1
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
2
|
Jiang M, Yu Q, Mei H, Jian Y, Xu R. Early diagnostic value of ECT whole-body bone imaging combined with PINP and β-CTX for bone metastasis of lung cancer. Clin Transl Oncol 2024; 26:3116-3123. [PMID: 38814542 DOI: 10.1007/s12094-024-03475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE This research was aimed at investigating the early diagnostic value of emission computed tomograph (ECT) whole-body bone imaging combined with PINP and β-CTX for bone metastasis of lung cancer. METHODS Case data of 86 lung cancer patients were categorized into lung cancer with bone metastasis (LCWBM, 46 cases) and lung cancer without bone metastasis (LCWOBM, 40 cases) groups according to the presence or absence of bone metastasis. Patients' general information were collected. ECT whole-body bone imaging was used to detect bone metastases and the grading of the extent of disease (EOD) in both groups, and electrochemiluminescence was utilized to detect the serum levels of PINP and β-CTX. Spearman correlation analysis was employed to evaluate the correlation between EOD grading and PINP and β-CTX levels. Logistic univariate and multivariate regression was implemented to analyze the risk factors of bone metastasis of lung cancer. Receiver operating characteristic (ROC) curve was applied to analyze the diagnostic efficacy of the single test of ECT whole-body bone imaging, PINP, or β-CTX and the combination of the three tests. RESULTS The differences in pathological type, clinical stage and EOD grading, the number of positive ECT cases, and the expression levels of PINP and β-CTX between the LCWBM and LCWOBM groups were statistically significant. In LCWBM patients with different EOD grading, the trends of the expression of PINP and β-CTX were grade 3 > grade 2 > grade 1 and grade 0. Further correlation analyses revealed that EOD grading showed a significant positive correlation with the PINP and β-CTX expression levels. Univariate logistic regression analysis demonstrated that adenocarcinoma, TNM stage IV, ECT positivity, and high expression of PINP and β-CTX were associated with bone metastasis of lung cancer, and multivariate logistic regression analysis indicated that ECT positivity, high expression of PINP and β-CTX were independent risk factors for bone metastasis of lung cancer. The area under the curve (AUC) of ECT, PINP, and β-CTX alone for the diagnosis of bone metastasis of lung cancer were 0.872, 0.888, and 0.874, respectively, and the AUC for the combined diagnosis of the three was 0.963, which was greater than that of any one of the individual indices, with a sensitivity of 86.96% and a specificity of 97.50% at a Youden index of 0.845. CONCLUSION ECT whole-body bone imaging combined with PINP and β-CTX has high diagnostic value for bone metastasis of lung cancer.
Collapse
Affiliation(s)
- Meiying Jiang
- Department of Nuclear MedicineDonghu DistrictJiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.92 Aiguo Road, Nanchang, 330006, China
| | - Qiyun Yu
- Department of Nuclear MedicineDonghu DistrictJiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.92 Aiguo Road, Nanchang, 330006, China
| | - Haitao Mei
- Department of Nuclear MedicineDonghu DistrictJiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.92 Aiguo Road, Nanchang, 330006, China
| | - Yingchao Jian
- Department of Radiology, Donghu District, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92 Aiguo Road, Jiangxi Province, 330006, China.
| | - Rong Xu
- Department of Nuclear MedicineDonghu DistrictJiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.92 Aiguo Road, Nanchang, 330006, China.
| |
Collapse
|
3
|
Mavrogenis AF, Altsitzioglou P, Tsukamoto S, Errani C. Biopsy Techniques for Musculoskeletal Tumors: Basic Principles and Specialized Techniques. Curr Oncol 2024; 31:900-917. [PMID: 38392061 PMCID: PMC10888002 DOI: 10.3390/curroncol31020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Biopsy is a pivotal component in the diagnostic process of bone and soft tissue tumors. The objective is to obtain adequate tissue without compromising local tumor dissemination and the patient's survival. This review explores contemporary principles and practices in musculoskeletal biopsies, emphasizing the critical role of diagnostic accuracy while also delving into the evolving landscape of liquid biopsies as a promising alternative in the field. A thorough literature search was done in PubMed and Google Scholar as well as in physical books in libraries to summarize the available biopsy techniques for musculoskeletal tumors, discuss the available methods, risk factors, and complications, and to emphasize the challenges related to biopsies in oncology. Research articles that studied the basic principles and specialized techniques of biopsy techniques in tumor patients were deemed eligible. Their advantages and disadvantages, technical and pathophysiological mechanisms, and possible risks and complications were reviewed, summarized, and discussed. An inadequately executed biopsy may hinder diagnosis and subsequently impact treatment outcomes. All lesions should be approached with a presumption of malignancy until proven otherwise. Liquid biopsies have emerged as a potent non-invasive tool for analyzing tumor phenotype, progression, and drug resistance and guiding treatment decisions in bone sarcomas and metastases. Despite advancements, several barriers remain in biopsies, including challenges related to costs, scalability, reproducibility, and isolation methods. It is paramount that orthopedic oncologists work together with radiologists and pathologists to enhance diagnosis, patient outcomes, and healthcare costs.
Collapse
Affiliation(s)
- Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Pavlos Altsitzioglou
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| |
Collapse
|
4
|
Choi SW, Sun AK, Cheung JPY, Ho JCY. Circulating Tumour Cells in the Prediction of Bone Metastasis. Cancers (Basel) 2024; 16:252. [PMID: 38254743 PMCID: PMC10813668 DOI: 10.3390/cancers16020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Bone is the most common organ for the development of metastases in many primary tumours, including those of the breast, prostate and lung. In most cases, bone metastasis is incurable, and treatment is predominantly palliative. Much research has focused on the role of Circulating Tumour Cells (CTCs) in the mechanism of metastasis to the bone, and methods have been developed to isolate and count CTCs from peripheral blood. Several methods are currently being used in the study of CTCs, but only one, the CellSearchTM system has been approved by the United States Food and Drug Administration for clinical use. This review summarises the advantages and disadvantages, and outlines which clinical studies have used these methods. Studies have found that CTC numbers are predictive of bone metastasis in breast, prostate and lung cancer. Further work is required to incorporate information on CTCs into current staging systems to guide treatment in the prevention of tumour progression into bone.
Collapse
Affiliation(s)
- Siu-Wai Choi
- Department of Orthopaedics and Tramatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aria Kaiyuan Sun
- Department of Anaesthesiology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (A.K.S.); (J.C.-Y.H.)
| | - Jason Pui-Yin Cheung
- Department of Orthopaedics and Tramatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jemmi Ching-Ying Ho
- Department of Anaesthesiology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (A.K.S.); (J.C.-Y.H.)
| |
Collapse
|
5
|
Song MK, Park SI, Cho SW. Circulating biomarkers for diagnosis and therapeutic monitoring in bone metastasis. J Bone Miner Metab 2023; 41:337-344. [PMID: 36729305 DOI: 10.1007/s00774-022-01396-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023]
Abstract
Bone is a frequent site of metastasis for multiple types of solid tumors in organs such as prostate, breast, lung, etc., accounting for significant morbidities and mortalities of afflicted patients. One of the major problems of bone metastasis is lack of biomarkers for early diagnosis and for monitoring therapeutic responses. Medical imaging modalities such as computerized tomography, magnetic resonance imaging, and radioactive isotope-based bone scans are currently standard clinical practices, yet these imaging techniques are limited to detect early lesions or to accurately monitor the metastatic disease progression during standard and/or experimental therapies. Accordingly, development of novel blood biomarkers rationalizes extensive basic research and clinical development. This review article covers the up-to-date information on protein- and cell-based biomarkers of bone metastasis that are currently used in the clinical practices and also are under development.
Collapse
Affiliation(s)
- Min-Kyoung Song
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Inchon-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
| |
Collapse
|
6
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Li BW, Wei K, Liu QQ, Sun XG, Su N, Li WM, Shang MY, Li JM, Liao D, Li J, Lu WP, Deng SL, Huang Q. Enhanced Separation Efficiency and Purity of Circulating Tumor Cells Based on the Combined Effects of Double Sheath Fluids and Inertial Focusing. Front Bioeng Biotechnol 2021; 9:750444. [PMID: 34778227 PMCID: PMC8578950 DOI: 10.3389/fbioe.2021.750444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Circulating tumor cells (CTCs) play a crucial role in solid tumor metastasis, but obtaining high purity and viability CTCs is a challenging task due to their rarity. Although various works using spiral microchannels to isolate CTCs have been reported, the sorting purity of CTCs has not been significantly improved. Herein, we developed a novel double spiral microchannel for efficient separation and enrichment of intact and high-purity CTCs based on the combined effects of two-stage inertial focusing and particle deflection. Particle deflection relies on the second sheath to produce a deflection of the focused sample flow segment at the end of the first-stage microchannel, allowing larger particles to remain focused and entered the second-stage microchannel while smaller particles moved into the first waste channel. The deflection of the focused sample flow segment was visualized. Testing by a binary mixture of 10.4 and 16.5 μm fluorescent microspheres, it showed 16.5 μm with separation efficiency of 98% and purity of 90% under the second sheath flow rate of 700 μl min−1. In biological experiments, the average purity of spiked CTCs was 74% at a high throughput of 1.5 × 108 cells min−1, and the recovery was more than 91%. Compared to the control group, the viability of separated cells was 99%. Finally, we validated the performance of the double spiral microchannel using clinical cancer blood samples. CTCs with a concentration of 2–28 counts ml−1 were separated from all 12 patients’ peripheral blood. Thus, our device could be a robust and label-free liquid biopsy platform in inertial microfluidics for successful application in clinical trials.
Collapse
Affiliation(s)
- Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kun Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qi-Qi Liu
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Mi Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Liao
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Lu Y, Zheng Y, Wang Y, Gu D, Zhang J, Liu F, Chen K, Guo L. FlowCell-enriched circulating tumor cells as a predictor of lung cancer metastasis. Hum Cell 2021; 34:945-951. [PMID: 33580470 PMCID: PMC8057988 DOI: 10.1007/s13577-021-00500-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most fetal malignancy due to the high rate of metastasis and recurrence after treatment. A considerable number of patients with early-stage lung cancer relapse due to overlooked distant metastasis. Circulating tumor cells (CTCs) are tumor cells in blood circulation that originated from primary or metastatic sites, and it has been shown that CTCs are critical for metastasis and prognosis in various type of cancers. Here, we employed novel method to capture, isolate and classify CTC with FlowCell system and analyzed the CTCs from a cohort of 302 individuals. Our results illustrated that FlowCell-enriched CTCs effectively differentiated benign and malignant lung tumor and the total CTC counts increased as the tumor developed. More importantly, we showed that CTCs displayed superior sensitivity and specificity to predict lung cancer metastasis in comparison to conventional circulating biomarkers. Taken together, our data suggested CTCs can be used to assist the diagnosis of lung cancer as well as predict lung cancer metastasis. These findings provide an alternative means to screen early-stage metastasis.
Collapse
Affiliation(s)
- Yan Lu
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215007, Jiangsu, China
| | - Yushuang Zheng
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Dongmei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jun Zhang
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215007, Jiangsu, China
| | - Fang Liu
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215007, Jiangsu, China.
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
9
|
Wu S, Pan Y, Mao Y, Chen Y, He Y. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:439-451. [PMID: 33569325 PMCID: PMC7867745 DOI: 10.21037/tlcr-20-835] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is a kind of malignant tumor with rapid progression and poor prognosis. Distant metastasis has been the main cause of mortality among lung cancer patients. Bone is one of the most common sites. Among all lung cancer patients with bone metastasis, most of them are osteolytic metastasis. Some serious clinical consequences like bone pain, pathological fractures, spinal instability, spinal cord compression and hypercalcemia occur as well. Since the severity of bone metastasis in lung cancer, it is undoubtedly necessary to know how lung cancer spread to bone, how can we diagnose it and how can we treat it. Here, we reviewed the process, possible mechanisms, diagnosis methods and current treatment of bone metastasis in lung cancer. We divided the process of bone metastasis in lung cancer into three steps: tumor invasion, tumor cell migration and invasion in bone tissue. It may be influenced by genetic factors, microenvironment and other adhesion-related factors. Imaging examination, laboratory examination, and pathological examination are used to diagnose lung cancer metastasis to bone. Surgery, radiotherapy, targeted therapy, bisphosphonate, radiation therapy and chemotherapy are the common clinical treatment methods currently. We also found some problems remained to be solved. For example, drugs for skeletal related events mainly target on osteoclasts at present, which increase the ratio of patients in osteoporosis and fractures in the long term. In all, this review provides the direction for future research on bone metastasis in lung cancer.
Collapse
Affiliation(s)
- Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yue Pan
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yanyu Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yu Chen
- Spine Center, Orthopedic department, Shanghai Changzheng Hospital, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Iuliani M, Simonetti S, Ribelli G, Napolitano A, Pantano F, Vincenzi B, Tonini G, Santini D. Current and Emerging Biomarkers Predicting Bone Metastasis Development. Front Oncol 2020; 10:789. [PMID: 32582538 PMCID: PMC7283490 DOI: 10.3389/fonc.2020.00789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
Bone is one of the preferential sites of distant metastases from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Patients with bone metastases (BMs) may experience skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with negative effects on the quality of life. In the last decades, a deeper understanding of the molecular mechanisms underlying the BM onset has been gained, leading to the development of bone-targeting agents. So far, most of the research has been focused on the pathophysiology and treatment of BM, with only relatively few studies investigating potential predictors of risk for BM development. The ability to select such "high-risk" patients could allow early identification of those most likely to benefit from interventions to prevent or delay BM. This review summarizes several evidences for the potential use of specific biomarkers able to predict early the BM development.
Collapse
Affiliation(s)
- Michele Iuliani
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Sonia Simonetti
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Giulia Ribelli
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | | | | | - Bruno Vincenzi
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
11
|
The Prospect of Identifying Resistance Mechanisms for Castrate-Resistant Prostate Cancer Using Circulating Tumor Cells: Is Epithelial-to-Mesenchymal Transition a Key Player? Prostate Cancer 2020; 2020:7938280. [PMID: 32292603 PMCID: PMC7149487 DOI: 10.1155/2020/7938280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is initially driven by excessive androgen receptor (AR) signaling with androgen deprivation therapy (ADT) being a major therapeutic approach to its treatment. However, the development of drug resistance is a significant limitation on the effectiveness of both first-line and more recently developed second-line ADTs. There is a need then to study AR signaling within the context of other oncogenic signaling pathways that likely mediate this resistance. This review focuses on interactions between AR signaling, the well-known phosphatidylinositol-3-kinase/AKT pathway, and an emerging mediator of these pathways, the Hippo/YAP1 axis in metastatic castrate-resistant PCa, and their involvement in the regulation of epithelial-mesenchymal transition (EMT), a feature of disease progression and ADT resistance. Analysis of these pathways in circulating tumor cells (CTCs) may provide an opportunity to evaluate their utility as biomarkers and address their importance in the development of resistance to current ADT with potential to guide future therapies.
Collapse
|
12
|
Abalde-Cela S, Piairo P, Diéguez L. The Significance of Circulating Tumour Cells in the Clinic. Acta Cytol 2019; 63:466-478. [PMID: 30820013 DOI: 10.1159/000495417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite the hype about circulating tumour cells (CTCs) in the early 2000s and their potential in the diagnosis of metastasis, in recent years, the hope for personalised cancer management relies more on circulating tumour (ct)DNA that has entered the clinic in a much more efficient way. So far, approved methods for CTCs in the clinic only provide the counting of CTCs, which enables monitoring of the progression of metastatic breast, prostate, and colorectal cancer patients with therapy. Approved methods for ctDNA facilitate the analysis of specific mutations in lung cancer, thereby providing indications for potentially successful treatments. This situation inclined the balance towards molecular analysis in liquid biopsy, leveraged by new technologies and companies providing broader mutation and gene expression analysis towards the early diagnosis of cancer. STUDY DESIGN We conducted a search for the studies published to date that provide details about the significance of CTCs in the clinic. RESULTS Many studies and clinical trials have demonstrated the potential of CTCs in patient screening, early diagnosis, therapy resistance, and patient prognosis. CONCLUSIONS Large multi-centre studies are still needed to formally validate the clinical relevance of CTCs. Meticulous design of the clinical trials is a crucial point to achieve this long-sought objective.
Collapse
Affiliation(s)
- Sara Abalde-Cela
- Medical Devices Research Group, Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulina Piairo
- Medical Devices Research Group, Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal
- iMM- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Lorena Diéguez
- Medical Devices Research Group, Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal,
| |
Collapse
|
13
|
Que Z, Luo B, Zhou Z, Dong C, Jiang Y, Wang L, Shi Q, Tian J. Establishment and characterization of a patient-derived circulating lung tumor cell line in vitro and in vivo. Cancer Cell Int 2019; 19:21. [PMID: 30718976 PMCID: PMC6352330 DOI: 10.1186/s12935-019-0735-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have been described as a population of cells that may seed metastasis, which is a reliable target for the prevention of metastases in lung cancer patients at the early stage. The culturing of CTCs in vitro can be used to study the mechanism of lung cancer metastasis and to screen antimetastasis drugs. This study aims to establish CTC cell line in vitro and explore the potential mechanism of its metastasis. METHODS A mixture of EpCAM- and EGFR-coated immunomagnetic microbeads in microfluidic Herringbone-Chip was used to capture CTCs. The CTCs, 95-D and A549 cells was evaluated by cell proliferation assays, clonal formation assays, migration assays and drug resistance. Flow cytometry and cytokine protein chip were used to detect the difference in phenotype and cytokine secretion between CTCs, 95-D and A549 cells. The NOD/SCID mice were used to study tumorigenicity, lung organ colonization and metastasis of CTCs. The H&E staining, immunohistochemistry and immunofluorescence assay were used to detect the pathological status of CTCs. RESULTS The number of EpCAM(+)/EGFR(+)/CK(+)/CD45(-) lung CTCs showed a weak negative correlation with clinical stages in patients with non-small cell lung cancer (NSCLC). In a phase IIa lung cancer patient, we successfully establish a permanent CTC cell line, named CTC-TJH-01. In vitro studies showed the CTC-TJH-01 cells were in the intermediate stage of epithelial to mesenchymal transition (EMT), had stem cell characteristics and were drug resistant. In vivo studies showed that CTC-TJH-01 cells can induce tumorigenesis, lung organ colonization and metastasis after xenografting in immunodeficient mice. In addition, the low expression level of CX3CL1 and high expression level of CXCL5 in the CTC-TJH-01 cells may be an important mechanism for their metastasis. CONCLUSIONS We successfully established a permanent CTC cell line with metastatic ability, which can be used to screen antimetastatic drugs and study the mechanism of lung cancer metastasis.
Collapse
Affiliation(s)
- Zujun Que
- Institute of Traditional Chinese Medicine Oncology, Shanghai Institute of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| | - Bin Luo
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| | - Zhiyi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| | - Changsheng Dong
- Institute of Traditional Chinese Medicine Oncology, Shanghai Institute of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| | - Yi Jiang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| | - Lin Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| | - Qihui Shi
- Key Laboratory of Medical Epigenetics and Metabolism, Minhang Branch, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Jianhui Tian
- Institute of Traditional Chinese Medicine Oncology, Shanghai Institute of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
14
|
Rizzo FM, Vesely C, Childs A, Marafioti T, Khan MS, Mandair D, Cives M, Ensell L, Lowe H, Akarca AU, Luong T, Caplin M, Toumpanakis C, Krell D, Thirlwell C, Silvestris F, Hartley JA, Meyer T. Circulating tumour cells and their association with bone metastases in patients with neuroendocrine tumours. Br J Cancer 2019; 120:294-300. [PMID: 30636773 PMCID: PMC6353867 DOI: 10.1038/s41416-018-0367-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 02/03/2023] Open
Abstract
Background Bone metastases are associated with a worse outcome in patients with neuroendocrine tumours (NETs). Tumour overexpression of C-X-C chemokine receptor 4 (CXCR4) appears predictive of skeletal involvement. We investigated the role of circulating tumour cells (CTCs) and CXCR4 expression on CTCs as potential predictors of skeleton invasion. Methods Blood from patients with metastatic bronchial, midgut or pancreatic NET (pNET) was analysed by CellSearch. CXCR4 immunohistochemistry was performed on matched formalin-fixed paraffin-embedded (FFPE) samples. Results Two hundred and fifty-four patients were recruited with 121 midgut and 119 pNETs, of which 51 and 36% had detectable CTCs, respectively. Bone metastases were reported in 30% of midgut and 23% of pNET patients and were significantly associated with CTC presence (p = 0.003 and p < 0.0001). In a subgroup of 40 patients, 85% patients with CTCs had CTCs positive for CXCR4 expression. The proportion of CXCR4-positive CTCs in patients with bone metastases was 56% compared to 35% in those without (p = 0.18) it. Staining for CXCR4 on matched FFPE tissue showed a trend towards a correlation with CXCR4 expression on CTCs (p = 0.08). Conclusions CTC presence is associated with bone metastases in NETs. CXCR4 may be involved in CTC osteotropism and present a therapeutic target to reduce skeletal morbidity.
Collapse
Affiliation(s)
- Francesca M Rizzo
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Clare Vesely
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Alexa Childs
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Teresa Marafioti
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Mohid S Khan
- Wales Neuroendocrine Tumour Service, Department of Gastroenterology, University Hospital of Wales, Cardiff, UK
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Leah Ensell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Helen Lowe
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Ayse U Akarca
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - TuVinh Luong
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Daniel Krell
- Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Christina Thirlwell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK.,Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - John A Hartley
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Tim Meyer
- Department of Oncology, UCL Cancer Institute, University College London, London, UK. .,Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
15
|
Li X, Yang J, Bao M, Zeng K, Fu S, Wang C, Ye L. Wnt signaling in bone metastasis: mechanisms and therapeutic opportunities. Life Sci 2018; 208:33-45. [PMID: 29969609 DOI: 10.1016/j.lfs.2018.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Bone metastasis frequently occurs in advanced cancer patients, who will develop osteogenic/osteolytic bone lesions in the late stage of the disease. Wnt signaling pathway, which is mainly grouped into the β-catenin dependent pathway and β-catenin independent pathway, is a well-organized cascade that has been reported to play important roles in a variety of physiological and pathological conditions, including bone metastasis. Regulation of Wnt signaling in bone metastasis involves multiple stages, including dissemination of primary tumor cells to bone, dormancy and outgrowth of metastatic tumor cells, and tumor-induced osteogenic and osteolytic bone destruction, suggesting the importance of Wnt signaling in bone metastasis pathology. In this review, we will introduce the involvement of Wnt signaling components in specific bone metastasis stages and summarize the promising Wnt modulators that have shown potential as bone metastasis therapeutics, in the hope to maximize the therapeutic opportunities of Wnt signaling for bone metastasis.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kan Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijin Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Clinical significance of circulating tumor cells from lung cancer patients using microfluidic chip. Clin Exp Med 2018; 18:191-202. [PMID: 29445889 DOI: 10.1007/s10238-018-0485-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) exist in the peripheral blood and have an important role in the disease development, tumor metastasis and clinical surveillance, especially in the process of metastasis. However, the technology of detecting CTCs still had a large challenge since they were rare in the peripheral blood. Here, we developed a size-based microfluidic chip, which contained array and filter channel array that could enrich CTCs from blood samples more quickly and conveniently. Combined with clinical specimen, we analyzed CTCs in 200 lung cancer patients by this microfluidic chip. The microfluidic device has high specificity and sensitivity in detecting CTCs (86.0% sensitivity and 98% specificity). Furthermore, the number of CTCs showed a increasing trend according to the stage of the disease (the mean number of I stage 5.0 ± 5.121 versus II stage 8.731 ± 6.36 versus III stage 16.81 ± 9.556 versus IV stage 28.72 ± 17.39 cells/mL, P < 0.05). The number of CTCs was concurrent with the condition of pathological type and metastasis patients. Compared to conventional markers like CEA, CY211, SCC, CTCs showed a higher positive rate in diagnosed patients. The advanced microfluidic device could capture tumor cells without reliance on cell surface expression markers and provide a fast, convenient, economical method in detecting CTCs, thereby offering potential to design effective and individualized cancer therapies.
Collapse
|
17
|
Fu X, Shen C, Wang H, Chen F, Li G, Wen Z. Joint quantitative measurement of hTERT mRNA in both peripheral blood and circulating tumor cells of patients with nasopharyngeal carcinoma and its clinical significance. BMC Cancer 2017; 17:479. [PMID: 28693532 PMCID: PMC5504838 DOI: 10.1186/s12885-017-3471-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/02/2017] [Indexed: 12/18/2022] Open
Abstract
Background The study was aimed to quantitatively detect mRNA levels of the catalytic subunit of telomerase (hTERT) in both peripheral blood and circulating tumor cells (CTCs) of patients with nasopharyngeal carcinoma (NPC) and explore its significance in early diagnosis and treatment of NPC. Methods hTERT mRNA levels in peripheral blood and CTCs of 33 NPC patients before and after treatment with intensity-modulated radiation therapy (IMRT) or/and chemotherapy and 24 healthy controls were measured using real-time quantitative PCR (qPCR) and their correlations to clinic pathological factors of NPC were analyzed. Results Peripheral hTERT mRNA content was 10.75 ± 4.29 in NPC patients and 0.95 ± 0.37 in control subjects (P < 0.05), and had a significant correlation with patients’ clinical stage, T stage, and N stage (P < 0.05). Treatment of NPC patients at stages I and II with simple IMRT significantly reduced hTERT mRNA level from 5.60 ± 2.33 to 3.43 ± 1.42 (P < 0.05) and treatment of patients at advanced stage (III and IV) with induction chemotherapy followed by IMRT significantly reduced hTERT mRNA levels from 12.68 ± 3.08 to 10.68 ± 2.48 to 3.13 ± 1.69 (P < 0.05), respectively. In addition, the study also showed that hTERT mRNA content in CTCs of NPC patients was 10.65 ± 4.28, evidently higher than that of 1.09 ± 0.40 in control subjects (P < 0.05) and hTERT mRNA level in CTCs of NPC patients was obviously correlated to patients’ clinical stage, T stage and N stage (P < 0.05). After treatment, hTERT mRNA level in CTCs of NPC patients lowered from 10.65 ± 4.28 to 5.59 ± 2.32 (P < 0.05). The correlation analysis found that hTERT mRNA level in peripheral blood and CTCs of NPC patients were highly correlated with a correlation coefficient of 0.981. Conclusions hTERT mRNA levels in peripheral blood and CTCs of NPC patients were significantly enhanced compared to that in healthy controls and highly correlated. Changes in hTERT mRNA level was closely correlated to patients’ clinical stage and T stage. Radiochemotherapy could effectively reduce hTERT mRNA level in peripheral blood and CTCs. Thus, it is possible using the joint detection of hTERT mRNA level in peripheral blood and CTCs as a new biomarker for early diagnosis, treatment efficacy and prognosis of NPC.
Collapse
Affiliation(s)
- Xinsa Fu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Congxiang Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huigang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Guanxue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhong Wen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
18
|
Circulating Tumour Cells as an Independent Prognostic Factor in Patients with Advanced Oesophageal Squamous Cell Carcinoma Undergoing Chemoradiotherapy. Sci Rep 2016; 6:31423. [PMID: 27530152 PMCID: PMC4987675 DOI: 10.1038/srep31423] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
The role of circulating tumour cells (CTCs) in advanced oesophageal cancer (EC) patients undergoing concurrent chemoradiotherapy (CCRT) remains uncertain. A negative selection protocol plus flow cytometry was validated to efficiently identify CTCs. The CTC number was calculated and analysed for survival impact. The protocol’s efficacy in CTC identification was validated with a recovery rate of 44.6 ± 9.1% and a coefficient of variation of 20.4%. Fifty-seven patients and 20 healthy donors were enrolled. Initial staging, first response to CRT, and surgery after CRT were prognostic for overall survival, with P values of <0.0001, <0.0001, and <0.0001, respectively. The CTC number of EC patients is significantly higher (P = 0.04) than that of healthy donors. Multivariate analysis for disease-specific progression-free survival showed that surgery after response to CCRT, initial stage, and CTC number (≥21.0 cells/mL) played independent prognostic roles. For overall survival, surgery after CCRT, performance status, initial stage, and CTC number were significant independent prognostic factors. In conclusion, a negative selection plus flow cytometry protocol efficiently detected CTCs. The CTC number before CCRT was an independent prognostic factor in patients with unresectable oesophageal squamous cell carcinoma. Further large-scale prospective studies for validation are warranted.
Collapse
|
19
|
He H, Zheng L, Sun YP, Zhang GW, Yue ZG. Steroidal saponins from Paris polyphylla suppress adhesion, migration and invasion of human lung cancer A549 cells via down-regulating MMP-2 and MMP-9. Asian Pac J Cancer Prev 2015; 15:10911-6. [PMID: 25605200 DOI: 10.7314/apjcp.2014.15.24.10911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor metastases are the main reasons for oncotherapy failure. Paris polyphylla (Chinese name: Chonglou) has traditionally been used for its anti-cancer actions. In this article, we focus on the regulation of human lung cancer A549 cell metastases and invasion by Paris polyphylla steroidal saponins (PPSS). MATERIALS AND METHODS Cell viability was evaluated in A549 cells by MTT assay. Effects of PPSS on invasion and migration were investigated by wound-healing and matrigel invasion chamber assays. Adhesion to type IV collagen and laminin was evaluated by MTT assay. Expression and protease activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blotting and gelatin zymography, respectively. RESULTS PPSS exerted growth inhibitory effects on A549 cells, and effectively inhibited A549 cell adhesion, migration and invasion in a concentration-dependent manner. Western blotting and gelatin zymography analysis revealed that PPSS inhibited the expression and secretion of MMP-2 and MMP-9 in A549 cells. CONCLUSIONS PPSS has the potential to suppress the migration, adhesion and invasion of A549 cells. PPSS could be a potential candidate for interventions against lung cancer metastases.
Collapse
Affiliation(s)
- Hao He
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, China E-mail :
| | | | | | | | | |
Collapse
|
20
|
Shang L, Zhao J, Wang W, Xiao W, Li J, Li X, Song W, Liu J, Wen F, Yue C. [Inhibitory effect of endostar on lymphangiogenesis in non-small cell lung cancer and its effect on circulating tumor cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:722-9. [PMID: 25342038 PMCID: PMC6000404 DOI: 10.3779/j.issn.1009-3419.2014.10.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
背景与目的 血管内皮抑素可以抑制肿瘤新生血管的生成,但对肿瘤微淋巴管的形成与发展是否存在抑制效应引起我们关注。本研究旨在探讨重组人血管内皮抑素(recombinant human endostatin injection)对非小细胞肺癌组织中血管内皮生长因子(vascular endothelial growth factor, VEGF)-C、VEGF-D和VEGF受体(VEGFR)-3表达及对外周血循环肿瘤细胞数目的影响。 方法 荷瘤裸鼠随机分为空白对照组、顺铂组、不同浓度重组人血管内皮抑素组及重组人血管内皮抑素+顺铂组,连续给药2周。1周后检测肿瘤组织中VEGF-C、VEGF-D、VEGFR-3的表达水平和微淋巴管密度。免疫荧光染色诊断和计数循环肿瘤细胞。 结果 重组人血管内皮抑素组与重组人血管内皮抑素联合顺铂组的表达阳性率、微淋巴管密度均明显低于空白对照组与顺铂组(P < 0.05);较高浓度的重组人血管内皮抑素联合顺铂组与重组人血管内皮抑素组表达阳性率和微淋巴管密度低于相应较低重组人血管内皮抑素浓度的组别(P < 0.05)。各组微淋巴管密度与VEGF-C、VEGF-D、VEGFR-3表达阳性率存在正相关。重组人血管内皮抑素联合顺铂各组的循环肿瘤细胞数目明显低于单独使用顺铂或重组人血管内皮抑素(P < 0.05)。 结论 重组人血管内皮抑素可以抑制肿瘤新生淋巴管生成,减少循环肿瘤细胞,作用大小与浓度有关。与顺铂联合使用能够更有效的减少循环肿瘤细胞。
Collapse
Affiliation(s)
- Liqun Shang
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Jie Zhao
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Wei Wang
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Wang Xiao
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Jun Li
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Xuechang Li
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Weian Song
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Junqiang Liu
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Feng Wen
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| | - Caiying Yue
- Department of Thoracic Surgery, PLA Navy General Hospital, Beijing 100048, China
| |
Collapse
|