1
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
2
|
Mining the Prognostic Role of DNA Methylation Heterogeneity in Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:9389372. [PMID: 35677637 PMCID: PMC9168807 DOI: 10.1155/2022/9389372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022]
Abstract
Purpose DNA methylation heterogeneity is a type of tumor heterogeneity in the tumor microenvironment, but studies on the identification of the molecular heterogeneity of the lung adenocarcinoma genome with respect to DNA methylation sites and their roles in lung cancer progression and prognosis are scarce. Methods Prognosis-associated DNA methylation subtypes were filtered by the Cox proportional hazards model and then established by unsupervised cluster analysis. Association analysis of these subtypes with clinical features and functional analysis of annotated genes potentially affected by methylation sites were performed. The robustness of the model was further tested by a Bayesian network classifier. Results Over 7 thousand methylation sites were associated with lung adenocarcinoma prognosis. We identified seven molecular methylation subtypes, including 630 methylation sites. The subtypes yielded the most stable results for differentiating methylation profiles, prognosis, and gene expression patterns. The annotated genes potentially affected by these methylation sites are enriched in biological processes such as morphogenesis and cell adhesion, but their individual impact on the tumor microenvironment and prognosis is multifaceted. Discussion. We revealed that DNA methylation heterogeneity could be clustered and associated with the clinical features and prognosis of lung adenocarcinoma, which could lead to the development of a novel molecular tool for clinical evaluation.
Collapse
|
3
|
Liang R, Li X, Li W, Zhu X, Li C. DNA methylation in lung cancer patients: Opening a "window of life" under precision medicine. Biomed Pharmacother 2021; 144:112202. [PMID: 34654591 DOI: 10.1016/j.biopha.2021.112202] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a work of adding a methyl group to the 5th carbon atom of cytosine in DNA sequence under the catalysis of DNA methyltransferase (DNMT) to produce 5-methyl cytosine. Some current studies have elucidated the mechanism of lung cancer occurrence and causes of lung cancer progression and metastasis from the perspective of DNA methylation. Moreover, many studies have shown that smoking can change the methylation status of some gene loci, leading to the occurrence of lung cancer, especially central lung cancer. This review mainly introduces the role of DNA methylation in the pathogenesis, early diagnosis and screening, progression and metastasis, treatment, and prognosis of lung cancer, as well as the latest progress. We point out that methylation markers, sample tests, and methylation detection limit the clinical application of DNA methylation. If the liquid biopsy is to become the main force in lung cancer diagnosis, it must make efficient use of limited samples and improve the sensitivity and specificity of the tests. In addition, we also put forward our views on the future development direction of DNA methylation.
Collapse
Affiliation(s)
- Runzhang Liang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiquan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China.
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany.
| |
Collapse
|
4
|
Raos D, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D, Sincic N. Epigenetically inactivated RASSF1A as a tumor biomarker. Bosn J Basic Med Sci 2021; 21:386-397. [PMID: 33175673 PMCID: PMC8292865 DOI: 10.17305/bjbms.2020.5219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
RASSF1A, one of the eight isoforms of the RASSF1 gene, is a tumor suppressor gene that influences tumor initiation and development. In cancer, RASSF1A is frequently inactivated by mutations, loss of heterozygosity, and, most commonly, by promoter hypermethylation. Epigenetic inactivation of RASSF1A was detected in various cancer types and led to significant interest; current research on RASSF1A promoter methylation focuses on its roles as an epigenetic tumor biomarker. Typically, researchers analyzed genomic DNA (gDNA) to measure the amount of RASSF1A promoter methylation. Cell-free DNA (cfDNA) from liquid biopsies is a recent development showing promise as an early cancer diagnostic tool using biomarkers, such as RASSF1A. This review discusses the evidence on aberrantly methylated RASSF1A in gDNA and cfDNA from different cancer types and its utility for early cancer diagnosis, prognosis, and surveillance. We compared methylation frequencies of RASSF1A in gDNA and cfDNA in various cancer types. The weaknesses and strengths of these analyses are discussed. In conclusion, although the importance of RASSSF1A methylation to cancer has been established and is included in several diagnostic panels, its diagnostic utility is still experimental.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia; Department of Pathology, University of Zagreb School of Dental Medicine and School of Medicine, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Floriana Bulic-Jakus
- University of Zagreb School of Medicine, Department of Medical Biology, Zagreb, Croatia
| | - Davor Jezek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Bouras E, Karakioulaki M, Bougioukas KI, Aivaliotis M, Tzimagiorgis G, Chourdakis M. Gene promoter methylation and cancer: An umbrella review. Gene 2019; 710:333-340. [PMID: 31202904 DOI: 10.1016/j.gene.2019.06.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Gene promoter methylation is a common epigenetic event, taking place in the early phase of tumorigenesis, which has a great potential as a diagnostic and prognostic cancer biomarker. In this umbrella review, we provide an overview on the association between gene-promoter methylation of protein-coding genes and cancer risk based on currently available meta-analyses data on gene promoter methylation. We searched MEDLINE via PubMed and the Cochrane Database of Systematic Reviews for meta-analyses that examine the association between gene-promoter methylation and cancer, published until January 2019 in English. We used AMSTAR to assess the quality of the included studies and applied a set of pre-specified criteria to evaluate the magnitude of each association. We provide a comprehensive overview of 80 unique combinations between 22 different genes and 18 cancer outcomes, all of which indicated a positive association between promoter hypermethylation and cancer. In total, the 70 meta-analyses produced significant results under a random-effects model with odds ratios that ranged from 1.94 to 26.60, with the summary effect being in favor of the unmethylated group in all cases. Three of the strong evidence associations involve RASSF1 methylation on bladder cancer risk (OR = 18.46; 95% CI: 12.69-26.85; I2 = 0%), MGMT methylation on NSCLC (OR = 4.25; 95% CI: 2.83-6.38; I2 = 22.4%) and RARB methylation on prostate cancer (OR = 6.87; 95% CI: 4.68-10.08; I2 = 0%). Meta-analyses showed a moderate quality, AMSTAR score ranging from 4 to 9 (Mdn = 8; IQR: 7.0 to 8.0). As primary studies and meta-analyses on the subject accumulate, more genetic loci may be found to be highly associated with specific cancer types and hence the biomarker sets will become wider.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Meropi Karakioulaki
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Konstantinos I Bougioukas
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece; Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biochemistry, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece; Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece; Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Michael Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
6
|
The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics. PLoS One 2017; 12:e0171676. [PMID: 28207831 PMCID: PMC5312935 DOI: 10.1371/journal.pone.0171676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/24/2017] [Indexed: 01/23/2023] Open
Abstract
Background The function of the tumor suppressor gene RASSF1A in cancer cells has been detailed in many studies. However, due to the methylation of its promoter, the expression of RASSF1A is missing in most cancers. In the literature, we found that the conclusion regarding the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma was not unified. This study adopts the use of a meta-analysis and bioinformatics to explore the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma. Methods Data on melanoma susceptibility were downloaded from the PubMed, Cochrane Library, Web of Science and Google Scholar databases, which were analyzed via a meta-analysis. The effect sizes were estimated by measuring an odds ratio (OR) with a 95% confidence interval (CI). We also used a chi-squared-based Q test to examine the between-study heterogeneity, and used funnel plots to evaluate publication bias. The data on melanoma prognosis, which were analyzed by bioinformatics methods, were downloaded from The Cancer Genome Atlas (TCGA) project. The effect sizes were estimated by measuring the hazard ratios (HRs) with a 95% confidence interval (CI). Results Our meta-analysis included 10 articles. We found that RASSF1A gene promoter methylation was closely related to melanoma susceptibility (OR = 12.67, 95% CI: 6.16 ∼ 26.05, z = 6.90, P<0.0001 according to a fixed effects model and OR = 9.25, 95% CI: 4.37 ∼ 19.54, z = 5.82, P<0.0001 according to a random effects model). The results of the meta-analysis did not reveal any heterogeneity (tau2 = 0.00; H = 1 [1; 1.55]; I2 = 0% [0%; 58.6%], P = 0.5158) or publication bias (t = 0.87, P = 0.4073 by Egger’s test; Z = 0.45, P = 0.6547 by Begg’s test); therefore, we believe that the results of our meta-analysis were more reliable. To explore the relationship between RASSF1A gene methylation, the prognosis of melanoma and the clinical features of this cancer type, we used the melanoma DNA methylation data and clinical data from TCGA project. We found that RASSF1A gene promoter methylation and melanoma prognosis did not demonstrate any relationship (HR was 0.94 (95% CI = [0.69; 1.27], P = 0.694) with disease-free survival and 0.74 (95% CI = [0.53; 1.05], P = 0.106) for overall survival), and no significant difference was observed between RASSF1A gene promoter methylation and the clinical-pathological features of melanoma. Conclusions In conclusion, the meta-analysis of the data in these articles provides strong evidence that the methylation status of the RASSF1A gene promoter was strongly related to melanoma susceptibility. Our bioinformatics analysis revealed no significant difference between RASSF1A gene promoter methylation and the prognosis and clinical-pathological features of melanoma.
Collapse
|
7
|
Yang JZ, Ji AF, Wang JS, Chen ZY, Wen SW. Association between Ras association domain family 1A promoter methylation and esophageal squamous cell carcinoma: a meta-analysis. Asian Pac J Cancer Prev 2016; 15:3921-5. [PMID: 24935575 DOI: 10.7314/apjcp.2014.15.9.3921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RASSF1A has been reported to be a candidate tumor suppressor in esophageal squamous cell carcinoma (ESCC). However, the association between RASSF1A promoter methylation and ESCC remains unclear. Eligible studies were identified through searching PubMed, Medline, Web of Science, and the China National Knowledge Infrastucture database. Studies were pooled and odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Funnel plots were also performed to evaluate publication bias. Twelve studies involving 859 cases and 675 controls were included in this meta-analysis. A significant association was observed between RASSF1A methylation and ESCC overall (OR = 11.7, 95% CI: 6.59-20.9, z=8.36, P<0.00001). Subgroup analysis showed that the OR for heterogeneous tissues was 5.35 (95% CI = 2.95-9.71) while for autologous tissues it was 16.0 (8.31-30.96). For patient sample size, the OR for the <50 subgroup was 9.92 (95% CI = 2.88-34.2) and for the 50 case group was 13.1 (95% CI = 6.59-25.91). The OR for a relationship between RASSF1A methylation and TNM stages was 0.27 (95% CI=0.10-0.77), whereas there were no significant differences in RASSF1A methylation in relation to gender and differentiation among ESCC cases. This meta-analysis suggests a significant association between RASSF1A methylation and ESCC.
Collapse
Affiliation(s)
- Jian-Zhou Yang
- School of Public Health, Central South University, Changzhi, China E-mail : ;
| | | | | | | | | |
Collapse
|
8
|
Aberrant Methylation of RASSF1A Closely Associated with HNSCC, a Meta-Analysis. Sci Rep 2016; 6:20756. [PMID: 26857374 PMCID: PMC4746596 DOI: 10.1038/srep20756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
The RAS association domain family protein 1a (RASSF1A), a tumor suppressor gene at 3p21.3, plays a very important role in various cancers, including the head and neck squamous cell carcinoma (HNSCC). Hypermethylation of CpG islands in the RASSF1A promoter region contribute to epigenetic inactivation. However, the association between RASSF1A promoter methylation and HNSCC remains unclear and controversial. Therefore, a meta-analysis was performed in the study to identify the association. We identified the eligible studies through searching PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure (CNKI) databases with a systematic searching strategy. The information on characteristics of each study and prevalence of RASSF1A methylation were collected. Pooled odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Meta-regression was performed to analyze heterogeneity and funnel plots were applied to evaluate publication bias. A total of 550 HNSCC patients and 404 controls from twelve eligible studies were included in the meta-analysis. Overall, a significant association was observed between RASSF1A methylation status and HNSCC risk under a random-effects model (OR = 2.93, 95% CI: 1.58–5.46). There was no significant publication bias observed. The meta-analysis suggested that there was a significant association between aberrant RASSF1A methylation and HNSCC.
Collapse
|
9
|
Li HL, Gu J, Wu JJ, Ma CL, Yang YL, Wang HP, Wang J, Wang Y, Chen C, Wu HY. Heparanase mRNA and Protein Expression Correlates with Clinicopathologic Features of Gastric Cancer Patients: a Meta-analysis. Asian Pac J Cancer Prev 2016; 16:8653-8. [DOI: 10.7314/apjcp.2015.16.18.8653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Feng L, Li J, Yan LD, Tang J. RASSF1A suppresses proliferation of cervical cancer cells. Asian Pac J Cancer Prev 2015; 15:5917-20. [PMID: 25081722 DOI: 10.7314/apjcp.2014.15.14.5917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to explore the effects of ras association domain family 1 A (RASSF1A) on proliferation and apoptosis of human cervical cancer cell line Hela cells. MATERIALS AND METHODS RASSF1A was cloned into the pcDNA3.1(+) vector to generate pcDNA3.1(+)-RASSF1A plasmid for transfection into Hela cells. Changes in the proliferation and apoptosis of cultured Hela cells were examined by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium chloride assay and flow cytometry. A protein array was used to analyze the expression of apoptotic factors. RESULTS Plasmid pcDNA3.1(+)-RASSF1A was generated and transfected into Hela cells to stably express RASSF1A in Hela cells. RASSF1A transfection was effective in inhibiting the proliferation of Hela cells up to 52.4%, as compared to cells transfected with an empty plasmid. RASSF1A expression also successfully induced apoptosis in human cervical cells with an apoptosis rate of 20.5%. More importantly, protein array results showed that RASSF1 A transfection induced overexpression of p21 and caspase 8, while decreasing the expression of survivin in Hela cells. CONCLUSIONS RASSF1A expression was effective in suppressing the proliferation and increasing apoptosis of Hela cells, and may be a potential therapy for cervical cancer in clinic.
Collapse
Affiliation(s)
- Lei Feng
- Department of Gynecology and Obstetrics, People's Hospital of Pingyi County; Shandong Province, Pingyi, PR China E-mail :
| | | | | | | |
Collapse
|
11
|
Bu ZB, Ye M, Cheng Y, Wu WZ. Four polymorphisms in the cytochrome P450 1A2 (CYP1A2) gene and lung cancer risk: a meta-analysis. Asian Pac J Cancer Prev 2015; 15:5673-9. [PMID: 25081684 DOI: 10.7314/apjcp.2014.15.14.5673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous published data on the association between CYP1A2 rs762551, rs2069514, rs2069526, and rs2470890 polymorphisms and lung cancer risk have not allowed a definite conclusion. The present meta-analysis of the literature was performed to derive a more precise estimation of the relationship. MATERIALS AND METHODS 8 publications covering 23 studies were selected for this meta-analysis, including 1,665 cases and 2,383 controls for CYP1A2 rs762551 (from 8 studies), 1,456 cases and 1,792 controls for CYP1A2 rs2069514 (from 7 studies), 657 cases and 984 controls for CYP1A2 rs2069526 (from 5 studies) and 691 cases and 968 controls for CYP1A2 rs2470890 (from 3 studies). RESULTS When all the eligible studies were pooled into the meta-analysis for the CYP1A2 rs762551 polymorphism, significantly increased lung cancer risk was observed in the dominant model (OR=1.21, 95 % CI=1.00-1.46). In the subgroup analysis by ethnicity, significantly increased risk of lung cancer was observed in Caucasians (dominant model: OR=1.29, 95%CI=1.11-1.51; recessive model: OR=1.33, 95%CI=1.01-1.75; additive model: OR=1.49, 95%CI=1.12-1.98). There was no evidence of significant association between lung cancer risk and CYP1A2 rs2069514, s2470890, and rs2069526 polymorphisms. CONCLUSIONS In summary, this meta-analysis indicates that the CYP1A2 rs762551 polymorphism is linked to an increased lung cancer risk in Caucasians. Moreover, our work also points out the importance of new studies for rs2069514 associations in lung cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the rs2069514 polymorphism in lung cancer development.
Collapse
Affiliation(s)
- Zhi-Bin Bu
- Department of Ultrasound, 2Department of Psychiatry, Zhejiang Hospital, Hangzhou, China E-mail :
| | | | | | | |
Collapse
|
12
|
Pastuszak-Lewandoska D, Kordiak J, Migdalska-Sęk M, Czarnecka KH, Antczak A, Górski P, Nawrot E, Kiszałkiewicz JM, Domańska D, Brzeziańska-Lasota E. Quantitative analysis of mRNA expression levels and DNA methylation profiles of three neighboring genes: FUS1, NPRL2/G21 and RASSF1A in non-small cell lung cancer patients. Respir Res 2015; 16:76. [PMID: 26112163 PMCID: PMC4484633 DOI: 10.1186/s12931-015-0230-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/05/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation. METHODS Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene. RESULTS The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38-76%, depending on the gene. The highest MI value was found for RASSF1A (52%) and the lowest for NPRL2/G21 (5%). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71% tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = -0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75-92% NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found. CONCLUSIONS The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression levels between NSCLC and macroscopically unchanged lung tissue highlight its possible diagnostic role in lung cancer in situ recognition. High percentage of lung tumor samples with simultaneous RASSF1A decreased expression and gene promoter methylation indicates its epigenetic silencing. However, DNMT overexpression doesn't seem to be a critical determinate of its promoter hypermethylation.
Collapse
Affiliation(s)
- Dorota Pastuszak-Lewandoska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Jacek Kordiak
- Department of Chest Surgery, General and Oncological Surgery, University Hospital No. 2, Medical University of Lodz, Lodz, Poland.
| | - Monika Migdalska-Sęk
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Karolina H Czarnecka
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland.
| | - Paweł Górski
- Department of Pneumology and Allergology, Medical University of Lodz, Lodz, Poland.
| | - Ewa Nawrot
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Justyna M Kiszałkiewicz
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Daria Domańska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Ewa Brzeziańska-Lasota
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| |
Collapse
|
13
|
Wu XM, Chen Y, Shao Y, Zhou XL, Tang WR. Association between cigarette smoking and RASSF1A gene promoter hypermethylation in lung cancer patients: a meta- analysis. Asian Pac J Cancer Prev 2015; 15:8451-4. [PMID: 25339045 DOI: 10.7314/apjcp.2014.15.19.8451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Epidemiological studies have shown that molecular mechanisms underlying the development of lung cancers differ between smokers and unsmokers. Aberrant promoter methylation in some tumor suppressor genes is frequent in lung tumors from smokers but rare in those from non-smokers. Recently, many studies have investigated the association between cigarette smoking and RASSF1A gene promoter hypermethylation in lung cancer patients, but a unanimous conclusion could not be reached. We therefore performed this meta-analysis to derive a more precise estimation of any association. STUDY DESIGN An electronic search of PubMed and Chinese Biomedicine databases was conducted to select studies. A total of 19 case-control studies were chosen, and odds ratios (ORs) with confidence intervals (CIs) were used to assess the strength of associations. RESULTS The case-control studies covered 2, 287 lung cancer patients: 63.4%(1449) of the patients were smokers, 36.6% (838) were unsmokers. The overall results suggested that smokers with lung cancer had a 1.297-fold (95% CI: 1.066~1.580, p=0.010, p=0.087) higher risk for RASSF1A gene hypermethylation than the non-smokers. In the stratified analysis, an increased risk of RASSF1A gene hypermethylation in smokers than in non-smokers was found in Asian (OR=1.481, 95%CI: 1.179~1.861, p=0.001, p=0.186). CONCLUSIONS This meta-analysis supports the idea that RASSF1A gene hypermethylation is associated with cigarette smoking-induced lung cancer.
Collapse
Affiliation(s)
- Xiao-Ming Wu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China E-mail :
| | | | | | | | | |
Collapse
|
14
|
Tariq A, Majeed I, Khurshid A. Types of Cancers Prevailing in Pakistan and their Management Evaluation. Asian Pac J Cancer Prev 2015; 16:3605-16. [DOI: 10.7314/apjcp.2015.16.9.3605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
15
|
Gao L, Xie E, Yu T, Chen D, Zhang L, Zhang B, Wang F, Xu J, Huang P, Liu X, Fang B, Pan S. Methylated APC and RASSF1A in multiple specimens contribute to the differential diagnosis of patients with undetermined solitary pulmonary nodules. J Thorac Dis 2015; 7:422-32. [PMID: 25922721 DOI: 10.3978/j.issn.2072-1439.2015.01.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/22/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Inactivation of tumor-suppressor gene (TSG) by promoter hypermethylation has been reported in many tumor types, including lung cancer. This study was designed to determine the methylated APC and RASSF1A genes in tumor tissue, serum and plasma of patients with early stage lung cancer. METHODS Eighty-nine patients with undetermined solitary pulmonary nodules detected upon CT-scan were recruited in this study. DNA samples were extracted from biopsy tissues, serum and plasma and QMSP of APC and RASSF1A was carried out after bisulfite conversion. The 89 patients consist of 58 stage I lung cancer patients and 31 benign lung disease according to pathological report. Twenty-six cancer patients had matched biopsy tumor tissue, serum and plasma samples. RESULTS The methylation rates of APC and RASSF1A were 59.0% and 66.1% in biopsy tissues, 42.5% and 52.5% in serum, and 24.1% and 43.1% in plasma of cancer patients. For RASSF1A, different samples all showed a significant difference between cancer group and benign group (P<0.05). However, APC gene only explored the P value less than 0.05 in plasma result. Towards the 26 lung cancer patients with three matched samples, methylation rate in each sample type was more than 50.0% and displayed no difference. CONCLUSIONS Evaluation of APC and RASSF1A promoter methylation by using QMSP appears to be very useful for the differential diagnosis of patients with undetermined solitary pulmonary nodules. Our results also suggested that plasma might be the best sample for clinical detection of early stage lung.
Collapse
Affiliation(s)
- Li Gao
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erfu Xie
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tongfu Yu
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Chen
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Zhang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingfeng Zhang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fang Wang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Xu
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peijun Huang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xisheng Liu
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiyang Pan
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical, Department of Laboratory Medicine, Nanjing 210029, China ; 3 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 4 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Du Z, Ma K, Sun X, Li A, Wang H, Zhang L, Lin F, Feng X, Song J. Methylation of RASSF1A gene promoter and the correlation with DNMT1 expression that may contribute to esophageal squamous cell carcinoma. World J Surg Oncol 2015; 13:141. [PMID: 25886188 PMCID: PMC4403718 DOI: 10.1186/s12957-015-0557-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/23/2015] [Indexed: 01/10/2023] Open
Abstract
Background Esophageal squamous cell carcinoma is one of the most common malignancies in the world. Studies have confirmed that there are many genes abnormally hypermethylated in esophageal squamous cell carcinoma. The objective is to detect methylation of the RASSF1A gene promoter and the expression of the DNA methyltransferase 1 (DNMT1) protein in esophageal cancer tissue and discuss their relationship with esophageal squamous cell carcinoma. Methods The CpG island methylation status of RASSF1A genes were analyzed in 100 cases of tumor specimens as well as their adjacent tissues which was used for methylation-specific polymerase chain reaction (MSP). The expression of DNMT1 protein was determined by immunohistochemistry. Difference between measurement data and categorical data was compared through analysis of t test and chi-square test. All the statistics were taken with a bilateral test. The difference was statistically significant (P < 0.05). Results The promoter methylation of the RASSF1A gene promoter has been detected in 45 out of 100 (45%) esophageal squamous carcinoma cases, while methylation of RASSF1A gene has been detected in 2 out of 100 adjacent normal tissues (2%). The RASSF1A gene promoter was highly methylated in cancer tissues, and there were significant differences between normal esophagus tissues and esophageal squamous carcinoma (P < 0.05). The expression of DNMT1 protein has been detected in 61 out of 100 (61%) esophageal squamous carcinoma cases, including 41 cases in the above 45 methylated samples of RASSF1A gene promoter, and none in adjacent tissues. DNMT1 proteins are highly expressed in cancer tissues, and there were significant differences (P < 0.05). In positive cases for methylation of RASSF1A, the DNMT1 protein had been detected in 41 out of 45 (91%), while in non-methylated cancer cases, 20 out of 55(36.3%), and the difference is significant (P < 0.05). Conclusions Esophageal squamous carcinoma tumorigenesis may be related with hypermethylation of DNMT1 and RASSF1A promoter CpG island due to their high expression and also their hypermethylation.
Collapse
Affiliation(s)
- Zhenzong Du
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Kui Ma
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Xiaolin Sun
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Angui Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Haiyong Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Lifei Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Feng Lin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Xiaoyan Feng
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Jianfei Song
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
17
|
Li W, Deng J, Tang JX. Combined effects methylation of FHIT, RASSF1A and RARβ genes on non-small cell lung cancer in the Chinese population. Asian Pac J Cancer Prev 2015; 15:5233-7. [PMID: 25040980 DOI: 10.7314/apjcp.2014.15.13.5233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epigenetic modifications of tumour suppressor genes are involved in all kinds of human cancer. Aberrant promoter methylation is also considered to play an essential role in development of lung cancer, but the pathogenesis remains unclear.We collected the data of 112 subjects, including 56 diagnosed patients with lung cancer and 56 controls without cancer. Methylation of the FHIT, RASSF1A and RAR-β genes in DNA from all samples and the corresponding gene methylation status were assessed using the methylation-specific polymerase chain reaction (PCR, MSP). The results showed that the total frequency of separate gene methylation was significantly higher in lung cancer compared with controls (33.9-85.7 vs 0 %) (p<0.01).Similar outcomes were obtained from the aberrant methylation of combinations of any two or three genes (p<0.01). There was a tendency that the frequency of combinations of any two or three genes was higher in stage I+II than that in stage III+IV with lung cancer. However, no significant difference was found across various clinical stages and clinic pathological gradings of lung cancer (p>0.05).These observations suggest that there is a significant association of promoter methylation of individual genes with lung cancer risk, and that aberrant methylation of combination of any two or three genes may be associated with clinical stage in lung cancer patients and involved in the initiation of lung cancer tumorigenesis. Methylation of FHIT, RASSF1A and RARβ genes may be related to progression of lung oncogenesis.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology of Hunan Province, Hunan University of Technology, ZhuZhou, Hunan Province, China E-mail :
| | | | | |
Collapse
|
18
|
Huang T, Chen X, Hong Q, Deng Z, Ma H, Xin Y, Fang Y, Ye H, Wang R, Zhang C, Ye M, Duan S. Meta-analyses of gene methylation and smoking behavior in non-small cell lung cancer patients. Sci Rep 2015; 5:8897. [PMID: 25754026 PMCID: PMC4354004 DOI: 10.1038/srep08897] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/05/2015] [Indexed: 12/02/2022] Open
Abstract
Aberrant DNA methylation can be a potential genetic mechanism in non-small cell lung cancer (NSCLC). However, inconsistent findings existed among the recent association studies between cigarette smoking and gene methylation in lung cancer. The purpose of our meta-analysis was to evaluate the role of gene methylation in the smoking behavior of NSCLC patients. A total of 116 genes were obtained from 97 eligible publications in the current meta-analyses. Our results showed that 7 hypermethylated genes (including CDKN2A, RASSF1, MGMT, RARB, DAPK, WIF1 and FHIT) were significantly associated with the smoking behavior in NSCLC patients. The further population-based subgroup meta-analyses showed that the CDKN2A hypermethylation was significantly associated with cigarette smoking in Japanese, Chinese and Americans. In contrast, a significant association of RARB hypermethylation and smoking behavior was only detected in Chinese but not in Japanese. The genes with altered DNA methylation were likely to be potentially useful biomarkers in the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Tao Huang
- 1] Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China [2] The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Xiaoying Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zaichun Deng
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Hongying Ma
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Yanfei Xin
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rujie Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cheng Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Meng Ye
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
19
|
He Z, Duan H, Zhang B, Li M, Chen L, Zhang B, Zhu X, Gao C, Li J, Zhang X, Zhang J, Wang S, Zeng X, Li D, Xing X, Zhang Z, Ma L, Bai Q, Liu C, Xiao Y, Zheng Y, Chen W. CpG site-specific RASSF1a hypermethylation is associated with occupational PAH exposure and genomic instability. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00013k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown an etiologic link between exposure to PAHs and lung cancer development.
Collapse
|
20
|
Wu Y, Zhang X, Lin L, Ma XP, Ma YC, Liu PS. Aberrant methylation of RASSF2A in tumors and plasma of patients with epithelial ovarian cancer. Asian Pac J Cancer Prev 2014; 15:1171-6. [PMID: 24606436 DOI: 10.7314/apjcp.2014.15.3.1171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The tumor suppressor gene, Ras-association domain family (RASSF)2A, is inactivated by promoter hypermethylation in many cancers. The current study was performed to evaluate the methylation status of RASSF2A in epithelial ovarian cancer (EOC) tissues and plasma, and correlations with gene expression and clinicopathologic characteristics. METHOD We detected methylation of the RASSF2A gene in tissues and corresponding plasma samples from 47 EOC patients and 14 patients with benign ovarian tumors and 10 with normal ovarian tissues. The methylation status was determined by methylation-specific PCR while gene expression of mRNA was examined by RT-PCR. The EOC cell line, SKOV3, was treated with 5-aza-2'-deoxycytidine (5-aza- dC). RESULTS RASSF2A mRNA expression was significantly low in EOC tissues. The frequency of aberrant methylation of RASSF2A was 51.1% in EOC tissues and 36.2% in corresponding plasma samples, whereas such hypermethylation was not detected in the benign ovarial tumors and normal ovarian samples. The expression of RASSF2A mRNA was significantly down-regulated or lost in the methylated group compared to the unmethylated group (p<0.05). After treatment with 5-aza-dC, RASSF2A mRNA expression was significantly restored in the Skov3 cell line. CONCLUSION Epigenetic inactivation of RASSF2A through aberrant promoter methylation may play an important role in the pathogenesis of EOC. Methylation of the RASSF2A gene in plasma may be a valuable molecular marker for the early detection of EOC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Gynecology and Obstetrics, Qilu Hospital, Shandong University, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
21
|
Bayram S. Association between RASSF1A Ala133Ser polymorphism and cancer susceptibility: a meta-analysis involving 8,892 subjects. Asian Pac J Cancer Prev 2014; 15:3691-8. [PMID: 24870779 DOI: 10.7314/apjcp.2014.15.8.3691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Published studies on the association between the Ras Association Domain Family 1 isoform A (RASSF1A) Ala133Ser polymorphism and cancer susceptibility have yielded conflicting results. Thus, a meta- analysis was here performed to assess the possible association. MATERIALS AND METHODS All eligible case-control studies published up to November 2013 on the association between RASSF1A Ala133Ser polymorphism and cancer susceptibility were identified by searching PubMed, Web of Science, Science Direct and hand search. Bothfixed- effect and random-effect models were used to calculate pooled odds ratios (ORs) with 95% confidence intervals (CIs) by using the Comprehensive Meta-Analysis software version 2.2. RESULTS A total of 10 studies including 4,572 cancer cases and 4,320 controls were included in the meta-analysis. Overall, significantly increased cancer risk was associated with the variant Ser133 when all studies were pooled (Ser vs Ala: OR=1.51, 95% CI=1.08- 2.12, Pheterogeneity≤0.001; Ser/Ser+Ala/Ser vs Ala/Ala: OR=1.55, 95% CI=1.08-2.22, Pheterogeneity ≤ 0.001). Moreover, in subgroup analyses by cancer types, a significant association between RASSF1A Ala133Ser polymorphism and lung cancer risk was found (Ser vs Ala: OR=2.27, 95% CI=1.29-4.02, Pheterogeneity=0.61; Ser/Ser+Ala/ Ser vs Ala/Ala: OR=2.42, 95% CI=1.33-4.42, Pheterogeneity=0.75). In addition, in subgroup analyses by ethnicity, it was found that the RASSF1A Ala133Ser polymorphism was associated with overall cancer risk in Asians (Ser vs Ala: OR=1.37, 95% CI=1.06-1.77, Pheterogeneity=0.06) and Caucasians (Ser/Ser+Ala/Ser vs Ala/Ala: OR=2.21, 95% CI=1.01-4.82, Pheterogeneity≤0.001). CONCLUSIONS This meta-analysis suggests, for the first time, that RASSF1A Ala133Ser polymorphism may contribute to cancer susceptibility, especially for lung cancer. Besides, additional well-designed studies with larger sample size focusing on different ethnicities and cancer types are needed to confirm these findings.
Collapse
Affiliation(s)
- Suleyman Bayram
- Department of Nursing, School of Health, Adiyaman University, Adiyaman, Turkey E-mail :
| |
Collapse
|