1
|
Lai Y, Lin F, Wang X, Zhang J, Xia J, Sun Y, Wen M, Li X, Zhang Z, Zhao J. STYK1/NOK Promotes Metastasis and Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer by Suppressing FoxO1 Signaling. Front Cell Dev Biol 2021; 9:621147. [PMID: 34295886 PMCID: PMC8290174 DOI: 10.3389/fcell.2021.621147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Aims Serine/threonine/tyrosine kinase 1 (STYK1) has been previously shown to have oncogenic properties, and emerging evidence suggests that STYK1 expression correlates with epithelial-mesenchymal transition (EMT). However, the mechanism of STYK1 involvement in oncogenesis remains unknown. The present study aimed to elucidate how STYK1 expression level relates to the metastasis, migration, invasion, and EMT in non-small cell lung cancer (NSCLC) and to determine the molecular mechanism of STYK1 effects. Methods Serine/threonine/tyrosine kinase 1 (STYK1) expression level and its relationship with the prognosis of NSCLC were determined using the ONCOMINE database and clinical cases. Non-small cell lung cancer cell lines with the overexpression or knockdown of STYK1 were established to determine whether STYK1 promotes cell migration, invasion, and EMT in vitro and in vivo. In addition, a constitutively active FoxO1 mutant (FoxO1AAA) was used to examine the role of FoxO1 in the STYK1-mediated upregulation of metastasis and EMT in NSCLC. Results Serine/threonine/tyrosine kinase 1 (STYK1) was upregulated in NSCLC tissues and cell lines, and its overexpression correlated with poor prognosis in patients with NSCLC after surgery. Enhanced expression of STYK1 potentiated the migration, invasion, and EMT in SW900 cells, thereby promoting metastasis, whereas knockdown of STYK1 inhibited these cellular phenomena in Calu-1 cells. Furthermore, STYK1 expression was positively related to the level of phosphorylated-FoxO1, whereas the constitutively active FoxO1 mutant protected against the positive effect of STYK1 overexpression on cell migration, invasion, and EMT. Conclusion Serine/threonine/tyrosine kinase 1 (STYK1) was upregulated in NSCLC and correlated with poor clinical outcomes. In addition, STYK1 suppressed FoxO1 functions, thereby promoting metastasis and EMT in NSCLC.
Collapse
Affiliation(s)
- Yuanyang Lai
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Fang Lin
- Department of Clinical Diagnosis, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
2
|
Shi W, Fu Y, Wang Y. Downregulation of GLUT3 impairs STYK1/NOK-mediated metabolic reprogramming and proliferation in NIH-3T3 cells. Oncol Lett 2021; 22:527. [PMID: 34055092 PMCID: PMC8138895 DOI: 10.3892/ol.2021.12788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Serine threonine tyrosine kinase 1 (STYK1)/novel oncogene with kinase domain (NOK) has been demonstrated to promote cell carcinogenesis and tumorigenesis, as well as to strengthen cellular aerobic glycolysis, which is considered to be a defining hallmark of cancer. As the carriers of glucose into cells, glucose transporters (GLUTs) are important participants in cellular glucose metabolism and even tumorigenesis. However, to the best of our knowledge, the role of GLUTs in biological events caused by STYK1/NOK has not yet been reported. The present study assessed GLUT3 as a key transporter, and glucose consumption and lactate production assays revealed that downregulation of GLUT3 impaired STYK1/NOK-induced augmented glucose uptake and lactate production, and RT-qPCR and western blotting confirmed that GLUT3 knockdown attenuated the STYK1/NOK-induced increase in the expression levels of key enzymes implicated in glycolysis. Furthermore, MTT and Transwell assays demonstrated that STYK1/NOK-triggered cell proliferation and migration were also markedly decreased following knockdown of GLUT3. To the best of our knowledge, the present study is the first to demonstrate that GLUT3 serves a prominent role in STYK1/NOK-driven aerobic glycolysis and cell proliferation characteristics. These findings may provide a clue for the investigation of the oncogenic activity of STYK1/NOK and for the identification of potential tumor therapy targets associated with GLUT3.
Collapse
Affiliation(s)
- Weiye Shi
- Cell Engineering Laboratory, College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yu Fu
- Cell Engineering Laboratory, College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- Cell Engineering Laboratory, College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
3
|
Huang Z, Ma N, Xiong YL, Wang L, Li WM, Lai YY, Zhang CX, Zhang ZP, Li XF, Zhao JB. Aberrantly High Expression Of NOK/STYK1 Is Tightly Associated With The Activation Of The AKT/GSK3β/N-Cadherin Pathway In Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:10299-10309. [PMID: 31819514 PMCID: PMC6885570 DOI: 10.2147/ott.s210014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose High metastasis is a leading risk factor for the survival of non-small cell lung cancer (NSCLC) and epithelial-mesenchymal transition (EMT) is a vital step of metastasis. The expression of novel oncogene with kinase domain (NOK) has been observed in some human malignancies, including non-small cell lung cancer (NSCLC); however, the biological function of NOK in NSCLC remains unclear. In the study, we explored the function of NOK in NSCLC, with an aim to elucidate the relevant underlying mechanisms. Patients and methods We investigate the expression of NOK, p-Akt, p-GSK-3β, E-cadherin and N-cadherin expression by immunohistochemical analysis using tissue microarrays of 72 paired NSCLC samples of cancerous and adjacent normal tissues. The associations between NOK expression and clinicopathological factors, overall survival, other proteins were assessed. Immunofluorescence analysis of NSCLC tissues was performed to study the location of NOK, Akt and GSK-3β. Up or down-regulated of NOK were conducted in two NSCLC cell lines to analyze its impact on AKT/GSK3β pathway. Results Statistical analysis revealed NOK expression increased in NSCLC tissues compared with normal tissues (P<0.05). It also showed that low NOK expression were associated with a higher possibility of non-lymphatic metastasis, an early pN stage and clinical stage (P<0.05). Moreover, NOK expression was positively correlated with the expression of oncogene p-Akt (Thr308), p-GSK-3β (Ser9) and N-cadherin (P<0.05). Immunofluorescence analysis of NSCLC tissues revealed that NOK is co-located with Akt and GSK-3β. Further study in NSCLC cell lines revealed that NOK overexpression can activate the AKT/GSK3β pathway. Conversely, knockdown of NOK can suppress the AKT/GSK3β pathway. Conclusion Our results suggest that NOK overexpression correlated significantly with lymphatic metastasis, advanced pN and clinical stage in NSCLC. And NOK may promote EMT by activating the AKT/GSK3β/N-cadherin pathway in NSCLC.
Collapse
Affiliation(s)
- Zhao Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Yuan-Yang Lai
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Chen-Xi Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| |
Collapse
|
4
|
Lai Y, Zhang Z, Li J, Li W, Huang Z, Zhang C, Li X, Zhao J. STYK1/NOK correlates with ferroptosis in non-small cell lung carcinoma. Biochem Biophys Res Commun 2019; 519:659-666. [PMID: 31542233 DOI: 10.1016/j.bbrc.2019.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 02/09/2023]
Abstract
Serine Threonine Tyrosine Kinase 1 (STYK1) presents oncogenic properties in many studies, and emerging evidence suggests that ferroptosis serve as a novel tumor suppressor. However, the interplay between STYK1 and ferroptosis in NSCLC remains unclear. Our aim is to illustrate the expression of ferroptotic regulator Glutathione peroxidase 4 (GPX4) in NSCLC and the relationship between STYK1 and ferroptosis. Herein, results based on ONCOMINE database, clinical specimens, and cellular manipulation revealed GPX4 was upregulated in NSCLC tissues and cell lines, and high GPX4 expression predicted worse prognosis. High STYK1 expression predicted worse OS and was related to high GPX4 in NSCLC tissues; overexpression of STYK1 in lung cancer cell line SW900 upregulated the expression of GPX4, promoted proliferation, and attenuated diverse mitochondrial abnormalities specific to ferroptosis, whereas knockdown of GPX4 exacerbated such attenuations without affecting cell proliferation. Taken together, ferroptosis as an anti-tumor factor is inhibited in NSCLC, and targeting ferroptosis could be a novel therapeutic strategy for the management of NSCLC; furthermore, regulating ferroptosis could be another cancerous mechanism of STYK1.
Collapse
Affiliation(s)
- Yuanyang Lai
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University of PLA, Xi'an, Shaanxi Province, PR China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University of PLA, Xi'an, Shaanxi Province, PR China
| | - Jianzhong Li
- Division of Thoracic Surgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi Province, PR China
| | - Weimiao Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi Province, PR China
| | - Zhao Huang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University of PLA, Xi'an, Shaanxi Province, PR China
| | - Chenxi Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University of PLA, Xi'an, Shaanxi Province, PR China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University of PLA, Xi'an, Shaanxi Province, PR China.
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University of PLA, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
5
|
Shi Y, Zhang J, Liu M, Huang Y, Yin L. SMAD3 inducing the transcription of STYK1 to promote the EMT process and improve the tolerance of ovarian carcinoma cells to paclitaxel. J Cell Biochem 2019; 120:10796-10811. [PMID: 30701575 DOI: 10.1002/jcb.28371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To figure out the relationship between SMAD3 and serine-threonine tyrosine kinase (STYK1) in ovarian carcinoma cell's paclitaxel resistance. METHODS The quantitative reverse transcription-polymerase chain reactpostion and Western blot analysis were used to analyze RNA and protein content of SMAD3 and STYK1, respectively. The chromatin immunoprecipitation assay was used to confirm the binding site of SMAD3 to the STYK1 promoter region. Transwell assay was used to detect cell invasion and migration, and Western Blot was used to detect the marker proteins (vimentin and E-cadherin) of epithelial-mesenchymal transition (EMT) process. MTT and apoptosis assay were used to, respectively, measure cell vitality and apoptosis. In vivo experiments, rats were subcutaneously implanted with A2780 cells to establish an animal model of ovarian cancer and the survival curve was drawn. RESULTS Upregulating SMAD3 induced the expression of STYK1 in ovarian cancer cell lines. STYK1 is a direct transcriptional target of SMAD3. Upregulating STYK1 improved the paclitaxel resistance of ovarian carcinoma cells. Upregulating STYK1 promoted cell invasion, migration, and the EMT process, and SMAD3 had the same effect with STYK1 on cell invasion, cell migration, and the EMT process. The animal assay showed that downregulating STYK1 inhibited the EMT process and the paclitaxel resistance, further promoting the treatment of cervical cancer. CONCLUSION SMAD3 combined with the promoter region of STYK1 to promote the transcription process of STYK1, thereby promoting the EMT process and paclitaxel resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Yangyang Shi
- Department of Obstetrics and Gynecology, Peking University Frist Hospital, Beijing, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Peking University Frist Hospital, Beijing, China
| | - Mengran Liu
- Department of Obstetrics and Gynecology, Peking University Frist Hospital, Beijing, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Peking University Frist Hospital, Beijing, China
| | - Ling Yin
- Department of Obstetrics and Gynecology, Peking University Frist Hospital, Beijing, China
| |
Collapse
|
6
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Hu YP, Wu ZB, Jiang L, Jin YP, Li HF, Zhang YJ, Ma Q, Ye YY, Wang Z, Liu YC, Chen HZ, Liu YB. STYK1 promotes cancer cell proliferation and malignant transformation by activating PI3K-AKT pathway in gallbladder carcinoma. Int J Biochem Cell Biol 2018; 97:16-27. [PMID: 29413947 DOI: 10.1016/j.biocel.2018.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/13/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract with extremely poor prognosis. The malignant transformation of GBC is associated with cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). However, the molecular mechanisms underlying GBC progression are poorly understood. We found that serine threonine tyrosine kinase 1 (STYK1) was elevated in GBC and was negatively correlated with clinical outcomes and prognosis. Overexpression of STYK1 in GBC cell lines gave rise to increased cell proliferation, colony formation, migration and invasion, thus committing cells to undergoing EMT. In contrast, silence of STYK1 led to opposite effects on cell transformation. Consistent with STYK1 gene knockdown, AKT specific inhibitor MK2206 abrogated tumor promoting action induced by STYK1, suggesting that PI3K/AKT pathway is essential for the oncogenic role of STYK1 in GBC. STYK1 shRNA in GBC cells inhibited development of xenografted tumors compared with control cells. Collectively, our findings suggest that STYK1 is a critical regulator of tumor growth and metastasis, and may serve as a potential target for GBC therapy.
Collapse
Affiliation(s)
- Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China; Department of Pharmacology and Chemobiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeng-Bin Wu
- Emergency Department, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yun-Peng Jin
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huai-Feng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Jian Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qiang Ma
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuan-Yuan Ye
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zheng Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong-Chen Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemobiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Chen L, Ma C, Bian Y, Shao C, Wang T, Li J, Chong X, Su L, Lu J. Aberrant expression of STYK1 and E-cadherin confer a poor prognosis for pancreatic cancer patients. Oncotarget 2017; 8:111333-111345. [PMID: 29340057 PMCID: PMC5762325 DOI: 10.18632/oncotarget.22794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed that aberrant Serine/threonine/tyrosine kinase 1 (STYK1, also known as NOK) or/and E-cadherin were involved in the progression of some types of human cancers. However, whether they contributed to the development of pancreatic cancer was unknown. Here, we investigated the prognostic significance of aberrant STYK1 and E-cadherin in pancreatic cancer. Our results showed that STYK1 expression increased while E-cadherin decreased in pancreatic cancer tissues compared with normal pancreas tissues. STYK1 level was positively correlated with lymph node metastasis and clinical stage in pancreatic cancer patients. E-cadherin expression was inversely correlated with STYK1 expression in pancreatic cancer tissue samples. Patients with high STYK1 and low E-cadherin expression had the worst prognosis. In addition, STYK1 knockdown in pancreatic cancer cell lines inhibited cell proliferation, enhanced cell apoptosis, induced cell cycle arrest, and prohibited cell migration, while STYK1 over-expression showed the opposite effects. Silencing STYK1 also increased E-cadherin expression and inhibited epithelial-to-mesenchymal transition (EMT) and p-p38 expression in vitro. Over-expression had showed the opposite trends, and treatment with p38 inhibitor, SB203580, could reverse the trends. Thus, STYK1 repressed E-cadherin expression and promoted EMT, mediated by p38 MAPK signaling pathway, which was the possible mechanism for STYK1-mediated pancreatic cancer cell proliferation and migration. In summary, our results showed that STYK1 might be a prognostic marker for pancreatic cancer patients and might be a novel strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Tiegong Wang
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Xiaodan Chong
- Cancer Institute, Institute of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Li Su
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Zafari V, Hashemzadeh S, Hosseinpour Feizi M, Pouladi N, Rostami Zadeh L, Sakhinia E. mRNA expression of nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors in colorectal carcinoma. Bosn J Basic Med Sci 2017; 17:255-261. [PMID: 28504924 DOI: 10.17305/bjbms.2017.1886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/17/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Transcription factors are involved in cell cycle and apoptosis regulation and thus have a key role in the carcinogenesis of different tumors. Nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors are important in the carcinogenesis of colorectal cancer (CRC). In this study, we examined whether the expression of NFATc2 and PPARG genes is significantly altered during the carcinogenesis of CRC. A total of 47 tumor samples and matched normal tissue margins were collected during surgery from patients with CRC. In addition, three CRC cell lines (HCT119, SW480, and HT29) and healthy cell line were used. After total RNA extraction and cDNA synthesis, mRNA expression levels of NFATc2 and PPARG were examined by real-time polymerase chain reaction. The results showed that NFATc2 is overexpressed in the tumor tissues compared with normal tissue margins (p ≤ 0.05). However, the mRNA expression levels of PPARG were not significantly different between the tumor tissues and tissue margins. Our results indicate that NFATc2 may be used as an early diagnostic or predictive biomarker for CRC as well as a therapeutic target, providing that upcoming studies confirm these results.
Collapse
Affiliation(s)
- Venus Zafari
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
10
|
Zhao Y, Yang L, He J, Yang H. STYK1 promotes Warburg effect through PI3K/AKT signaling and predicts a poor prognosis in nasopharyngeal carcinoma. Tumour Biol 2017; 39:1010428317711644. [PMID: 28720063 DOI: 10.1177/1010428317711644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
STYK1 (Serine/threonine/tyrosine kinase 1), a member of the receptor tyrosine kinase family, exhibits tumorigenicity in many types of cancers. Our study reveals the important role played by STYK1 in nasopharyngeal carcinoma. STYK1 is upregulated in nasopharyngeal carcinoma tissues compared with para-carcinoma. Knockdown of STYK1 inhibits nasopharyngeal carcinoma cell proliferation, migration, and invasion, while ectopic STYK1 expression significantly promoted cell proliferation, migration, and invasion abilities. In addition, we provided lines of evidence supporting the critical role of STYK1 in the regulation of glycolysis via activation of phosphoinositide 3-kinase/AKT pathway. Survival analysis reveals that STYK1 level is an independent prognostic factor for nasopharyngeal carcinoma patients. Our results indicate that STYK1 is a promising therapeutic target in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Pathology, Suining Central Hospital, Suining, P.R. China
| | - Ling Yang
- Department of Pathology, Suining Central Hospital, Suining, P.R. China
| | - Jiao He
- Department of Pathology, Suining Central Hospital, Suining, P.R. China
| | - Huai Yang
- Department of Pathology, Suining Central Hospital, Suining, P.R. China
| |
Collapse
|
11
|
Chen MY, Zhang H, Jiang JX, Sun CY, Yu C, Tian S. Depletion of STYK1 inhibits intrahepatic cholangiocarcinoma development both in vitro and in vivo. Tumour Biol 2016; 37:14173-14181. [PMID: 27542675 DOI: 10.1007/s13277-016-5188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) has been reported to be the second most common primary hepatic carcinoma worldwide, and very limited therapies are currently available. Serine threonine tyrosine kinase (STYK1), a member of the receptor tyrosine kinase family, exhibits tumorigenicity in many types of cancers and is a potential therapeutic target for ICC. In this study, STYK1 was knocked down in the ICC cell lines HCCC-9810 and RBE via a lentivirus-mediated system using short hairpin RNA (shRNA). Next, cell proliferation, colony formation, cell cycle progression, tumor formation in nude mice, migration and invasion, and the expression levels of cell cycle proteins in Lv-sh STYK1- or Lv-sh Con-infected cells were analyzed by CCK-8 assay, colony formation evaluation, flow cytometry, tumor formation evaluation, wound scratch assay, transwell assay, and western blotting. The results indicated that depletion of STYK1 inhibits ICC development both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei-Yuan Chen
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, 550001, China
| | - Hao Zhang
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, 550001, China
| | - Jian-Xin Jiang
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, 550001, China.
| | - Cheng-Yi Sun
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, 550001, China.
| | - Chao Yu
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, 550001, China
| | - She Tian
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, 550001, China
| |
Collapse
|
12
|
Hu L, Chen HY, Cai J, Zhang Y, Qi CY, Gong H, Zhai YX, Fu H, Yang GZ, Gao CF. Serine threonine tyrosine kinase 1 is a potential prognostic marker in colorectal cancer. BMC Cancer 2015; 15:246. [PMID: 25884558 PMCID: PMC4404069 DOI: 10.1186/s12885-015-1285-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aberrant expression of serine threonine tyrosine kinase 1 (STYK1) has been reported in several human malignancies including colorectal cancer (CRC). However, the prognostic significance of STYK1 expression in CRC remains unknown. METHODS STYK1 protein expression in paraffin-embedded CRC specimens was determined immunohistochemically. The correlation of STYK1 expression with clinicopathologic features was assessed in a cohort containing 353 patients with primary CRC. Kaplan-Meier and Cox proportional regression analyses were used to evaluate the association between STYK1 expression and patients' survival. RESULTS STYK1 expression was frequently up-regulated in CRC clinical samples at the protein levels and was significantly associated with tumor differentiation grade (p = 0.030), lymph node metastasis (p = 0.004), TNM stage (p = 0.007) and patient death (p < 0.001). Kaplan-Meier analysis indicated that patients with high intratumoral STYK1 expression had a significantly shorter disease-specific survival (DSS) than those with low expression (p < 0.001). Importantly, high levels of STYK1 protein predicted poor DSS for both stage II (p < 0.001) and stage III (p = 0.004) patients. Furthermore, multivariate analyses revealed that STYK1 protein expression was an independent prognostic indicator for both stage II (hazard ratio [HR], 2.472; p = 0.001) and stage III (HR, 2.001; p = 0.004) patients. CONCLUSIONS Our results suggest that increased STYK1 protein expression correlates with disease progression and metastasis and may serve as a predictor of poor survival in CRC.
Collapse
Affiliation(s)
- Liang Hu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Hai-Yang Chen
- Department of Oncology, 150th Hospital of PLA, Luoyang, China.
| | - Jian Cai
- Department of Colorectal Surgery, 150th Hospital of PLA, Luoyang, China.
| | - Yu Zhang
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Chen-Ye Qi
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Hui Gong
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Yan-Xia Zhai
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Hao Fu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Guang-Zhen Yang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China.
| | - Chun-Fang Gao
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| |
Collapse
|