1
|
Lv J, Qin X, Wang J, Li J, Bai J, Lan Y. The causal relationship between gut microbiota and 2 neoplasms, malignant and benign neoplasms of bone and articular cartilage: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40519. [PMID: 39560555 PMCID: PMC11576038 DOI: 10.1097/md.0000000000040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Previous research has demonstrated a close connection between the development of bone neoplasms and variations in the abundance of specific gut microbiota. It remains unclear, however, how the gut microbiota and bone neoplasms are causally related. Hence, in our study, we aim to clarify this relationship between gut microbiota and 2 neoplasms, malignant neoplasm of bone and articular cartilage (MNBAC) and benign neoplasm of bone and articular cartilage (BNBAC), by employing a two-sample Mendelian randomization (MR) approach. In this study, single nucleotide polymorphisms (SNPs) from genome-wide association studies-pooled data related to bone neoplasms and gut microbiota abundance were evaluated. The inverse variance weighted was employed as the major method for assessing the aforementioned causal relationship. Furthermore, the horizontal multiplicity was evaluated utilizing the Mendelian randomization pleiotropy residual sum and outlier and the MR-Egger intercept test. Finally, inverse MR analysis was performed to assess reverse causality. Inverse variance weighted results indicate a potential genetic relationship between 4 gut microbiota and MNBAC, and 3 gut microbiota and BNBAC. On the one hand, Eubacterium eligens group (OR = 0.16, 95% CI = 0.04-0.67, P = .01), Odoribacter (OR = 0.23, 95% CI = 0.06-0.84, P = .03), Slackia (OR = 0.35, 95% CI = 0.13-0.93, P = .04), and Tyzzerella3 (OR = 0.44, 95% CI = 0.24-0.82, P = .01) exhibited a protective effect against MNBAC. On the other hand, of the 3 gut microbes identified as potentially causally related to BNBAC, Oscillibacter (OR = 0.79, 95% CI = 0.63-0.98, P = .03) and Ruminococcus torques group (OR = 0.62, 95% CI = 0.39-0.98, P = .04) were regarded as protective strains of B, while Eubacterium ruminantium group (OR = 1.24, 95% CI = 1.04-1.47, P = .02) was considered to be a risk factor for increasing the incidence of BNBAC. Additionally, the bone neoplasms were not found to have a reverse causal relationship with the above 7 gut microbiota taxa. Four gut microbiota showed causal effects on MNBAC, and 3 gut microbiota demonstrated causality in BNBAC, providing insights into the design of future interventions to reduce the burden of neoplasms.
Collapse
Affiliation(s)
- Jia Lv
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiuyu Qin
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiani Wang
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Junjun Bai
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanping Lan
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Shastry RP, Ghate SD, Hameed A, Prasad Rao RS, Bhandary YP, Shetty R. Emergence of rare and low abundant anaerobic gut Firmicutes is associated with a significant downfall of Klebsiella in human colon cancer. Microb Pathog 2024; 193:106726. [PMID: 38848931 DOI: 10.1016/j.micpath.2024.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gut bacterial dysbiosis has been linked to several gastrointestinal diseases, including deadly colorectal cancer (CRC), a leading cause of mortality in cancer patients. However, perturbation in gut bacteriome during colon cancer (CC, devoid of colorectal malignancy) remains poorly explored. Here, 16S rRNA gene amplicon sequencing was carried out for fecal DNA samples targeted to hypervariable V3-V4 region by employing MiSeq platform to explore the gut bacterial community shift in CC patients. While alpha diversity indices predicted high species richness and diversity, beta diversity showed marked gut bacterial compositional dissimilarity in CC versus healthy controls (HC, n = 10 each). We observed a significant (p < 0.05, Wilcoxon Rank-Sum test) emergence of low-abundant anaerobic taxa, including Parvimonas and Peptostreptococcus, in addition to Subdoligranulum, Coprococcus, Holdemanella, Solobacterium, Bilophila, Blautia, Dorea, Moryella and several unidentified taxa, mainly affiliated to Firmicutes, in CC patients. In addition, we also traced the emergence of putative probiotic taxon Slackia, belonging to Actinomycetota, in CC patients. The emergence of anaerobic Firmicutes in CC is accompanied by a significant (p < 0.05) decline in the Klebsiella, as determined through linear discriminant analysis effect size (LEfSe) and heat tree analyses. Shifts in core microbiome and variation in network correlation were also witnessed. Taken together, this study highlighted a significant and consistent emergence of rare anaerobic Firmicutes suggesting possible anaerobiosis driving gut microbial community shift, which could be exploited in designing diagnostic and therapeutic tools targeted to CC.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University), Mangaluru, 575018, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, Nitte (Deemed to be University), Mangaluru, 575018, India
| | - Yashodhar P Bhandary
- Division of Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
3
|
Huang Y, Wang W, Jin J. Association between polyphenol subclasses and prostate cancer: a systematic review and meta-analysis of observational studies. Front Nutr 2024; 11:1428911. [PMID: 39144286 PMCID: PMC11322767 DOI: 10.3389/fnut.2024.1428911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The effect of polyphenol subclasses on prostate cancer (PCA) is controversial. Therefore, the purpose of this study was to investigate the relationship between polyphenol subclasses and PCA incidence. Methods From the establishment of the database to December 2023, a systematic search was conducted on PubMed, Web of Science, Embase, and Cochrane Library to identify relevant observational studies. The adjusted odds ratio (OR) and corresponding 95% confidence interval (95% CI) were used to assess the association. Results A total of 38 studies (11 were cohort studies and 27 were case-control studies), composing 824,933 participants, were included in this meta-analysis after excluding irrelevant records. The findings of the study revealed that men who consumed dietary polyphenols had a significantly higher risk of PCA compared to those who never or rarely consumed dietary polyphenols (OR = 1.01, p = 0.023), especially dietary flavonol (OR = 1.05, p = 0.042), flavanol (OR = 1.03, p = 0.026) and anthocyanin (OR = 1.06, p = 0.001). Neither total nor subclasses of dietary polyphenols have an effect on non-localized or high-grade PCA (OR = 1.01, p = 0.518). Dietary isoflavones tended to reduce the incidence of local or low-grade PCA, although there was no statistically significant difference (OR = 1.00, p = 0.081). Regarding serum/plasma polyphenol, total polyphenol (OR = 0.95, p = 0.002), genistein (OR = 0.92, p = 0.029) and enterolactone (OR = 0.92, p = 0.022) can reduce the incidence of PCA. No association was observed between total/subclasses of urinary polyphenols and PCA risk. Conclusion Polyphenols seem to generally increase the risk of PCA in the male population. The effect of polyphenols on PCA is affected by factors such as polyphenol subclasses, their forms (serum/plasma, urinary, dietary), and PCA-related factors (like PCA stage). Systematic review registration identifier: CRD42022322699.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxiang Jin
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
4
|
Iwodi C, Gberikon GM, Ogbonna IO, Agada EO. Multi-drug-resistant Escherichia coli in adult male patients with enlarged prostate attending general hospitals in Benue state. Braz J Microbiol 2024; 55:447-454. [PMID: 38308684 PMCID: PMC10920493 DOI: 10.1007/s42770-024-01260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
The aim of this study was to investigate multi-drug-resistant (MDR) Escherichia coli in urine of adult male patients with enlarged prostate. Three hundred and sixty-eight samples of urine and blood were collected. Escherichia coli was isolated, purified, and identified and prostate-specific antigen (PSA) was determined. Multi-drug resistance test and specific drug resistance genes were assessed. Prevalence of Escherichia coli was high (38.5%) in patients with PSA of 60-79 ng ml-1 and 60% were MDR. The isolates showed highest resistance to tetracycline (53.3.0%) and least to cephalosporins (5%). They had intL and gyrA genes, which are integron, and quinolone resistance genes and sul1 and sul2 which are sulphonamide resistance-associated genes. Levofloxacin, ertapenem, and Augmentin (100% susceptibilities) were considered choice drugs for treatment of Escherichia coli infection in patients with elevated PSA.
Collapse
Affiliation(s)
- Cornelius Iwodi
- Department of Microbiology, College of Biological Sciences, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Grace M Gberikon
- Department of Microbiology, College of Biological Sciences, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Innocent Okonkwo Ogbonna
- Department of Microbiology, College of Biological Sciences, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
| | - Emmanuel O Agada
- Department of Microbiology, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| |
Collapse
|
5
|
Vázquez L, Cabrera-Rubio R, Tamames J, Mayo B, Flórez AB. Assessment of short-read shotgun sequencing and microbiome analysis of faecal samples to discriminate between equol producers and non-producers. Benef Microbes 2023; 14:255-268. [PMID: 37078124 DOI: 10.3920/bm2022.0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/17/2023] [Indexed: 04/21/2023]
Abstract
Among the isoflavones and isoflavone-derived metabolites, equol, which in the human gut is synthesised from daidzein by minority bacterial populations, shows the strongest estrogenic and antioxidant activity. The beneficial effects on human health of isoflavone consumption might be partially or indeed totally attributable to this equol. Although some of the bacterial strains involved in its formation have been identified, the interplay between the composition and functionality of the gut microbiota and equol producer phenotype has hardly been studied. In this study, after shotgun metagenomic sequencing, different pipelines for the taxonomic and functional annotation of sequencing data were used in the search for similarities and differences in the faecal metagenome of equol-producing (n=3) and non-producing (n=2) women, with special focus on equol-producing taxa and their equol-associated genes. The taxonomic profiles of the samples differed significantly depending on the analytical method followed, although the microbial diversity detected by each tool was very similar at the phylum, genus and species levels. Equol-producing taxa were detected in both equol producers and non-producers, but no correlation between the abundance of equol-producing taxa and the equol producing/non-producing phenotype was found. Indeed, functional metagenomic analysis was unable to identify the genes involved in equol production, even in samples from equol producers. By aligning equol operons with the collected metagenomics data, a small number of reads mapping to equol-associated sequences were recognised in samples from both equol producers and equol non-producers, but only two reads mapping onto equol reductase-encoding genes in a sample from an equol producer. In conclusion, the taxonomic analysis of metagenomic data might not be suitable for detecting and quantifying equol-producing microbes in human faeces. Functional analysis of the data might provide an alternative. However, to detect the genetic makeup of the minority gut populations, more extensive sequencing than that achieved in the present study might be required.
Collapse
Affiliation(s)
- L Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| | - R Cabrera-Rubio
- Alimentary Pharmabiotic Centre (APC), Microbiome Institute, University College Cork, Cork, Ireland
- Moorepark Teagasc Food Research Centre, Fermoy, Ireland
| | - J Tamames
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - B Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| | - A B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| |
Collapse
|
6
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
7
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
8
|
Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia Equolifaciens Strain That Does Not Produce Equol. Biomolecules 2020; 10:biom10060950. [PMID: 32586036 PMCID: PMC7355428 DOI: 10.3390/biom10060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Isoflavones are transformed in the gut into more estrogen-like compounds or into inactive molecules. However, neither the intestinal microbes nor the pathways leading to the synthesis of isoflavone-derived metabolites are fully known. In the present work, 73 fecal isolates from three women with an equol-producing phenotype were considered to harbor equol-related genes by qPCR. After typing, 57 different strains of different taxa were tested for their ability to act on the isoflavones daidzein and genistein. Strains producing small to moderate amounts of dihydrodaidzein and/or O-desmethylangolensin (O-DMA) from daidzein and dihydrogenistein from genistein were recorded. However, either alone or in several strain combinations, equol producers were not found, even though one of the strains, W18.34a (also known as IPLA37004), was identified as Adlercreutzia equolifaciens, a well-described equol-producing species. Analysis and comparison of A. equolifaciens W18.34a and A. equolifaciens DSM19450T (an equol producer bacterium) genome sequences suggested a deletion in the former involving a large part of the equol operon. Furthermore, genome comparison of A. equolifaciens and Asaccharobacter celatus (other equol-producing species) strains from databases indicated many of these also showed deletions within the equol operon. The present results contribute to our knowledge to the activity of gut bacteria on soy isoflavones.
Collapse
|
9
|
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019; 11:E2231. [PMID: 31527435 PMCID: PMC6770660 DOI: 10.3390/nu11092231] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological data suggest that regular intake of isoflavones from soy reduces the incidence of estrogen-dependent and aging-associated disorders, such as menopause symptoms in women, osteoporosis, cardiovascular diseases and cancer. Equol, produced from daidzein, is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. Consequently, equol has been endorsed as having many beneficial effects on human health. The conversion of daidzein into equol takes place in the intestine via the action of reductase enzymes belonging to incompletely characterized members of the gut microbiota. While all animal species analyzed so far produce equol, only between one third and one half of human subjects (depending on the community) are able to do so, ostensibly those that harbor equol-producing microbes. Conceivably, these subjects might be the only ones who can fully benefit from soy or isoflavone consumption. This review summarizes current knowledge on the microorganisms involved in, the genetic background to, and the biochemical pathways of, equol biosynthesis. It also outlines the results of recent clinical trials and meta-analyses on the effects of equol on different areas of human health and discusses briefly its presumptive mode of action.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
10
|
Braune A, Blaut M. Evaluation of inter-individual differences in gut bacterial isoflavone bioactivation in humans by PCR-based targeting of genes involved in equol formation. J Appl Microbiol 2017; 124:220-231. [PMID: 29055162 DOI: 10.1111/jam.13616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
AIM To identify human subjects harbouring intestinal bacteria that bioactivate daidzein to equol using a targeted PCR-based approach. METHODS AND RESULTS In a pilot study including 17 human subjects, equol formation was determined in faecal slurries. In parallel, faecal DNA was amplified by PCR using degenerate primers that target highly conserved regions of dihydrodaidzein reductase and tetrahydrodaidzein reductase genes. PCR products of the expected size were observed for six of the eight subjects identified as equol producers. Analysis of clone libraries revealed the amplification of sequences exclusively related to Adlercreutzia equolifaciens in four of the subjects tested positive for equol formation, whereas in three of the equol producers, only sequences related to Slackia isoflavoniconvertens were observed. No amplicons were obtained for one equol-forming subject, thus suggesting the presence of nontargeted alternative genes. Amplicons were only sporadically observed in the nonequol producers. CONCLUSION The majority of human subjects who produced equol were also detected with the developed PCR-based approach. SIGNIFICANCE AND IMPACT OF THE STUDY The obtained results shed light on the distribution and the diversity of known equol-forming bacterial species in the study group and indicate the presence of as yet unknown equol-forming bacteria.
Collapse
Affiliation(s)
- A Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - M Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
11
|
Vázquez L, Guadamuro L, Giganto F, Mayo B, Flórez AB. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures. Front Microbiol 2017; 8:1155. [PMID: 28713336 PMCID: PMC5491606 DOI: 10.3389/fmicb.2017.01155] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
This work introduces a novel real-time quantitative PCR (qPCR) protocol for detecting and quantifying equol-producing bacteria. To this end, two sets of primers targeting the dihydrodaidzein reductase (ddr) and tetrahydrodaidzein reductase (tdr) genes, which are involved in the synthesis of equol, were designed. The primers showed high specificity and sensitivity when used to examine DNA from control bacteria, such as Slackia isoflavoniconvertens, Slackia equolifaciens, Asaccharobacter celatus, Adlercreutzia equolifaciens, and Enterorhabdus mucosicola. To demonstrate the validity and reliability of the protocol, it was used to detect and quantify equol-producing bacteria in human faecal samples and their derived slurry cultures. These samples were provided by 18 menopausal women under treatment of menopause symptoms with a soy isoflavone concentrate, among whom three were known to be equol-producers given the prior detection of the molecule in their urine. The tdr gene was detected in the faeces of all these equol-producing women at about 4–5 log10 copies per gram of faeces. In contrast, the ddr gene was only amplified in the faecal samples of two of these three women, suggesting the presence in the non-amplified sample of reductase genes unrelated to those known to be involved in equol formation and used for primer design in this study. When tdr and ddr were present in the same sample, similar copy numbers of the two genes were recorded. However, no significant increase in the copy number of equol-related genes along isoflavone treatment was observed. Surprisingly, positive amplification for both tdr and ddr genes was obtained in faecal samples and derived slurry cultures from two non-equol producing women, suggesting the genes could be non-functional or the daidzein metabolized to other compounds in samples from these two women. This novel qPCR tool provides a technique for monitoring gut microbes that produce equol in humans. Monitoring equol-producing bacteria in the human gut could provide a means of evaluating strategies aimed at increasing the endogenous formation of this bioactive compound.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Lucía Guadamuro
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Froilán Giganto
- Servicio Digestivo, Hospital Universitario Central de AsturiasOviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Ana B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| |
Collapse
|
12
|
Zhang Q, Feng H, Qluwakemi B, Wang J, Yao S, Cheng G, Xu H, Qiu H, Zhu L, Yuan M. Phytoestrogens and risk of prostate cancer: an updated meta-analysis of epidemiologic studies. Int J Food Sci Nutr 2016; 68:28-42. [DOI: 10.1080/09637486.2016.1216525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qiang Zhang
- School of Public Health, Jiamusi University, Jiamusi, China
| | - Hongliang Feng
- School of Public Health, Jiamusi University, Jiamusi, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Jiaqi Wang
- School of Public Health, Jiamusi University, Jiamusi, China
| | - Songpo Yao
- School of Public Health, Jiamusi University, Jiamusi, China
| | | | - Hui Xu
- College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi, China
| | - Liling Zhu
- School of Public Health, Jiamusi University, Jiamusi, China
| | - Mingxia Yuan
- Bio-Vaccine Limited Liability Company, Harbin Pharmaceutical Group, Harbin, China
| |
Collapse
|
13
|
Relationship of serum levels and dietary intake of isoflavone, and the novel bacterium Slackia sp. strain NATTS with the risk of prostate cancer: a case–control study among Japanese men. Int Urol Nephrol 2016; 48:1453-60. [DOI: 10.1007/s11255-016-1335-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/24/2016] [Indexed: 01/21/2023]
|
14
|
The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 2015; 5:56-73. [PMID: 25594250 PMCID: PMC4381290 DOI: 10.3390/metabo5010056] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Isoflavones are found in leguminous plants, especially soybeans. They have a structural similarity to natural estrogens, which enables them to bind to estrogen receptors and elicit biological activities similar to natural estrogens. They have been suggested to be beneficial for the prevention and therapy of hormone-dependent diseases. After soy products are consumed, the bacteria of the intestinal microflora metabolize isoflavones to metabolites with altered absorption, bioavailability, and estrogenic characteristics. Variations in the effect of soy products have been correlated with the isoflavone metabolites found in plasma and urine samples of the individuals consuming soy products. The beneficial effects of the soy isoflavone daidzin, the glycoside of daidzein, have been reported in individuals producing equol, a reduction product of daidzein produced by specific colonic bacteria in individuals called equol producers. These individuals comprise 30% and 60% of populations consuming Western and soy-rich Asian diets, respectively. Since the higher percentage of equol producers in populations consuming soy-rich diets is correlated with a lower incidence of hormone-dependent diseases, considerable efforts have been made to detect the specific colonic bacteria involved in the metabolism of daidzein to the more estrogenic compound, equol, which should facilitate the investigation of the metabolic activities related to this compound.
Collapse
|