1
|
Ayyildiz T, Dolar E, Oral B, Erturk B, Haktanir AE, Adim SB, Yerci O. SOCS-1 1478 CA/del gene polymorphism affects survival in colorectal carcinoma. Niger J Clin Pract 2022; 25:239-247. [PMID: 35295043 DOI: 10.4103/njcp.njcp_1309_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims and Background Suppressor of cytokine signaling 1 (SOCS1) is a prototype molecule of the SOCS family. Alterations in the SOCS1 expression have been reported in human cancers and some studies suggest that SOCS1 might act as a tumor suppressor in carcinogenesis. In the present study, we aimed to evaluate the association of SOCS1 promoter -1478CA/del gene polymorphism detected in DNA isolated from the tissues of patients with colorectal cancer (CRC) for histopathological characteristics and survival. Patients and Methods For the study, we retrospectively enrolled 53 patients with resected colon due to CRC and 23 control subjects with no systemic illness. SOCS1- 1478CA/del gene polymorphism was determined using the polymerase chain reaction-restriction fragment length polymorphism methodology. These results were evaluated in relation to histopathological features and survival results and analyzed statistically. A P value equal to or less than 0.05 was considered significant. Results Neither control subjects nor the CRC group showed a significant association with SOCS1 -1478CA/del gene polymorphism (p = 0.248). SOCS1 -1478CA/del gene polymorphism was not significantly associated with histopathological features either. However, in the overall survival (OS) analysis, those patients with the del/del allele were found to have a 3.9-fold greater risk of mortality compared to those with CA/CA allele (p = 0.05). Progression-free survival (PFS) was also significantly different in such patients (p = 0.05). Conclusion The present study examining the association of SOCS1 -1478CA/del gene polymorphism with CRC showed that CRC patients with del/del allele had both significantly shorter PFS and OS versus those with CA/CA or CA/del allele.
Collapse
Affiliation(s)
- T Ayyildiz
- Department of Gastroenterology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - E Dolar
- Department of Gastroenterology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - B Oral
- Department of Immunology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - B Erturk
- Department of Internal Medicine, School of Medicine, Erciyes University, Kayseri, Turkey
| | - A Eroglu Haktanir
- Department of Internal Medicine, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - S B Adim
- Department of Pathology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - O Yerci
- Department of Pathology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| |
Collapse
|
2
|
Qian Q, Lv Y, Li P. SOCS1 is associated with clinical progression and acts as an oncogenic role in triple-negative breast cancer. IUBMB Life 2018. [PMID: 29527785 DOI: 10.1002/iub.1728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Suppressors of cytokine signaling 1 (SOCS1) is a member of SOCS family and acts as negative regulators of cytokine signaling by direct inhibition of receptor-associated janus kinases. The clinical significance and biological function of SOCS1 in variant tumor tissues and at variant tumor stages is still controversial. The aim of our study is to confirm the expression status of SOCS1 in triple-negative breast cancer (TNBC) tissues and cell lines, and explore the clinical value and biological function of SOCS1 in TNBC. In microarray data sets (GDS2250 and GDS817), we observed SOCS1 was overexpressed in TNBC tissues and cell line compared with normal mammary tissues and mammary epithelial cell line, or non-TNBC tissues and cell line. Furthermore, SOCS1 mRNA and protein overexpression were confirmed in TNBC tissues and cell lines compared with normal mammary tissues and mammary epithelial cell lines or non-TNBC tissues and cell lines. SOCS1 protein overexpression was obviously associated with advanced clinical stage, large tumor size, more lymph node metastasis, present distant metastasis, and malign histological grade. Downregulation of SOCS1 expression suppressed TNBC cells proliferation and promoted cell apoptosis. In conclusion, SOCS1 is associated with clinical progression in TNBC patients and acts as an oncogenic role in regulating TNBC cells proliferation and apoptosis. © 2018 IUBMB Life, 70(4):320-327, 2018.
Collapse
Affiliation(s)
- Qian Qian
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Yuetao Lv
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Peng Li
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
3
|
Kamijo Y, Kawahara K, Yoshinaga T, Kurata H, Arima K, Furukawa T. A novel isolation method for cancer prognostic factors via the p53 pathway by a combination of in vitro and in silico analyses. Oncoscience 2018; 5:88-98. [PMID: 29854877 PMCID: PMC5978436 DOI: 10.18632/oncoscience.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/21/2018] [Indexed: 12/02/2022] Open
Abstract
Identifying new therapeutic target genes affecting the survival of patients with cancer is crucial for the development of new cancer therapies. Here, we developed a novel technology combining in vitro short hairpin RNA (shRNA) library screening and in silico analysis of the tumor transcriptome to identify prognostic factors via the p53 tumor-suppressor pathway. For initial screening, we screened 5,000 genes through selection of shRNAs in p53 wild-type tumor cells that altered sensitivity to the p53 activator actinomycin D (ActD) to identify p53 regulatory genes; shRNAs targeting 322 genes were obtained. Among these 322 genes, seven were prognostic factor candidates whose high expression increased ActD sensitivity while prolonging the survival period in patients with the p53 wild-type genotype. Conversely, we identified 33 genes as prognostic factor candidates among ActD-resistant genes related to a shortened survival period only in p53 wild-type tumors. These 40 genes had biological functions such as apoptosis, drug response, cell cycle checkpoint, and cell proliferation. The 40 genes selected by this method contained many known genes related to the p53 pathway and prognosis in patients with cancer. In summary, we developed an efficient screening method to identify p53-dependent prognostic factors with in vitro experimental data and database analysis.
Collapse
Affiliation(s)
- Yohey Kamijo
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, Kagoshima 890- 8544, Japan
- Department of Chemistry and Bioscience, Faculty of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, Kagoshima 890- 8544, Japan
| | - Takuma Yoshinaga
- Division of Clinical Application, Nanpuh Hospital, Kagoshima 892-8512, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Kazunari Arima
- Department of Chemistry and Bioscience, Faculty of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, Kagoshima 890- 8544, Japan
| |
Collapse
|
5
|
Tobelaim WS, Beaurivage C, Champagne A, Pomerleau V, Simoneau A, Chababi W, Yeganeh M, Thibault P, Klinck R, Carrier JC, Ferbeyre G, Ilangumaran S, Saucier C. Tumour-promoting role of SOCS1 in colorectal cancer cells. Sci Rep 2015; 5:14301. [PMID: 26391193 PMCID: PMC4585755 DOI: 10.1038/srep14301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
The SOCS1 (Suppressor Of Cytokine Signalling 1) protein is considered a tumour suppressor. Notably, the SOCS1 gene is frequently silenced in cancer by hypermethylation of its promoter. Besides blocking inflammation, SOCS1 tumour suppressor activity involves Met receptor inhibition and enhancement of p53 tumour suppressor activity. However, the role of SOCS1 in colorectal cancer (CRC) remains understudied and controversial. Here, we investigated SOCS1 relevance for CRC by querying gene expression datasets of human CRC specimens from The Cancer Genome Atlas (TCGA), and by SOCS1 gain/loss-of-function analyses in murine and human colon carcinoma cells. Our results show that SOCS1 mRNA levels in tumours were more often elevated than reduced with respect to matched adjacent normal tissue of CRC specimens (n = 41). The analysis of TCGA dataset of 431 CRC patients revealed no correlation between SOCS1 expression and overall survival. Overexpression of SOCS1 in CRC cells triggered cell growth enhancement, anchorage-independent growth and resistance to death stimuli, whereas knockdown of SOCS1 reduced these oncogenic features. Moreover, SOCS1 overexpression in mouse CT26 cells increased tumourigenesis in vivo. Biochemical analyses showed that SOCS1 pro-oncogenic activity correlated with the down-modulation of STAT1 expression. Collectively, these results suggest that SOCS1 may work as an oncogene in CRC.
Collapse
Affiliation(s)
- William S Tobelaim
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Claudia Beaurivage
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Audrey Champagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Véronique Pomerleau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Aline Simoneau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Walid Chababi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Mehdi Yeganeh
- Department of Pediatrics and Immunology division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Philippe Thibault
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Roscoe Klinck
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Julie C Carrier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| | - Subburaj Ilangumaran
- Department of Pediatrics and Immunology division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| |
Collapse
|