1
|
Malayaperumal S, Sriramulu S, Jothimani G, Banerjee A, Zhang H, Mohammed Rafi ST, Ramachandran I, NR RK, Sun XF, Pathak S. MicroRNA-122 overexpression suppresses the colon cancer cell proliferation by downregulating the astrocyte elevated gene-1/metadherin oncoprotein. Ann Med 2025; 57:2478311. [PMID: 40208016 PMCID: PMC11986857 DOI: 10.1080/07853890.2025.2478311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate essential cellular functions, such as cell adhesion, proliferation, migration, invasion, and programmed cell death, and therefore, alterations in miRNAs can contribute to carcinogenesis. Previous studies have shown that miRNA-122 is abundant in the liver and regulates cell proliferation, migration, and apoptosis. However, the expression pattern and mechanism of actions of miR-122 remain primarily unknown in colon cancer. METHODS In this study, we analyzed The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database to assess the clinical significance of astrocyte elevated gene-1 (AEG-1)/metadherin (MTDH) and miR-122 in colon cancer. MiR-122 overexpression studies were performed in HCT116, SW480, and SW620 cell lines. Dual-luciferase assay was carried out to confirm the interaction between AEG-1 and miR-122. In vivo-JetPEI-transfection reagent was used for in-vivo transient transfection of miR-122 in the AOM/DSS-induced colon tumor mouse model. RESULTS Our results demonstrate that miR-122 was downregulated in colon cancer cells, and it influences the expressions of apoptotic factors and inflammatory cytokines. MiR-122 overexpression in HCT116, SW480, and SW620 cells showed upregulation of Caspase 3, Caspase 9, and BAX and decreased expression of BCL2, which are pro-apoptotic and anti-apoptotic members that maintain a ratio between cellular survival and cell death. In vivo transient transfection of miR-122 mimic in AOM/DSS induced colon tumor mouse model showed less inflammation and disease activity. The TCGA-COAD data indicated that AEG-1 expression was higher in patients with low expression of miR-122 and lower AEG-1 expression in patients with higher expression miR-122. CONCLUSION Our findings highlight the key role of miR-122 in the high grade of colonic inflammation, and possibly in colon cancer, and the use of miR-122 mimic might be a therapeutic option.
Collapse
Affiliation(s)
- Sarubala Malayaperumal
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Sushmitha Sriramulu
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, Örebro, Sweden
| | - Shabana Thabassum Mohammed Rafi
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Rajesh Kanna NR
- Department of Pathology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
2
|
Hu M, Deng Y, Bai Y, Zhang J, Shen X, Shen L, Zhou L. Identifying Key Biomarkers Related to Immune Response in the Progression of Diabetic Kidney Disease: Mendelian Randomization Combined With Comprehensive Transcriptomics and Single-Cell Sequencing Analysis. J Inflamm Res 2025; 18:949-972. [PMID: 39871959 PMCID: PMC11769850 DOI: 10.2147/jir.s482047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Background Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD. Methods We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes. Subsequently, the specific mechanisms of key regulatory genes involved in disease progression were analyzed through transcriptome and single-cell analysis. Finally, we validated the mRNA expression of five key genes in the DKD mice model using reverse transcription quantitative PCR (RT-qPCR). Results Five characteristic genes, known as protein kinase B beta (AKT2), interleukin-2 receptor beta (IL2RB), neurexin 3(NRXN3), slit homolog 3(SLIT3), and TATA box binding protein like protein 1 (TBPL1), demonstrated causal relationships with DKD. These key genes are associated with the infiltration of immune cells, and they are related to the regulatory genes associated with immunity. In addition, we also conducted gene enrichment analysis to explore the complex network of potential signaling pathways that may regulate these key genes. Finally, we identified the effectiveness and reliability of these selected key genes through RT-qPCR in the DKD mice model. Conclusion Our results indicated that the AKT2, IL2RB, NRXN3, SLIT3, and TBPL1 genes are closely related to DKD, which may be useful in the diagnosis and therapy of DKD.
Collapse
Affiliation(s)
- Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi Deng
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yujie Bai
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jiayan Zhang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
3
|
Ye F, Liang Y, Wang Y, Le Yang R, Luo D, Li Y, Jin Y, Han D, Chen B, Zhao W, Wang L, Chen X, Ma T, Kong X, Yang Q. Cancer-associated fibroblasts facilitate breast cancer progression through exosomal circTBPL1-mediated intercellular communication. Cell Death Dis 2023; 14:471. [PMID: 37495592 PMCID: PMC10372047 DOI: 10.1038/s41419-023-05986-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer is the major common malignancy worldwide among women. Previous studies reported that cancer-associated fibroblasts (CAFs) showed pivotal roles in regulating tumor progression via exosome-mediated cellular communication. However, the detailed mechanism underlying the exosomal circRNA from CAFs in breast cancer progression remains ambiguous. Here, exosomal circRNA profiling of breast cancer-derived CAFs and normal fibroblasts (NFs) was detected by high-throughput sequencing, and upregulated circTBPL1 expression was identified in CAF exosomes. The exosomal circTBPL1 from CAFs could be transferred to breast cancer cells and promoted cell proliferation, migration, and invasion. Consistently, circTBPL1 knockdown in CAFs attenuated their tumor-promoting ability. Further exploration identified miR-653-5p as an inhibitory target of circTBPL1, and ectopic expression of miR-653-5p could partially reverse the malignant phenotypes induced by circTBPL1 overexpression in breast cancer. Additionally, TPBG was selected as a downstream target gene, and circTBPL1 could protect TPBG from miR-653-5p-mediated degradation, leading to enhanced breast cancer progression. Significantly, the accelerated tumor progression triggered by exosomal circTBPL1 from CAFs was confirmed in xenograft models. Taken together, these results revealed that exosomal circTBPL1 derived from CAFs contributed to cancer progression via miR-653-5p/TPBG pathway, indicating the potential of exosomal circTBPL1 as a biomarker and novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Robert Le Yang
- Shandong Experimental High School, 250001, Jinan, Shandong, P. R. China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Tingting Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xiaoli Kong
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Research Institute of Breast Cancer, Shandong University, 250012, Jinan, Shandong, P. R. China.
| |
Collapse
|
4
|
Han L, Chen S, Luan Z, Fan M, Wang Y, Sun G, Dai G. Immune function of colon cancer associated miRNA and target genes. Front Immunol 2023; 14:1203070. [PMID: 37465677 PMCID: PMC10351377 DOI: 10.3389/fimmu.2023.1203070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Colon cancer is a complex disease that involves intricate interactions between cancer cells and theimmune microenvironment. MicroRNAs (miRNAs) have recently emerged as critical regulators of gene expression in cancer, including colon cancer. There is increasing evidence suggesting that miRNA dysregulation plays a crucial role in modulating the immune microenvironment of intestinal cancer. In particular, miRNAs regulate immune cell activation, differentiation, and function, as well as cytokine and chemokine production in intestinal cancer. It is urgent to fully investigate the potential role of intestinal cancer-related miRNAs in shaping the immune microenvironment. Methods Therefore, this paper aims to identify miRNAs that are potentially associated with colon cancer and regulate a large number of genes related to immune function. We explored the role of these genes in colon cancer patient prognosis, immune infiltration, and tumor purity based on data of 174 colon cancer patients though convolutional neural network, survival analysis and multiple analysis tools. Results Our findings suggest that miRNA regulated genes play important roles in CD4 memory resting cells, macrophages.M2, and Mast cell activated cells, and they are concentrated in the cytokinecytokine receptor interaction pathway. Discussion Our study enhances our understanding of the underlying mechanisms of intestinal cancer and provides new insights into the development of effective therapies. Additionally, identification of miRNA biomarkers could aid in diagnosis and prognosis, as well as guide personalized treatment strategies for patients with intestinal cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shiyun Chen
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhe Luan
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mengjiao Fan
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yanrong Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanghai Dai
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Wang H, Zhang K, Wu L, Qin Q, He Y. Prediction of Pathogenic Factors in Dysbiotic Gut Microbiomes of Colorectal Cancer Patients Using Reverse Microbiomics. Front Oncol 2022; 12:882874. [PMID: 35574378 PMCID: PMC9091335 DOI: 10.3389/fonc.2022.882874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Gut microbiome plays a crucial role in the formation and progression of colorectal cancer (CRC). To better identify the underlying gene-level pathogenic mechanisms of microbiome-associated CRC, we applied our newly developed Reverse Microbiomics (RM) to predict potential pathogenic factors using the data of microbiomes in CRC patients. Results Our literature search first identified 40 bacterial species enriched and 23 species depleted in the guts of CRC patients. These bacteria were systematically modeled and analyzed using the NCBI Taxonomy ontology. Ten species, including 6 enriched species (e.g., Bacteroides fragilis, Fusobacterium nucleatum and Streptococcus equinus) and 4 depleted species (e.g., Bacteroides uniformis and Streptococcus thermophilus) were chosen for follow-up comparative genomics analysis. Vaxign was used to comparatively analyze 47 genome sequences of these ten species. In total 18 autoantigens were predicted to contribute to CRC formation, six of which were reported with experimental evidence to be correlated with drug resistance and/or cell invasiveness of CRC. Interestingly, four human homology proteins (EDK89078.1, EDK87700.1, EDK89777.1, and EDK89145.1) are conserved among all enriched strains. Furthermore, we predicted 76 potential virulence factors without homology to human proteins, including two riboflavin synthase proteins, three ATP-binding cassettes (ABC) transporter protein family proteins, and 12 outer membrane proteins (OMPs). Riboflavin synthase is present in all the enriched strains but not in depleted species. The critical role of riboflavin synthase in CRC development was further identified from its hub role in our STRING-based protein-protein interaction (PPI) network analysis and from the finding of the riboflavin metabolism as the most significantly enriched pathway in our KEGG pathway analysis. A novel model of the CRC pathogenesis involving riboflavin synthase and other related proteins including TpiA and GrxC was further proposed. Conclusions The RM strategy was used to predict 18 autoantigens and 76 potential virulence factors from CRC-associated microbiome data. In addition to many of these autoantigens and virulence factors experimentally verified as reported in the literature, our study predicted many new pathogenetic factors and developed a new model of CRC pathogenesis involving the riboflavin synthase from the enriched colorectal bacteria and other associated proteins.
Collapse
Affiliation(s)
- Haihe Wang
- Department of Immunology and Pathogen Biology, Lishui University, Lishui, China
| | - Kaibo Zhang
- Department of Immunology and Pathogen Biology, Lishui University, Lishui, China
| | - Lin Wu
- Center of Computer Experiment, Lishui University, Lishui, China
| | - Qian Qin
- Department of Immunology and Pathogen Biology, Lishui University, Lishui, China
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
6
|
HuR Promotes the Progression of Gastric Cancer through Mediating CDC5L Expression. DISEASE MARKERS 2022; 2022:5141927. [PMID: 35313568 PMCID: PMC8934217 DOI: 10.1155/2022/5141927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
Methods We performed qRT-PCR, cell cycle assay, cell migration, and mouse transplantation model analysis in our experiments. It has been clarified that HuR and microRNAs (miRNAs) have important interplays in the regulation of tumor progression. Results This study found microRNA-133b (miR-133b), as a HuR-sponged miRNA in GC cells. Downregulation of HuR can promote the expression of miR-133b and further affect the downstream cyclin CDC5L. The expressions of miR-133b were slightly lower in GC tissues than adjacent normal tissues. Conclusion Our studies suggest that HuR and miR-133b are involved in the development and pathological process of GC cells.
Collapse
|
7
|
Qin H, Tang Y, Mao Y, Zhou X, Xu T, Liu W, Su X. C-MYC induces idiopathic pulmonary fibrosis via modulation of miR-9-5p-mediated TBPL1. Cell Signal 2022; 93:110274. [PMID: 35122989 DOI: 10.1016/j.cellsig.2022.110274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
We sought to pinpoint the potential role of C-MYC in pulmonary fibroblast proliferation in idiopathic pulmonary fibrosis (IPF) and its mechanism. A mouse model of IPF was established by injection of bleomycin. C-MYC and miR-9-5p expression was determined by RT-qPCR and Western blot analysis. The interaction among C-MYC, miR-9-5p, and TBPL1 was detected by ChIP assay and dual luciferase reporter gene assay. After alteration of C-MYC, miR-9-5p, and TBPL1, their roles in pulmonary fibrosis and collagen fiber deposition in mice as well as proliferation and differentiation of pulmonary fibroblasts were assessed. Upregulated C-MYC expression was seen in the lung tissues of IPF mice and its silencing retarded IPF in mice. C-MYC could activate miR-9-5p that negatively regulated TBPL1 expression. Up-regulated C-MYC promoted proliferation and differentiation of pulmonary fibroblasts by inhibiting TBPL1 via activation of miR-9-5p, thus triggering IPF. Moreover, in the lung tissues-derived cells of IPF mice, C-MYC inhibitor, 10,058-F4, was observed to inhibit miR-9-5p expression, thereby repressing pulmonary fibrosis by up-regulating TBPL1. Our data provided evidence pinpointed the aggravative role of C-MYC in IPF by activating miR-9-5p to regulate TBPL1 expression.
Collapse
Affiliation(s)
- Hui Qin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210028, PR China; Department of Intensive Care Medicine, Changzhou No. 2 People's Hospital (Affiliated Hospital of Nanjing Medical University), Changzhou 213000, PR China
| | - Yan Tang
- Department of Intensive Care Medicine, Changzhou No. 2 People's Hospital (Affiliated Hospital of Nanjing Medical University), Changzhou 213000, PR China
| | - Yuan Mao
- Department of Hematology and Oncology, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing 210002, PR China
| | - Xuehui Zhou
- Department of Intensive Care Medicine, Changzhou No. 2 People's Hospital (Affiliated Hospital of Nanjing Medical University), Changzhou 213000, PR China
| | - Tongrong Xu
- Department of Intensive Care Medicine, Changzhou No. 2 People's Hospital (Affiliated Hospital of Nanjing Medical University), Changzhou 213000, PR China
| | - Wenming Liu
- Department of Intensive Care Medicine, Changzhou No. 2 People's Hospital (Affiliated Hospital of Nanjing Medical University), Changzhou 213000, PR China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210028, PR China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Zhang X, Zhu W, Lu J. microRNA-133b Regulates Cell Proliferation and Cell Cycle Progression via Targeting HuR in Colorectal Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs/miRs) have been identified to serve a key role in the development of tumors. However, the role of miR-133b in colorectal cancer (CRC) remains largely unclear. This study will investigate the role and mechanism of miR-133b in CRC. Reverse transcription-quantitative
polymerase chain reaction analysis was performed to detect the level of miR-133b in CRC cell lines. Bioinformatics software TargetScan predicted the potential target genes of miR-133b, and a dual luciferase reporter assay was used to confirm this. To investigate the role of miR-133b in CRC
cells, miR-133b was upregulated or downregulated in CRC cell lines (SW620 and HT-29) by transfecting with a miR-133b mimic or inhibitor, respectively. Subsequently, cell viability was analyzed using MTT assay, whereas cell apoptosis and the cell cycle distribution were analyzed by flow cytometry.
In addition, the associated protein levels were detected using western blot analysis. The results demonstrated that miR-133b was significantly downregulated in CRC cell lines when compared with the normal colonic epithelial NCM-460 cell line. Human antigen R (HuR; also termed ELAVL1) was demonstrated
to be a direct target of miR-133b and was negatively regulated by miR-133b. HuR was also notably upregulated in the CRC cell lines when compared with the normal control. Transfection of SW620 and HT-29 cells with the miR-133b mimic significantly inhibited cell viability, and induced cell apoptosis
and G1 phase arrest, while upregulation of HuR demonstrated the opposite effects. Furthermore, the present data demonstrated that the miR-133b mimic significantly enhanced the protein levels of p21 and p27, and downregulated cyclin D1 and cyclin A levels in SW620 and HT-29 cells;
the opposite effects were observed following treatment with the miR-133b inhibitor. In conclusion, the data indicate that miR-133b suppressed CRC cell growth by targeting HuR.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of General Surgery, The Second People’s Hospital of Nantong, Nantong, Jiangsu 226001, P. R. China
| | - Wei Zhu
- Department of Gynaecology and Obstetrics, The Second People’s Hospital of Nantong, Nantong, Jiangsu 226001, P. R. China
| | - Junjie Lu
- Department of General Surgery, The Second People’s Hospital of Nantong, Nantong, Jiangsu 226001, P. R. China
| |
Collapse
|
9
|
He X, Ma J, Zhang M, Cui J, Yang H. Circ_0007031 enhances tumor progression and promotes 5-fluorouracil resistance in colorectal cancer through regulating miR-133b/ABCC5 axis. Cancer Biomark 2021; 29:531-542. [PMID: 32865180 DOI: 10.3233/cbm-200023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed malignancies worldwide. Circular RNAs (circRNAs) are being found to play crucial roles in human cancer, including CRC. The purpose of this study was to explore the function and mechanism of circ_0007031 on CRC progression and 5-fluorouracil (5-FU) resistance. The levels of circ_0007031, ATP-binding cassette subfamily C member 5 (ABCC5) and miR-133b were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell survival and proliferation were detected by the 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell colony formation was evaluated using a standard colony formation assay. Transwell assays were performed to determine cell migration and invasion. Targeted correlations among circ_0007031, miR-133b and ABCC5 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Animal experiments were performed to observe the role of circ_0007031 in vivo. Our data indicated that circ_0007031 up-regulation was associated with CRC resistance to 5-FU. Circ_0007031 knockdown repressed CRC cell proliferation, migration and invasion and enhanced 5-FU sensitivity. Circ_0007031 directly interacted with miR-133b. Moreover, circ_0007031 knockdown regulated CRC cell progression and 5-FU sensitivity by miR-133b. ABCC5 was a direct target of miR-133b, and circ_0007031 mediated ABCC5 expression via acting as a miR-133b sponge. Furthermore, miR-133b overexpression regulated CRC cell progression and sensitivity to 5-FU by down-regulating ABCC5. Additionally, circ_0007031 knockdown suppressed tumor growth in vivo. Our current work had led to the identification of circ_0007031 knockdown that repressed CRC cell malignant progression and enhanced 5-FU sensitivity via regulating ABCC5 expression by sponging miR-133b.
Collapse
|
10
|
Bommu U, Konidala KK, Pabbaraju N, Yeguvapalli S. Gene microarray expression profile analysis of differentially expressed genes of potential alternative pathways in non–small cell lung cancer: In search of biomarkers. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Farzadfard E, Kalantari T, Tamaddon G. Serum Expression of Seven MicroRNAs in Chronic Lymphocytic Leukemia Patients. J Blood Med 2020; 11:97-102. [PMID: 32210655 PMCID: PMC7075349 DOI: 10.2147/jbm.s230842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE MicroRNAs are small single-strand noncoding RNAs that can be deregulated in a variety of cancers. Over the past few years, multiple markers have been discovered in chronic lymphocytic leukemia (CLL). Among these, miRNAs seem to have important roles in the pathogenesis of CLL. The development and validation of miRNA-expression patterns as biomarkers should have a significant impact in cancer diagnosis, therapeutic success, and increasing the life expectancy of patients. In this study, to specify the utility of circulatory miRNA expression as noninvasive and useful biomarkers for CLL, we analyzed the dysregulation of seven miRNAs: miR30d, miR25-3p, miR19a-3p, miR133b, miR451a, miR145, and miR144 in CLL-patient sera. METHODS Thirty untreated patients with flow-cytometry confirmation of CLL were chosen. Serum samples were collected from 30 newly diagnosed CLL patients. Fifteen healthy samples were taken for comparison as controls. RNA was extracted using Trizol. RNA from CLL patient specimens was compared to controls with real-time PCR. RESULTS Seven miRNAs were differently expressed between CLL and normal specimens using the comparative 2-ΔΔCt method. miRNAs 133b, 25-3p, 451a, 145, 19a-3p, and 144 were overexpressed in sera obtained from CLL patients, and miRNA-30d was underexpressed in patient samples. Among these seven miRNAs, miR19a-3p and miR25-3p showed the most deregulation in CLL patients. CONCLUSION Real-time PCR is an applied means to perform high-throughput investigation of serum-RNA samples. We assessed the expression of seven miRNAs in CLL patients by this method. The results demonstrated that the use of miRNA-expression profiling may have an impressive role in the diagnosis of CLL. In addition, miRNA 19a-3p and 25-3p are known oncogenes with therapeutic and potential biomarkers.
Collapse
Affiliation(s)
- Ehsan Farzadfard
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Tamaddon
- Department of Clinical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Lv L, Li Q, Chen S, Zhang X, Tao X, Tang X, Wang S, Che G, Yu Y, He L. miR-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L. Exp Cell Res 2019; 385:111597. [PMID: 31525340 DOI: 10.1016/j.yexcr.2019.111597] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are a subpopulation of chemoresistant cells that play a critical role in disease recurrence following chemotherapy. It has been reported that microRNA-133b (miR-133b) acts as a tumor suppressor in colorectal cancer (CRC). However, whether miR-133b is associated with CRC stemness and chemoresistance is not clear. In this study, we report that miR-133b is downregulated in colorectal spheroids, which are enriched with CSCs and display stem cell-like characteristics, including upreulation of CSCs surface markers and elevated chemoresistance. Additionally, miR-133b overexpression reduces CRC stemness and overrides chemoresistance to 5-Fluorouracil (5-FU) and oxaliplatin (OXP), indicating a negative role of miR-133b in regulating CRC stemness and chemoresistance. Moreover, miR-133b directly targets and suppresses the expression of disruptor of telomeric silencing 1-like (DOT1L), an exclusive H3K79 methyltransferase. Furthermore, miR-133b overexpression suppresses DOT1L-mediated H3K79me2 modification of stem cell genes, which is consistent with their downregulated transcription. More importantly, DOT1L restoration abrogates the suppressive effects of miR-133b on CRC stemness and chemoresistance, hence demonstrating that miR-133b regulates CRC stemness and chemoresistance through targeting DOT1L. Overall, these results imply that miR-133b might represent a novel therapeutic target in interfering CRC stemness and chemoresistance.
Collapse
Affiliation(s)
- Lv Lv
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiang Li
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shaohua Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuan Tao
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xianmin Tang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shengtao Wang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Guosong Che
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Liang He
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
13
|
Zhou J, Zou Y, Hu G, Lin C, Guo Y, Gao K, Wu M. Facilitating colorectal cancer cell metastasis by targeted binding of long non-coding RNA ENSG00000231881 with miR-133b via VEGFC signaling pathway. Biochem Biophys Res Commun 2018; 509:1-7. [PMID: 30581003 DOI: 10.1016/j.bbrc.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Colorectal cancer mainly metastasizes through the lymphatic pathways and is associated with a high mortality rate. It is one of the leading causes of cancer-related deaths. In this study, the effects of long non-coding RNA (lncRNA) ENSG00000231881 on the metastasis of colorectal cancer cells were evaluated. METHODS The expression level of ENSG00000231881 in colorectal cancer tissues was detected with bioinformatics analysis and quantitative polymerase chain reaction (qPCR) assay. Functional colorectal cancer cell models for the overexpression and interference expression of ENSG00000231881 were established. MTT, transwell, tube formation, qPCR, and western blot assays were performed to detect changes in various cellular functions and expression levels of key factors (miR-133b and vascular endothelial growth factor C [VEGFC]) in ENSG00000231881 functional models. Dual luciferase assay was performed to verify the binding relationship between ENSG00000231881 and miR-133b. RESULTS ENSG00000231881 expression level was substantially higher in colorectal cancer tissues than in paracancerous tissues and correlated with malignancy and prognosis. In colorectal cancer cells, ENSG00000231881 overexpression significantly promoted cell proliferation, metastasis, and tube formation in lymphatic epithelium, decreased miR-133b expression, and increased VEGFC expression. On the contrary, ENSG00000231881 interference expression showed exactly opposite results. ENSG00000231881 could bind to miR-133b and consequently affect the cell functions through the regulation of VEGFC expression via miR-133b. CONCLUSION ENSG00000231881 binds to miR-133b via competitive endogenous RNA (ceRNA) mechanism and regulates the VEGFC signaling pathway, consequently leading to the metastasis of colorectal cancer cells. Our study provides a theoretical basis for the use of ENSG00000231881 as a therapeutic target for gene-targeted therapy in colorectal cancer.
Collapse
Affiliation(s)
- Jianyu Zhou
- Gastrointestinal Surgery Ward, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China
| | - Yueyi Zou
- Gastrointestinal Surgery Ward, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China
| | - Gui Hu
- Gastrointestinal Surgery Ward, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China
| | - Changwei Lin
- Gastrointestinal Surgery Ward, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China
| | - Yihang Guo
- Gastrointestinal Surgery Ward, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China
| | - Kai Gao
- Gastrointestinal Surgery Ward, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China
| | - Mayrong Wu
- Operation Center, Xiangya 3rd Hospital, Centre South University, Hunan, 410013, China.
| |
Collapse
|
14
|
miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 2018; 8:50193-50208. [PMID: 28422730 PMCID: PMC5564843 DOI: 10.18632/oncotarget.16745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, −133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.
Collapse
|
15
|
Huang R, Chen M, Yang L, Wagle M, Guo S, Hu B. MicroRNA-133b Negatively Regulates Zebrafish Single Mauthner-Cell Axon Regeneration through Targeting tppp3 in Vivo. Front Mol Neurosci 2017; 10:375. [PMID: 29209165 PMCID: PMC5702462 DOI: 10.3389/fnmol.2017.00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022] Open
Abstract
Axon regeneration, fundamental to nerve repair, and functional recovery, relies on rapid changes in gene expression attributable to microRNA (miRNA) regulation. MiR-133b has been proved to play an important role in different organ regeneration in zebrafish, but its role in regulating axon regeneration in vivo is still controversial. Here, combining single-cell electroporation with a vector-based miRNA-expression system, we have modulated the expression of miR-133b in Mauthner-cells (M-cells) at the single-cell level in zebrafish. Through in vivo imaging, we show that overexpression of miR-133b inhibits axon regeneration, whereas down-regulation of miR-133b, promotes axon outgrowth. We further show that miR-133b regulates axon regeneration by directly targeting a novel regeneration-associated gene, tppp3, which belongs to Tubulin polymerization-promoting protein family. Gain or loss-of-function of tppp3 experiments indicated that tppp3 was a novel gene that could promote axon regeneration. In addition, we observed a reduction of mitochondrial motility, which have been identified to have a positive correlation with axon regeneration, in miR-133b overexpressed M-cells. Taken together, our work provides a novel way to study the role of miRNAs in individual cell and establishes a critical cell autonomous role of miR-133b in zebrafish M-cell axon regeneration. We propose that up-regulation of the newly founded regeneration-associated gene tppp3 may enhance axonal regeneration.
Collapse
Affiliation(s)
- Rongchen Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Min Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Leiqing Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mahendra Wagle
- Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Su Guo
- Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Wu H, Wu R, Chen M, Li D, Dai J, Zhang Y, Gao K, Yu J, Hu G, Guo Y, Lin C, Li X. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer. Oncotarget 2017; 8:21095-21105. [PMID: 28177879 PMCID: PMC5400568 DOI: 10.18632/oncotarget.15045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
Abstract
Background Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Results Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. Materials and Methods We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. Conclusions This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Daojiang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Jing Dai
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Kai Gao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Jun Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Yihang Guo
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
17
|
Cheng Y, Jia B, Wang Y, Wan S. miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer. Oncol Rep 2017; 38:3220-3226. [PMID: 28901466 DOI: 10.3892/or.2017.5944] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small noncoding RNAs that negatively regulate protein expression by binding to protein-coding mRNAs and suppressing translation. Accumulating evidence suggests that miRNAs are involved in the development and progression of cancer by regulating cancer metabolism. Meanwhile, the cytosolic enzyme ATP citrate lyase (ACLY) is a promising target in the prevention and treatment of cancer. In the present study we revealed by western blot analysis and reverse transcription‑quantitative PCR that miR-133b was downregulated in human gastric cancer (GC) tissues and cell lines, while ACLY was upregulated. The overexpression of miR-133b could decrease the proliferation and invasion of MKN-74 cells by inhibiting the expression and activation of ACLY. Furthermore, the nuclear distribution of peroxisome proliferator-activated receptor-γ (PPARγ) in GC tissues and cell lines was markedly decreased, and overexpression of miR-133b could increase the levels of nuclear PPARγ in MKN-74 cells. Additionally, miR-133b decreased the transcriptional activity of ACLY in a PPARγ-dependent manner, as determined by a dual-luciferase reporter assay. These results indicate that miR-133b targets ACLY and inhibits GC cell proliferation by regulating the expression of PPARγ, suggesting that miR-133b may serve as a tumor-suppressive target in GC therapy.
Collapse
Affiliation(s)
- Yunsheng Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Benli Jia
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shengyun Wan
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
18
|
Wang H, Luo J, Liu C, Niu H, Wang J, Liu Q, Zhao Z, Xu H, Ding Y, Sun J, Zhang Q. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics 2017; 18:388. [PMID: 28865443 PMCID: PMC5581471 DOI: 10.1186/s12859-017-1796-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies worldwide with poor prognosis. Studies have showed that abnormal microRNA (miRNA) expression can affect CRC pathogenesis and development through targeting critical genes in cellular system. However, it is unclear about which miRNAs play central roles in CRC’s pathogenesis and how they interact with transcription factors (TFs) to regulate the cancer-related genes. Results To address this issue, we systematically explored the major regulation motifs, namely feed-forward loops (FFLs), that consist of miRNAs, TFs and CRC-related genes through the construction of a miRNA-TF regulatory network in CRC. First, we compiled CRC-related miRNAs, CRC-related genes, and human TFs from multiple data sources. Second, we identified 13,123 3-node FFLs including 25 miRNA-FFLs, 13,005 TF-FFLs and 93 composite-FFLs, and merged the 3-node FFLs to construct a CRC-related regulatory network. The network consists of three types of regulatory subnetworks (SNWs): miRNA-SNW, TF-SNW, and composite-SNW. To enhance the accuracy of the network, the results were filtered by using The Cancer Genome Atlas (TCGA) expression data in CRC, whereby we generated a core regulatory network consisting of 58 significant FFLs. We then applied a hub identification strategy to the significant FFLs and found 5 significant components, including two miRNAs (hsa-miR-25 and hsa-miR-31), two genes (ADAMTSL3 and AXIN1) and one TF (BRCA1). The follow up prognosis analysis indicated all of the 5 significant components having good prediction of overall survival of CRC patients. Conclusions In summary, we generated a CRC-specific miRNA-TF regulatory network, which is helpful to understand the complex CRC regulatory mechanisms and guide clinical treatment. The discovered 5 regulators might have critical roles in CRC pathogenesis and warrant future investigation. Electronic supplementary material The online version of this article (10.1186/s12859-017-1796-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiamao Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huilin Niu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zhongming Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jingchun Sun
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Qingling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Lin J, Chuang CC, Zuo L. Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets. Oncotarget 2017; 8:17328-17346. [PMID: 28061475 PMCID: PMC5370044 DOI: 10.18632/oncotarget.14461] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
As one of the most commonly diagnosed cancers worldwide, colorectal adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is an increase among younger patients under 50. Routine screenings are recommended for this age group to improve early detection. The multifactorial etiology of colorectal cancer consists of both genetic and epigenetic factors. Recently, studies have shown that the development and progression of colorectal cancer can be attributed to aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. Given the rapid accumulating knowledge in the field, an updated review regarding microRNA and ROS in colorectal cancer is necessary. An extensive literature search has been conducted in PubMed/Medline databases to review the roles of microRNAs and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic approaches focusing on microRNA and ROS in colorectal cancer treatment is also delineated. This review aims to summarize the newest knowledge on the pathogenesis of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and therapeutic techniques.
Collapse
Affiliation(s)
- Jingmei Lin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
21
|
Malcomson FC, Willis ND, McCallum I, Xie L, Lagerwaard B, Kelly S, Bradburn DM, Belshaw NJ, Johnson IT, Mathers JC. Non-digestible carbohydrates supplementation increases miR-32 expression in the healthy human colorectal epithelium: A randomized controlled trial. Mol Carcinog 2017; 56:2104-2111. [PMID: 28418082 PMCID: PMC5573932 DOI: 10.1002/mc.22666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) risk is modulated by diet and there is convincing evidence of reduced risk with higher non‐digestible carbohydrates (NDCs) consumption. Resistant starch (RS), a NDC, positively modulates the expression of oncogenic microRNAs, suggesting that this could be a mechanism through which NDCs protect against CRC. The present study aimed to investigate the effects of supplementation with two NDCs, RS, and polydextrose (PD), on microRNA expression in the macroscopically‐normal human rectal epithelium using samples from the DISC Study, a randomized, double‐blind, placebo‐controlled dietary intervention. We screened 1008 miRNAs in pooled post‐intervention rectal mucosal samples from participants allocated to the double placebo group and those supplemented with both RS and PD. A total of 111 miRNAs were up‐ or down‐regulated by at least twofold in the RS + PD group compared with the control group. From these, eight were selected for quantification in individual participant samples by qPCR, and fold‐change direction was consistent with the array for seven miRNAs. The inconsistency for miR‐133b and the lower fold‐change values observed for the seven miRNAs is probably because qPCR of individual participant samples is a more robust and sensitive method of quantification than the array. miR‐32 expression was increased by approximately threefold (P = 0.033) in the rectal mucosa of participants supplemented with RS + PD compared with placebo. miR‐32 is involved in the regulation of processes such as cell proliferation that are dysregulated in CRC. Furthermore, miR‐32 may affect non‐canonical NF‐κB signaling via regulation of TRAF3 expression and consequently NIK stabilization.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Naomi D Willis
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Iain McCallum
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Long Xie
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Bart Lagerwaard
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Seamus Kelly
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | | | - Nigel J Belshaw
- Institute of Food Research, Norwich Research Park, Norwich, Norfolk, UK
| | - Ian T Johnson
- Institute of Food Research, Norwich Research Park, Norwich, Norfolk, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Azizian A, Epping I, Kramer F, Jo P, Bernhardt M, Kitz J, Salinas G, Wolff HA, Grade M, Beißbarth T, Ghadimi BM, Gaedcke J. Prognostic Value of MicroRNAs in Preoperative Treated Rectal Cancer. Int J Mol Sci 2016; 17:568. [PMID: 27092493 PMCID: PMC4849024 DOI: 10.3390/ijms17040568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Patients with locally advanced rectal cancer are treated with preoperative chemoradiotherapy followed by surgical resection. Despite similar clinical parameters (uT2-3, uN+) and standard therapy, patients’ prognoses differ widely. A possible prediction of prognosis through microRNAs as biomarkers out of treatment-naïve biopsies would allow individualized therapy options. Methods: Microarray analysis of 45 microdissected preoperative biopsies from patients with rectal cancer was performed to identify potential microRNAs to predict overall survival, disease-free survival, cancer-specific survival, distant-metastasis-free survival, tumor regression grade, or nodal stage. Quantitative real-time polymerase chain reaction (qPCR) was performed on an independent set of 147 rectal cancer patients to validate relevant miRNAs. Results: In the microarray screen, 14 microRNAs were significantly correlated to overall survival. Five microRNAs were included from previous work. Finally, 19 miRNAs were evaluated by qPCR. miR-515-5p, miR-573, miR-579 and miR-802 demonstrated significant correlation with overall survival and cancer-specific survival (p < 0.05). miR-573 was also significantly correlated with the tumor regression grade after preoperative chemoradiotherapy. miR-133b showed a significant correlation with distant-metastasis-free survival. miR-146b expression levels showed a significant correlation with nodal stage. Conclusion: Specific microRNAs can be used as biomarkers to predict prognosis of patients with rectal cancer and possibly stratify patients’ therapy if validated in a prospective study.
Collapse
Affiliation(s)
- Azadeh Azizian
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Ingo Epping
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Frank Kramer
- Department of Medical Statistics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Peter Jo
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Markus Bernhardt
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Gabriela Salinas
- Department of Developmental Biochemistry, University of Göttingen, Göttingen 37075, Germany.
| | - Hendrik A Wolff
- Medical Practice Radiotherapy München, Burgstraße 7, München 80331, Germany.
| | - Marian Grade
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - B Michael Ghadimi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Jochen Gaedcke
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
23
|
Cheng N, Wang GH. miR-133b, a microRNA targeting S1PR1, suppresses nasopharyngeal carcinoma cell proliferation. Exp Ther Med 2016; 11:1469-1474. [PMID: 27073467 DOI: 10.3892/etm.2016.3043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/11/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRs) are a class of short and non-coding RNA molecules, which function as either oncogenes or tumor suppressors in the development of various human cancers, including nasopharyngeal carcinoma (NPC). The aim of the present study was to investigate the expression of miR-133b in NPC tissue samples, as compared with adjacent normal tissues, and to examine its roles and underlying mechanisms. Analysis using reverse transcription-quantitative polymerase chain reaction demonstrated that miR-133b was downregulated in NPC tissue samples, as compared with adjacent tissues. In vitro experiments using NPC cell lines transfected with miR-133b mimics or antisense oligonucleotides further demonstrated that the overexpression of miR-133b mimics impaired, whereas knockdown of its expression promoted, the proliferation of NPC cells. Sphingosine-1-phosphate receptor 1 (S1PR1) was predicted to be a target of miR-133b. Luciferase reporter assays showed that miR-133b inhibited the protein expression of S1PR1 by targeting its 3'-untranslated region. Furthermore, western blot analysis demonstrated that miR-133B altered the regulation of the signal transducer and activator of transcription-3 (STAT3) signaling pathway and the expression of downstream proteins in NPC cells. Therefore, the results of the present study suggested that a previously unknown miR-133b/S1PR1 molecular network may regulate NPC progression.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Otolaryngology, Huaihe Hospital, Henan University, Kaifeng, Henan 475000, P.R. China
| | - Guang-Hui Wang
- Department of Otolaryngology, Huaihe Hospital, Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
24
|
Liao W, Gu C, Huang A, Yao J, Sun R. MicroRNA-33b inhibits tumor cell growth and is associated with prognosis in colorectal cancer patients. Clin Transl Oncol 2015; 18:449-56. [DOI: 10.1007/s12094-015-1388-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/17/2015] [Indexed: 01/20/2023]
|
25
|
Wang J, Song YX, Ma B, Wang JJ, Sun JX, Chen XW, Zhao JH, Yang YC, Wang ZN. Regulatory Roles of Non-Coding RNAs in Colorectal Cancer. Int J Mol Sci 2015; 16:19886-919. [PMID: 26307974 PMCID: PMC4581331 DOI: 10.3390/ijms160819886] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive examination of the aberrant regulation of ncRNAs in colorectal cancer (CRC) and a summary of the current findings on ncRNAs, including long ncRNAs, microRNAs, small interfering RNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, and circular RNAs. These ncRNAs might become novel biomarkers and targets as well as potential therapeutic tools for the treatment of CRC in the near future and this review may provide important clues for further research on CRC and for the selection of effective therapeutic targets.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Bin Ma
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jia-Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Xiao-Wan Chen
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yu-Chong Yang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
26
|
LV LV, ZHOU JIANYU, LIN CHANGWEI, HU GUI, YI LU, DU JUAN, GAO KAI, LI XIAORONG. DNA methylation is involved in the aberrant expression of miR-133b in colorectal cancer cells. Oncol Lett 2015; 10:907-912. [PMID: 26622593 PMCID: PMC4509424 DOI: 10.3892/ol.2015.3336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/30/2015] [Indexed: 12/27/2022] Open
Abstract
The dysregulation of microRNA (miRNA) expression is highly involved in cancer. Recently, a number of studies have demonstrated that the silencing of specific miRNAs is associated with DNA methylation. The muscle-specific miRNA-113b (miR-133b) is markedly downregulated in human colorectal cancer (CRC) compared with healthy colon cells, and is critical in the regulation of CRC cell proliferation and apoptosis. However, the mechanism of miR-133b downregulation in CRC has yet to be elucidated. Therefore, the aim of the present study was to determine the existence of an association between DNA methylation and miR-133b expression in CRC cells. It was identified that miR-133b promoter hypermethylation is upregulated in CRC tissues. To investigate the role of miR-133b methylation in CRC cells, the survival, cell cycle and invasion were analyzed in HT-29 and SW620 CRC cells treated with 5-aza-2'-deoxycytidine (5-Aza-CdR), 4-phenylbutyric acid (PBA) and 5-Aza-CdR/PBA. Functional analysis demonstrated that demethylation increased the expression of miR-133b, which restored migration and apoptosis in CRC cells. Thus, these results indicate that the regulation of miR-133b methylation may provide a novel therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- LV LV
- Department of Emergency Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - JIANYU ZHOU
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - CHANGWEI LIN
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - GUI HU
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - LU YI
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - JUAN DU
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - KAI GAO
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - XIAORONG LI
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
27
|
Kai Y, Qiang C, Xinxin P, Miaomiao Z, Kuailu L. Decreased miR-154 expression and its clinical significance in human colorectal cancer. World J Surg Oncol 2015; 13:195. [PMID: 26048406 PMCID: PMC4472271 DOI: 10.1186/s12957-015-0607-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/20/2015] [Indexed: 12/02/2022] Open
Abstract
Background miRNA-154 (miR-154) has been identified as a tumor suppressor in several types of human cancers. However, its clinical significance in colorectal cancer (CRC) is still unclear. The aim of this study was to analyze the association of miR-154 expression with clinicopathologic features and prognosis in CRC patients. Methods Quantitative RT-PCR was performed to evaluate miR-154 levels in 169 pairs of CRC specimens and adjacent noncancerous tissues. Then, the associations of miR-154 expression with clinicopathological factors or survival of patients suffering CRC were determined. Results The expression levels of miR-154 in CRC tissues were significantly lower than those in corresponding noncancerous tissues (P < 0.001). Decreased miR-154 expression was significantly associated with large tumor size, positive lymph node metastasis, and advanced clinical stage. Moreover, the univariate analysis demonstrated that CRC patients with low miR-154 expression had poorer overall survival (P = 0.006). The multivariate analysis identified low miR-154 expression as an independent predictor of poor survival. Conclusions These findings suggested that miR-154 downregulation may be associated with tumor progression of CRC, and that this miR may be an independent prognostic marker for CRC patients.
Collapse
Affiliation(s)
- Yang Kai
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | - Cheng Qiang
- Department of neurology, Huai'an No. 2 Hospital, Huai'an, Jiangsu Province, China
| | - Pan Xinxin
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | - Zhou Miaomiao
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | - Lin Kuailu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Fu R, Yang P, Wu HL, Li ZW, Li ZY. GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling. Asian Pac J Cancer Prev 2015; 15:7245-9. [PMID: 25227822 DOI: 10.7314/apjcp.2014.15.17.7245] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glucose regulated protein 78 (GRP78) is usually recognized as a chaperone in the endoplasmic reticulum. However, increasing evidence indicates that GRP78 can be translocated to the cell surface, acting as a signaling receptor for a variety of ligands. Since little is known about the secretion of GRP78 and its role in the progression of colon cancer we here focused on GRP78 from colon cancer cells, and purified GRP78 protein mimicking the secreted GRP78 was able to utilize cell surface GRP78 as its receptor, activating downstream PI3K/Akt and Wnt/β-catenin signaling and promote colon cancer cell proliferation. Our study revealed a new mode of action of autocrine GRP78 in cancer progression: secreted GRP78 binds to cell surface GRP78 as its receptor and activates intracellular proliferation signaling.
Collapse
Affiliation(s)
- Rong Fu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shaxi University, Taiyuan, China E-mail :
| | | | | | | | | |
Collapse
|
29
|
Let-7b inhibits cell proliferation, migration, and invasion through targeting Cthrc1 in gastric cancer. Tumour Biol 2014; 36:3221-9. [PMID: 25510669 DOI: 10.1007/s13277-014-2950-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of specific microRNAs (miRNAs) is found to play a vital role in carcinogenesis and progression of gastric cancer (GC). In the present study, we investigated the expression profiles of miRNAs in gastric cancer. Let-7b was found downregulated remarkably in gastric cancer tissues and was correlated with Helicobacter pylori infection, tumor stage, and lymphatic metastasis. Ectopic expression of let-7b suppressed the growth, migration, invasion, and tumorigenicity of GC cells, whereas let-7b knockdown promoted these phenotypes. Bioinformatic analysis predicted collagen triple helix repeat containing 1 (Cthrc1) as a direct target of let-7b. Luciferase assay showed that let-7b repressed the activity of Cthrc1 through binding its 3'UTR. Western blotting also confirmed that the protein levels of Cthrc1 were decreased by let-7b. Cthrc1 was significantly upregulated and reversely correlated with let-7b levels in GC. Co-expression of let-7b and Cthrc1 without its 3'UTR could rescue cell growth, migration, and invasion inhibited by let-7b. These results suggest that let-7b may directly target Cthrc1 and function as a tumor suppressor gene in GC.
Collapse
|
30
|
GUO YIHANG, LI XIAORONG, LIN CHANGWEI, ZHANG YI, HU GUI, ZHOU JIANYU, DU JUAN, GAO KAI, GAN YI, DENG HAO. MicroRNA-133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease. Mol Med Rep 2014; 11:2805-12. [DOI: 10.3892/mmr.2014.3075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/14/2014] [Indexed: 01/15/2023] Open
|
31
|
Combined downregulation of microRNA-133a and microRNA-133b predicts chemosensitivity of patients with esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy. Med Oncol 2014; 31:263. [PMID: 25280517 DOI: 10.1007/s12032-014-0263-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022]
Abstract
microRNA-133a (miR-133a) and miR-133b, located on chromosome 18 in the same bicistronic unit, have been commonly identified as being downregulated in esophageal squamous cell carcinoma (ESCC). The aim of this study was to investigate the correlation of miR-133a/b expression with efficacy of paclitaxel-based chemotherapy and clinical outcome of ESCC patients. miR-133a expression and miR-133b expression were examined in 100 newly diagnosed ESCC patients prior to treatment by quantitative real-time PCR. Then, the patients received four cycles of paclitaxel-based chemotherapy, the short-term treatment efficacy was evaluated, and a 3-year follow-up was performed. Expression levels of miR-133a and miR-133b were both significantly lower in ESCC tissues compared to adjacent noncancerous tissues (both P < 0.001). In addition, combined miR-133a/b downregulation was found to be closely correlated with advanced tumor stage (P = 0.02) and poor differentiation (P = 0.01). Moreover, the response rate of ESCC patients to paclitaxel-based chemotherapy was significantly higher in combined miR-133a/b downregulation group compared with other groups (P = 0.02). Furthermore, univariate and multivariate Cox analyses revealed that tumor stage and combined expression of miR-133a/b were independent prognosis factors in ESCC patients. Our data offer the convincing evidence that combined expression of miR-133a and miR-133b may predict chemosensitivity of patients with ESCC undergoing paclitaxel-based chemotherapy, implying its importance in applying 'personalized cancer medicine' in the clinical treatment of ESCC. We also identified combined expression of miR-133a and miR-133b as an effective prognostic marker of this malignancy.
Collapse
|
32
|
Orang AV, Barzegari A. MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy. Asian Pac J Cancer Prev 2014; 15:6989-99. [DOI: 10.7314/apjcp.2014.15.17.6989] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Bu Q, Fang Y, Cao Y, Chen Q, Liu Y. Enforced expression of miR-101 enhances cisplatin sensitivity in human bladder cancer cells by modulating the cyclooxygenase-2 pathway. Mol Med Rep 2014; 10:2203-9. [PMID: 25109742 DOI: 10.3892/mmr.2014.2455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/09/2014] [Indexed: 11/05/2022] Open
Abstract
Alterations in microRNA (miRNA) expression have been shown to be involved in the tumor response to chemotherapy. However, the possible role of miR‑101 in cisplatin sensitivity in human bladder cancer cells remains unclear. In this study, quantitative polymerase chain reaction and western blotting were utilized to determine the expression profiles of miR‑101 and cyclooxygenase‑2 (COX‑2) in human bladder cancer cells. The effect of miR‑101 and small interfering RNA (siRNA) against COX‑2 on cell viability was evaluated using MTT assays, and apoptosis levels were determined using fluorescence‑activated cell sorting analysis of Annexin V/propidium iodide‑stained cells. Luciferase reporter plasmids were constructed to confirm direct targeting. This study found that the expression of miR‑101 was downregulated in the cisplatin‑resistant cell line T24/CDDP as compared with that in the parental line, T24. Furthermore, overexpression of miR‑101 significantly increased the anti‑proliferative effects and apoptosis induced by cisplatin, whereas knockdown of miR‑101 significantly decreased the anti‑proliferative effects and apoptosis induced by cisplatin. In addition, downregulation of miR‑101 induced cell survival and cisplatin resistance through the upregulation of COX‑2 expression. Luciferase gene reporter assays confirmed that COX‑2 was a direct target gene of miR‑101. Inhibition of COX‑2 using COX‑2 siRNA abrogated the cisplatin resistance induced by miR‑101 downregulation. These results suggest that miR‑101 may provide a novel mechanism for understanding cisplatin resistance in bladder cancer by modulating the COX‑2 pathway.
Collapse
Affiliation(s)
- Qiang Bu
- Department of Urology, Danyang People's Hospital, Zhenjiang, Jiangsu, P.R. China
| | - Yue Fang
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, P.R. China
| | - Yuan Cao
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, P.R. China
| | - Qiaoyun Chen
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, P.R. China
| | - Yangchen Liu
- Department of Oncology, Taixing People's Hospital, Taixing, Jiangsu, P.R. China
| |
Collapse
|