1
|
Individual and joint effects of genetic polymorphisms in microRNA-machinery genes on congenital heart disease susceptibility. Cardiol Young 2021; 31:965-968. [PMID: 33423710 DOI: 10.1017/s1047951120004874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Single-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.2 ± 10 years) and 514 healthy controls (289 males; age 15.8 ± 18 years). Genotyping of polymorphisms in miRNA-machinery genes was performed using a TaqMan®SNP genotyping assay. A genetic risk score was calculated by summing the number of risk alleles of selected single-nucleotide polymorphisms. There was a significantly increased risk of CHD in patients with XPO5 rs11077 CC genotype as compared to AC heterozygote and AA homozygote patients (ORadjusted = 1.7; 95% CI: 1.1-2.8; p = 0.018). A clear tendency to significance was also found for DROSHA rs10719 AA genotype and CHD risk for both codominant and recessive models (ORadjusted = 1.8; 95% CI: 0.91-3.8; p = 0.09 and ORadjusted = 1.9; 95% CI: 0.92-4; p = 0.08, respectively). The resulting genetic risk score predicted a 1.73 risk for CHD per risk allele (95% CI: 1.2-2.5; p = 0.002). Subjects in the top tertile of genetic risk score were estimated to have more than three-fold increased risk of CHD compared with those in the bottom tertile (ORadjusted = 3.52; 95% CI: 1.4-9; p = 0.009). Our findings show that the genetic variants in miRNA-machinery genes might participate in the development of CHD.
Collapse
|
2
|
Dobrijević Z, Matijašević S, Išić Denčić T, Savić-Pavićević D, Nedić O, Brajušković G. Association between genetic variants in DICER1 and cancer risk: An updated meta-analysis. Gene 2020; 766:145132. [PMID: 32911029 DOI: 10.1016/j.gene.2020.145132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Dysfunctions in mechanisms of gene regulation based on RNA interference are recognized as a common feature of the molecular basis of cancer pathogenesis. Therefore, as one of the crucial components of the machinery involved in the biogenesis of both siRNAs and microRNA molecules, DICER was recognized as one of the candidates for the research in the field of carcinogenesis. Due to their potential functional properties, several genetic variants located within DICER1 gene were analyzed for their possible association with the susceptibility to cancer through case-control studies. In order to elucidate their effect on the overall cancer risk, we conducted an updated meta-analysis of all eligible association studies. The publications were selected based on PubMed database search, while OpenMeta-analyst and MetaGenyo software were used for quantitative data synthesis. Statistically significant results were found for the association of rs1057035 with the overall cancer risk under multiple genetic models (PCT vs. TT < 0.001, ORCT vs. TT = 0.870, 95% CI = 0.812-0.933; Pallelic = 0.009, ORallelic = 0.896, 95% CI = 0.825-0.973; Pdom < 0.001, ORdom = 0.874, 95% CI = 0.817-0.934; Poverdom = 0.004, ORoverdom = 0.858, 95% CI = 0.773-0.953). Other selected genetic variants within DICER1, rs13078, rs1209904 and rs3742330, did not show the association with the overall susceptibility to malignant diseases. We conclude that rs1057035 may represent a potential biomarker associated with the risk of developing cancer, which requires a confirmation in a larger set of studies.
Collapse
Affiliation(s)
- Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia.
| | - Suzana Matijašević
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tijana Išić Denčić
- Department for Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Ghasemi M, Rezaei M, Yazdi A, Keikha N, Maruei-Milan R, Asadi-Tarani M, Salimi S. The effects of DICER1 and DROSHA polymorphisms on susceptibility to recurrent spontaneous abortion. J Clin Lab Anal 2019; 34:e23079. [PMID: 31659796 PMCID: PMC7083489 DOI: 10.1002/jcla.23079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is a serious problem in pregnancy. The exact etiology of RSA is unknown in more than 50% of all the patients. However, genetic variations are known as susceptibility factors for idiopathic RSA. Considering the role of miRNA biosynthesis machinery in the miRNA production and effect of miRNAs on various diseases, this study aimed to evaluate the effects of DICER1 rs3742330 and DROSHA rs6877842 polymorphisms on RSA risk. Methods In this case‐control study, 150 RSA patients and 195 age‐matched healthy female controls were recruited. Both polymorphisms were genotyped using PCR‐RFLP method. Results The frequency of DICER1 rs3742330AG genotype was higher in the control group (P = .022). There was a statistically significant association between rs3742330 polymorphism and a reduced RSA risk in dominant and allelic models (P = .013 and P = .007, respectively). No statistically significant association was found between DROSHA rs6877842 variant and RSA risk. The combination of AG and GC genotypes and G‐G alleles of DICER1 rs3742330 and DROSHA rs6877842 polymorphisms led to a decreased RSA risk. However, the synergic effect of rs3742330A and rs6877842G alleles (A‐G) and AA‐GG genotypes was associated with an increased RSA risk. Conclusion the DICER1 rs3742330AG genotype and combination of AG and GC genotypes and G‐G alleles of DICER1 rs3742330 and DROSHA rs6877842 polymorphisms were associated with a reduced RSA risk.
Collapse
Affiliation(s)
- Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Moloud Infertility Center, Ali ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Atefeh Yazdi
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narjes Keikha
- Moloud Infertility Center, Ali ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rostam Maruei-Milan
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mina Asadi-Tarani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Borghini A, Pulignani S, Mercuri A, Vecoli C, Turchi S, Carpeggiani C, Andreassi MG. Influence of genetic polymorphisms in DICER and XPO5 genes on the risk of coronary artery disease and circulating levels of vascular miRNAs. Thromb Res 2019; 180:32-36. [DOI: 10.1016/j.thromres.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
5
|
Malhotra P, Read GH, Weidhaas JB. Breast Cancer and miR-SNPs: The Importance of miR Germ-Line Genetics. Noncoding RNA 2019; 5:ncrna5010027. [PMID: 30897768 PMCID: PMC6468861 DOI: 10.3390/ncrna5010027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies in cancer diagnostics have identified microRNAs (miRNAs) as promising cancer biomarkers. Single nucleotide polymorphisms (SNPs) in miRNA binding sites, seed regions, and coding sequences can help predict breast cancer risk, aggressiveness, response to stimuli, and prognosis. This review also documents significant known miR-SNPs in miRNA biogenesis genes and their effects on gene regulation in breast cancer, taking into account the genetic background and ethnicity of the sampled populations. When applicable, miR-SNPs are evaluated in the context of other patient factors, including mutations, hormonal status, and demographics. Given the power of miR-SNPs to predict patient cancer risk, prognosis, and outcomes, further study of miR-SNPs is warranted to improve efforts towards personalized medicine.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90001, USA.
| | - Graham H Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90001, USA.
| | - Joanne B Weidhaas
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90001, USA.
| |
Collapse
|
6
|
Eskandari F, Teimoori B, Rezaei M, Mohammadpour‐Gharehbagh A, Narooei‐Nejad M, Mehrabani M, Salimi S. Relationships between Dicer 1 polymorphism and expression levels in the etiopathogenesis of preeclampsia. J Cell Biochem 2018; 119:5563-5570. [DOI: 10.1002/jcb.26725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Eskandari
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| | - Batool Teimoori
- Department of Obstetrics and GynecologySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Mahnaz Rezaei
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| | - Abbas Mohammadpour‐Gharehbagh
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| | - Mehrnaz Narooei‐Nejad
- Department of Medical GeneticsSchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Mehrnaz Mehrabani
- Physiology Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Saeedeh Salimi
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
7
|
Moghbelinejad S, Najafipour R, Momeni A. Association of rs1057035polymorphism in microRNA biogenesis pathway gene (DICER1) with azoospermia among Iranian population. Genes Genomics 2017; 40:17-24. [DOI: 10.1007/s13258-017-0605-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
|
8
|
He J, Zhao J, Zhu W, Qi D, Wang L, Sun J, Wang B, Ma X, Dai Q, Yu X. MicroRNA biogenesis pathway genes polymorphisms and cancer risk: a systematic review and meta-analysis. PeerJ 2016; 4:e2706. [PMID: 27957388 PMCID: PMC5147022 DOI: 10.7717/peerj.2706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) may promote the development and progression of human cancers. Therefore, components of the miRNA biogenesis pathway may play critical roles in human cancer. Single nucleotide polymorphisms (SNPs) or mutations in genes involved in the miRNA biogenesis pathway may alter levels of gene expression, affecting disease susceptibility. Results of previous studies on genetic variants in the miRNA biogenesis pathway and cancer risk were inconsistent. Therefore, a meta-analysis is needed to assess the associations of these genetic variants with human cancer risk. We searched for relevant articles from PubMed, Web of Science, CNKI, and CBM through Jun 21, 2016. In total, 21 case-control articles met all of the inclusion criteria for the study. Significant associations were observed between cancer risk and the DGCR8polymorphism rs417309 G >A (OR 1.22, 95% CI [1.04-1.42]), as well as the DICER1 polymorphism rs1057035 TT (OR 1.13, 95% CI [1.05-1.22]). These SNPs exhibit high potential as novel diagnostic markers. Future studies with larger sample sizes and more refined analyses are needed to shed more light on these findings.
Collapse
Affiliation(s)
- Jieyu He
- Southeast University, Department of Public Health, Nanjing, China
| | - Jun Zhao
- National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Wenbo Zhu
- Southeast University, Department of Public Health, Nanjing, China
| | - Daxun Qi
- National Research Institute for Family Planning, Beijing, China
| | - Lina Wang
- Southeast University, Department of Public Health, Nanjing, China
| | - Jinfang Sun
- Southeast University, Department of Public Health, Nanjing, China
| | - Bei Wang
- Southeast University, Department of Public Health, Nanjing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Qiaoyun Dai
- National Research Institute for Family Planning, Beijing, China
| | - Xiaojin Yu
- Southeast University, Department of Public Health, Nanjing, China
| |
Collapse
|