1
|
Le NTH, De Jonghe S, Erven K, Vermeyen T, Baldé AM, Herrebout WA, Neyts J, Pannecouque C, Pieters L, Tuenter E. Anti-SARS-CoV-2 Activity and Cytotoxicity of Amaryllidaceae Alkaloids from Hymenocallis littoralis. Molecules 2023; 28:molecules28073222. [PMID: 37049986 PMCID: PMC10096449 DOI: 10.3390/molecules28073222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The Amaryllidaceae species are well-known as a rich source of bioactive compounds in nature. Although Hymenocallis littoralis has been studied for decades, its polar components were rarely explored. The current phytochemical investigation of Amaryllidaceae alkaloids from H. littoralis led to the identification of three previously undescribed compounds: O-demethyl-norlycoramine (1), (−)-2-epi-pseudolycorine (2) and (+)-2-epi-pseudolycorine (3), together with eight known compounds: 6α-hydroxyhippeastidine (4), 6β-hydroxyhippeastidine (5), lycorine (6), 2-epi-lycorine (7), zephyranthine (8), ungeremine (9), pancratistatin (10) and 9-O-demethyl-7-O-methyllycorenine (11). Among the eight previously reported compounds, five were isolated from H. littoralis for the first time (compounds 4, 5, 7, 8, and 9). Compounds 1, 4, 5, 7, 8, and 11 exhibited weak anti-SARS-CoV-2 activity (EC50 = 40–77 µM) at non-cytotoxic concentrations. Assessment of cytotoxicity on the Vero-E6 cell line revealed lycorine and pancratistatin as cytotoxic substances with CC50 values of 1.2 µM and 0.13 µM, respectively. The preliminary structure-activity relationship for the lycorine-type alkaloids in this study was further investigated, and as a result ring C appears to play a crucial role in their anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Ngoc-Thao-Hien Le
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Kristien Erven
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Tom Vermeyen
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
| | - Aliou M. Baldé
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Conakry 00224, Guinea
| | - Wouter A. Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Luc Pieters
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
2
|
Cai M, Hu Y, Zheng T, He H, Xiao W, Liu B, Shi Y, Jia X, Chen S, Wang J, Lai S. MicroRNA-216b inhibits heat stress-induced cell apoptosis by targeting Fas in bovine mammary epithelial cells. Cell Stress Chaperones 2018; 23:921-931. [PMID: 29730848 PMCID: PMC6111094 DOI: 10.1007/s12192-018-0899-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Heat stress affects milk yield and quality in lactating dairy cows in summer. Bovine mammary epithelial cells (bMECs) play a key role in milk secretion, and microRNAs (miRNAs) regulate numerous functions of bMEC. Previous reports have verified that miR-216b regulated cell apoptosis through repressing target genes in several cancer cells. So, our purpose was to explore the potential involvement of miR-216b in heat stress-induced cell apoptosis in bMECs. Firstly, the heat stress model was constructed and we found that apoptotic rates of bMECs significantly increased under heat stress. The expression of miR-216b, Bax mRNA, and caspase-3 mRNA was upregulated. However, Bcl-2 mRNA level was detected to differentially downregulated. Overexpression of miR-216b remarkably downregulated the expression of caspase-3 and Bax mRNA and protein, and the mRNA and protein level of Bcl-2 was increased. Inhibition of miR-216b increased the activity of caspase-3 and Bax, and the level of Bcl-2 was inhibited. Moreover, Fas was identified as a target gene of miR-216b through bioinformatic analysis and dual-luciferase reporter assay. Fas activity was significantly inhibited and enhanced respectively after transfecting miRNA mimics and inhibitor. Finally, inhibition of Fas via the small interfering RNA (siRNA) also inhibited cell apoptosis induced by heat stress. Taken together, our results indicated that miR-216b exerted as an anti-apoptotic effect under heat stress in bMECs by targeting Fas.
Collapse
Affiliation(s)
- Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongsong Hu
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Tianhao Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongbing He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wudian Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Buwei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Rogalska A, Marczak A. Nuclear DNA Damage and Repair in Normal Ovarian Cells Caused by Epothilone B. Asian Pac J Cancer Prev 2016; 16:6535-9. [PMID: 26434870 DOI: 10.7314/apjcp.2015.16.15.6535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study was designed to assess, whether a new chemotherapeutic microtubule inhibitor, Epothilone B (EpoB, Patupilone), can induce DNA damage in normal ovarian cells (MM14.Ov), and to evaluate if such damage could be repaired. The changes were compared with the effect of paclitaxel (PTX) commonly employed in the clinic. The alkaline comet assay technique and TUNEL assay were used. The kinetics of DNA damage formation and the level of apoptotic cells were determined after treatment with IC50 concentrations of EpoB and PTX. It was observed that PTX generated significantly higher apoptotic and genotoxic changes than EpoB. The peak was observed after 48 h of treatment when the DNA damage had a maximal level. The DNA damage induced by both tested drugs was almost completely repaired. As EpoB in normal cells causes less damage to DNA it might be a promising anticancer drug with potential for the treatment of ovarian tumors.
Collapse
Affiliation(s)
- Aneta Rogalska
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland E-mail :
| | | |
Collapse
|
4
|
Wang Y, Wang C, Jiang C, Zeng H, He X. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells. Sci Rep 2015; 5:18613. [PMID: 26678950 PMCID: PMC4683523 DOI: 10.1038/srep18613] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunhua Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chenguang Jiang
- Huangshan Jingzhi Pharmaceutical Company of Nanjing Tongrentang Group, Huangshan 245999, China
| | - Hong Zeng
- Xinjiang Production &Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim 843300, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|