns as in vitro. In a word, PRRX2 inhibition may reduce invasive and migrating abilities to hinder epithelial-mesenchymal transition (EMT), and suppress colon cancer liver metastasis through inactivation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wen-Xiao Chai
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Li-Guo Sun
- Department of Surgical Oncology, Dingxi City People's Hospital, Dingxi 743000, Gansu, China
| | - Fu-Hong Dai
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hong-Sheng Shao
- Department of Radiology, Rehabilitation Center Hospital of Gansu Province, Lanzhou 730000, Gansu, China
| | - Ning-Gang Zheng
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hong-Yi Cai
- Department of Radiation oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
5
|
Xie W, Huang P, Wu B, Chen S, Huang Z, Wang J, Sun H, Wu J, Xie L, Cheng Y, Xie W, Xu L, Chen LQ, Li E, Zou H. Clinical significance of LOXL4 expression and features of LOXL4-associated protein-protein interaction network in esophageal squamous cell carcinoma. Amino Acids 2019; 51:813-828. [PMID: 30900087 DOI: 10.1007/s00726-019-02723-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 4 (LOXL4), a member of the LOX family proteins, catalyzes oxidative deamination of lysine residues in collagen and elastin, which are responsible for maintaining extracellular matrix homeostasis. In this study, the mRNA expression of LOXL4 in seven esophageal squamous cell carcinoma (ESCC) cell lines and 15 ESCC pairs of clinical samples were examined. Furthermore, LOXL4 protein levels in the ESCC cell lines were determined using western blotting. With the use of immunofluorescence, LOXL4 was observed to be localized primarily in the cytoplasm, but was also present in the nucleus. In addition, the results indicated that the upregulated expression of LOXL4 was associated with poor survival in patients with ESCC even following curative resection (P = 0.010). Similar Kaplan-Meier estimator curves for proteins that interact with LOXL4, SUV39H1 (P = 0.014) and COL2A1 (P = 0.011), were plotted. The analyses based on the protein-protein interaction network depicted the expression of LOXL4 and its associated proteins as well as their functions, suggesting that LOXL4 and its associated proteins may serve a significant role in the development and progression of ESCC. In conclusion, the results of the present study suggest that LOXL4 is a potential biomarker for patients with ESCC, as well as SUV39H1 and COL2A1, and high expression levels of these genes are associated with poor prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Weijie Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Peiqi Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Bingli Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Sijie Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Zijian Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Junhao Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Hong Sun
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Jianyi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yinwei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wenming Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Medical Bioinformatics Center, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China.
| | - Haiying Zou
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Gao LM, Zheng Y, Wang P, Zheng L, Zhang WL, Di Y, Chen LL, Yin XB, Tian Q, Shi SS, Xu SF. Tumor-suppressive effects of microRNA-181d-5p on non-small-cell lung cancer through the CDKN3-mediated Akt signaling pathway in vivo and in vitro. Am J Physiol Lung Cell Mol Physiol 2019; 316:L918-L933. [PMID: 30628487 DOI: 10.1152/ajplung.00334.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The involvement of several microRNAs (miRs) in the initiation and development of tumors through the suppression of the target gene expression has been highlighted. The aberrant expression of miR-181d-5p and cyclin-dependent kinase inhibitor 3 (CDKN3) in non-small-cell lung cancer (NSCLC) was then screened by microarray analysis. In the present study, we performed a series of in vivo and in vitro experiments for the purpose of investigating their roles in NSCLC and the underlying mechanism. There was a high expression of CDKN3, whereas miR-181d-5p was downregulated in NSCLC. Quantitative RT-PCR, Western blot analysis, and dual-luciferase reporter gene assay further identified that CDKN3 could be negatively regulated by miR-181d-5p. Moreover, the upregulation of miR-181d-5p or silencing of CDKN3 could inactivate the Akt signaling pathway. A549 with the lowest miR-181d-5p and H1975 with the highest CDKN3 among the five NSCLC cell lines (H1299, A549, H1975, NCI-H157, and GLC-82) were adopted for in vitro experiments, in which expression of miR-181d-5p and CDKN3 was altered by transfection of miR-181d-5p mimic/inhibitor or siRNA-targeting CDKN3. Afterwards, cell proliferation, apoptosis, invasion, migration, and angiogenesis, as well as epithelial-mesenchymal transition (EMT), were evaluated, and tumorigenicity was assessed. In addition, an elevation in miR-181d-5p or depletion in CDKN3 led to significant reductions in proliferation, invasion, migration, angiogenesis, EMT, and tumorigenicity of NSCLC cells, coupling with increased cell apoptosis. In conclusion, this study highlights the tumor-suppressive effects of miR-181d-5p on NSCLC via Akt signaling pathway inactivation by suppressing CDKN3, thus providing a promising therapeutic strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Li-Ming Gao
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Yue Zheng
- Department of Gastroenterology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Ping Wang
- Department of Respiratory, Chinese PLA General Hospital , Beijing , People's Republic of China
| | - Lei Zheng
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Wen-Li Zhang
- Department of Imaging, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Ya Di
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Lan-Lan Chen
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Xiao-Bo Yin
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Qi Tian
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Shan-Shan Shi
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Shu-Feng Xu
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| |
Collapse
|
7
|
Cheng Y, Xie J, Zeng F, Nie P, Wu B, Du Z, Pan F, Wu J, Xie L, Zhang P, Xu XE, Liao L, Xie Y, Shen J, Wu Z, Peng Y, Xu Y, Xie W, Wang S, Lin X, Fu J, Zheng C, Tao L, Fang W, Xu L, Li E. Fascin and esophageal squamous cell carcinoma. PRECISION RADIATION ONCOLOGY 2017; 1:82-87. [DOI: 10.1002/pro6.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Mao X, Duan X, Jiang B. Fascin Induces Epithelial-Mesenchymal Transition of Cholangiocarcinoma Cells by Regulating Wnt/β-Catenin Signaling. Med Sci Monit 2016; 22:3479-3485. [PMID: 27680563 PMCID: PMC5045920 DOI: 10.12659/msm.897258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Our preliminary study suggested that the expression of Fascin was increased in cholangiocarcinoma, which indicating poor prognosis The present study aimed to explore the roles and mechanisms of Fascin during the progression of cholangiocarcinoma. Material/Methods We evaluated the knockdown effect of endogenous Fascin expression by Short hairpin RNA (shRNA) in QBC939 cells. Cell proliferation was confirmed by MTS assay. Migration and invasion assay was used to examine the cell invasive ability. Tumorigenesis abilities in vivo were analyzed with a xenograft tumor model. Western blot analysis was used to test epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the Wnt/β-catenin signaling pathway. Results shRNA-mediated gene knockdown of Fascin significantly inhibited cell proliferation, invasion, and EMT, and shRNA-Fascin markedly inhibited the xenograft tumor volume. Silencing of Fascin up-regulated phosphorylation of β-catenin and decreased its nuclear localization. Additionally, knockdown of Fascin led to the upregulation of β-catenin and E-cadherin expression in plasma membrane fraction of QBC939 cells. Conclusions Our data indicate a key role of Fascin in cell proliferation, migration, and invasion in cholangiocarcinoma. Fascin promotes EMT of cholangiocarcinoma cells, in part through regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Xiaohui Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| |
Collapse
|
9
|
Khan I, Senthilkumar CS, Upadhyay N, Singh H, Sachdeva M, Jatawa SK, Tiwari A. In silico docking of methyl isocyanate (MIC) and its hydrolytic product (1, 3-dimethylurea) shows significant interaction with DNA Methyltransferase 1 suggests cancer risk in Bhopal-Gas- Tragedy survivors. Asian Pac J Cancer Prev 2016; 16:7663-70. [PMID: 26625778 DOI: 10.7314/apjcp.2015.16.17.7663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is a relatively large protein family responsible for maintenance of normal methylation, cell growth and survival in mammals. Toxic industrial chemical exposure associated methylation misregulation has been shown to have epigenetic influence. Such misregulation could effectively contribute to cancer development and progression. Methyl isocyanate (MIC) is a noxious industrial chemical used extensively in the production of carbamate pesticides. We here applied an in silico molecular docking approach to study the interaction of MIC with diverse domains of DNMT1, to predict cancer risk in the Bhopal population exposed to MIC during 1984. For the first time, we investigated the interaction of MIC and its hydrolytic product (1,3-dimethylurea) with DNMT1 interacting (such as DMAP1, RFTS, and CXXC) and catalytic (SAM, SAH, and Sinefungin) domains using computer simulations. The results of the present study showed a potential interaction of MIC and 1,3-dimethylurea with these domains. Obviously, strong binding of MIC with DNMT1 interrupting normal methylation will lead to epigenetic alterations in the exposed humans. We suggest therefore that the MIC- exposed individuals surviving after 1984 disaster have excess risk of cancer, which can be attributed to alterations in their epigenome. Our findings will help in better understanding the underlying epigenetic mechanisms in humans exposed to MIC.
Collapse
Affiliation(s)
- Inbesat Khan
- School of Biotechnology, Rajiv Gandhi Technological University, Bhopal, India E-mail :
| | | | | | | | | | | | | |
Collapse
|