1
|
Dimitrijevs P, Freiliba I, Pčolkins A, Leja M, Arsenyan P. Total cardiolipin levels in gastric and colon cancer: evaluating the prognostic potential. Lipids Health Dis 2025; 24:76. [PMID: 40016755 PMCID: PMC11866619 DOI: 10.1186/s12944-025-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Cardiolipin (CL) is a signature phospholipid of mitochondria that maintains the integrity of mitochondrial membrane and supports proper mitochondrial function. Alterations in CL level and composition can impair or, conversely, improve mitochondrial function and bioenergetics, both of which are critical for cancer metabolism. However, conflicting reports on CL levels across different cancer types and limited research using human patient samples limit our understanding of its diagnostic potential. METHODS This cross-sectional study explores CL concentrations in gastric and colon cancer tissues using a CL-specific fluorescent probe MitoCLue and compares them to adjacent healthy tissues. RESULTS In gastric cancer, CL levels showed no significant differences between tumor and healthy tissues, suggesting that metabolic shifts in gastric cancer do not affect total CL content. In contrast, colon cancer tissues exhibited a significant 33% increase in CL levels, indicating mitochondrial adaptation and/or increase in mitochondrial mass in colon cancer. No associations were found between CL levels and patient demographic factors; although a weak correlation with body mass index was noted. CONCLUSION We successfully applied MitoCLue to quantitatively assess the total CL level in healthy and tumor tissues from patients with gastric or colon cancer. The distinct CL levels in gastric and colon cancer suggest that there are cancer-type specific mitochondrial adaptations, reflecting unique bioenergetic demands and metabolic reprogramming pathways. While a 33% increase in CL levels was observed in colon cancer tissues compared to healthy adjacent tissues, this modest variation may limit its utility as a standalone biomarker.
Collapse
Affiliation(s)
- Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV1006, Latvia.
| | - Ilona Freiliba
- Institute of Clinical and Preventive Medicine, University of Latvia, Gaiļezera 1, Riga, LV1079, Latvia
- Riga East University Hospital, Hipokrata 2, Riga, LV1038, Latvia
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, University of Latvia, Gaiļezera 1, Riga, LV1079, Latvia
- Riga East University Hospital, Hipokrata 2, Riga, LV1038, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Gaiļezera 1, Riga, LV1079, Latvia
- Riga East University Hospital, Hipokrata 2, Riga, LV1038, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV1006, Latvia.
| |
Collapse
|
2
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
3
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
4
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Eybpoosh S, Mohammadi M. Dynamic Changes of Mitochondrial DNA Copy Number in Gastrointestinal Tract Cancers: A Systematic Review and Meta-Analysis. Cancer Invest 2021; 39:163-179. [PMID: 33290105 DOI: 10.1080/07357907.2020.1857394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have performed a systematic review and meta-analysis for evaluation of mitochondrial DNA copy number (mtDNA-CN) alterations in peripheral blood leukocytes (PBL), and tumor tissues of gastrointestinal tract (GIT) cancers. Analysis of the PBL demonstrated a significant decrease [OR: 0.6 (0.5, 0.8)] and increase [OR: 1.4 (1.1, 1.9)] prior to and following GIT cancer development, respectively. This trend was more evident in CRC, and GC subgroups. Analysis of tissue yielded high levels of heterogeneity. However, the mean difference for the CRC subgroup was statistically significant [1.5 (1.0, 2.2)]. Our analysis suggests mtDNA-CN deserves further investigations as a GIT-cancer screening tool.
Collapse
Affiliation(s)
- Mehdi Alikhani
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Institut Pasteur, Unit of Helicobacter Pathogenesis, CNRS UMR2001, Paris Cedex 15, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Cavalcante GC, Magalhães L, Ribeiro-dos-Santos Â, Vidal AF. Mitochondrial Epigenetics: Non-Coding RNAs as a Novel Layer of Complexity. Int J Mol Sci 2020; 21:E1838. [PMID: 32155913 PMCID: PMC7084767 DOI: 10.3390/ijms21051838] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are organelles responsible for several functions involved in cellular balance, including energy generation and apoptosis. For decades now, it has been well-known that mitochondria have their own genetic material (mitochondrial DNA), which is different from nuclear DNA in many ways. More recently, studies indicated that, much like nuclear DNA, mitochondrial DNA is regulated by epigenetic factors, particularly DNA methylation and non-coding RNAs (ncRNAs). This field is now called mitoepigenetics. Additionally, it has also been established that nucleus and mitochondria are constantly communicating to each other to regulate different cellular pathways. However, little is known about the mechanisms underlying mitoepigenetics and nuclei-mitochondria communication, and also about the involvement of the ncRNAs in mitochondrial functions and related diseases. In this context, this review presents the state-of-the-art knowledge, focusing on ncRNAs as new players in mitoepigenetic regulation and discussing future perspectives of these fields.
Collapse
Affiliation(s)
- Giovanna C. Cavalcante
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Rua dos Mundurucus, 4487, 66073-005 Belém, PA, Brazil
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
6
|
Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep 2019; 9:15716. [PMID: 31673122 PMCID: PMC6823544 DOI: 10.1038/s41598-019-51951-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are organelles that perform major roles in cellular operation. Thus, alterations in mitochondrial genome (mtGenome) may lead to mitochondrial dysfunction and cellular deregulation, influencing carcinogenesis. Gastric cancer (GC) is one of the most incident and mortal types of cancer in Brazil, particularly in the Amazon region. Here, we sequenced and compared the whole mtGenome extracted from FFPE tissue samples of GC patients (tumor and internal control – IC) and cancer-free individuals (external control – EC) from this region. We found 3-fold more variants and up to 9-fold more heteroplasmic regions in tumor when compared to paired IC samples. Moreover, tumor presented more heteroplasmic variants when compared to EC, while IC and EC showed no significant difference when compared to each other. Tumor also presented substantially more variants in the following regions: MT-RNR1, MT-ND5, MT-ND4, MT-ND2, MT-DLOOP1 and MT-CO1. In addition, our haplogroup results indicate an association of Native American ancestry (particularly haplogroup C) to gastric cancer development. To the best of our knowledge, this is the first study to sequence the whole mtGenome from FFPE samples and to apply mtGenome analysis in association to GC in Brazil.
Collapse
|
7
|
Jung SJ, Cho JH, Park WJ, Heo YR, Lee JH. Telomere length is correlated with mitochondrial DNA copy number in intestinal, but not diffuse, gastric cancer. Oncol Lett 2017; 14:925-929. [PMID: 28693253 DOI: 10.3892/ol.2017.6197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/03/2017] [Indexed: 01/07/2023] Open
Abstract
A positive correlation between telomere length and mitochondrial DNA (mtDNA) copy number has previously been observed in healthy individuals, and in patients with psychiatric disorders. In the present study, telomere length and mtDNA copy number were evaluated in gastric cancer (GC) tissue samples. DNA was extracted from 109 GC samples (including 82 intestinal, and 27 diffuse cases), and the telomere length and mtDNA copy number were analyzed using a quantitative-polymerase chain reaction assay. The relative telomere length and mtDNA copy number in tumor tissue, as compared with in normal tissue, (mean ± standard deviation) in all GC samples were 11.48±1.14 and 14.86±1.35, respectively. Telomere length and mtDNA copy number were not identified as exhibiting clinical or prognostic value for GC. However, positive correlations between telomere length and mitochondrial DNA copy number were identified in GC (r=0.408, P<0.001) and in the adjacent normal mucosa (r=0.363; P<0.001). When stratified by Lauren classification, the correlation was identified in intestinal type GC samples (r=0.461; P<0.001), but not in diffuse type GC samples (r=0.225; P=0.260). This result indicated that loss of the correlation of telomeres and mitochondrial function may induce the initiation or progression of GC pathogenesis.
Collapse
Affiliation(s)
- Soo-Jung Jung
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Ji-Hyoung Cho
- Department of General Surgery, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Won-Jin Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Yu-Ran Heo
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Chen N, Wen S, Sun X, Fang Q, Huang L, Liu S, Li W, Qiu M. Elevated Mitochondrial DNA Copy Number in Peripheral Blood and Tissue Predict the Opposite Outcome of Cancer: A Meta-Analysis. Sci Rep 2016; 6:37404. [PMID: 27857175 PMCID: PMC5114650 DOI: 10.1038/srep37404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
Previous studies have suggested that mitochondrial DNA (mtDNA) copy number was associated with cancer risk. However, no solid conclusion revealed the potential predictive value of mtDNA copy number for cancer prognosis. The present meta-analysis was performed to clarify the problem. Hence, we performed a systematic search in PubMed, EmBase, Web of Science databases independently and a total of eighteen studies comprising 3961 cases satisfied the criteria and finally enrolled. Our results didn’t show the association between them but significant heterogeneity in overall analysis (OS: HR = 0.923, 95% CI: 0.653–1.306, p = 0.652; DFS: HR = 0.997, 95% CI: 0.599–1.659, p = 0.99). However, subgroup analysis stratified by sample came to the opposite conclusion. High level mitochondrial DNA copy number in peripheral blood predicted a poor cancer prognosis (OS: HR = 1.624, 95% CI: 1.211–2.177, p = 0.001; DFS: HR = 1.582, 95% CI: 1.026–2.439, p = 0.038) while patients with high level mitochondrial DNA copy number in tumor tissue exhibited better outcomes (OS: HR = 0.604 95% CI: 0.406–0.899, p = 0.013; DFS: HR = 0.593, 95% CI: 0.411–0.857, p = 0.005). These findings were further proved in detailed analyses in blood or tissue subgroup. In conclusion, our study suggested the elevated mtDNA copy number in peripheral blood predicted a poor cancer prognosis while the better outcome was presented among patients with elevated mtDNA copy number in tumor tissue.
Collapse
Affiliation(s)
- Nan Chen
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Wen
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoru Sun
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Fang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Huang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuai Liu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanling Li
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Qiu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China
| |
Collapse
|