1
|
Hao P, Zhang J, Fang S, Jia M, Xian X, Yan S, Wang Y, Ren Q, Yue F, Cui H. Lipocalin-2 inhibits pancreatic cancer stemness via the AKT/c-Jun pathway. Hum Cell 2022; 35:1475-1486. [PMID: 35792978 DOI: 10.1007/s13577-022-00735-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are involved in cancer recurrence and metastasis owing to their self-renewal properties and drug-resistance capacity. Lipocalin-2 (Lcn2) of the lipocalin superfamily is highly expressed in pancreatic cancer. Nevertheless, reports on the involvement of Lcn2 in the regulation of pancreatic CSC properties are scant. This study is purposed to investigate whether Lcn2 plays a crucial role in CSC renewal and stemness maintenance in pancreatic carcinoma. Immunohistochemistry results of tumor tissue chips together with Gene Expression Omnibus sequencing files confirmed that Lcn2 is highly expressed in pancreatic carcinoma compared with that in normal tissues. The exogenous expression of Lcn2 attenuated CSC-associated SOX2, CD44, and EpCAM expression and suppressed sarcosphere formation and tumorigenesis in the pancreatic carcinoma cell line PANC-1, which showed low expression of Lcn2. However, Lcn2 knockout in BxPC-3 cell line, which presented high Lcn2 expression, promoted CSC stemness, further enhancing sarcosphere formation and tumorigenesis. Moreover, Lcn2 was found to regulate stemness in pancreatic cancer depending on the activation of AKT and c-Jun. Lcn2 suppresses stemness properties in pancreatic carcinoma by activating the AKT-c-Jun pathway, and thus, it may be a novel candidate to suppress the stemness of pancreatic cancer. This study provides a new insight into disease progression.
Collapse
Affiliation(s)
- Peipei Hao
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Shu Fang
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Xian Xian
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sinan Yan
- Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunpeng Wang
- Department of General Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Fengming Yue
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Nagano, 390-0312, Japan.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway. Oncogene 2021; 40:6369-6380. [PMID: 34588619 DOI: 10.1038/s41388-021-02029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
The therapeutic efficacy of 5-fluorouracil (5-FU) is often reduced by the development of drug resistance. We observed significant upregulation of lipocalin 2 (LCN2) expression in a newly established 5-FU-resistant colorectal cancer (CRC) cell line. In this study, we demonstrated that 5-FU-treated CRC cells developed resistance through LCN2 upregulation caused by LCN2 promoter demethylation and that feedback between LCN2 and NF-κB further amplified LCN2 expression. High LCN2 expression was associated with poor prognosis in CRC patients. LCN2 attenuated the cytotoxicity of 5-FU by activating the SRC/AKT/ERK-mediated antiapoptotic program. Mechanistically, the LCN2-integrin β3 interaction enhanced integrin β3 stability, thus recruiting SRC to the cytomembrane for autoactivation, leading to downstream AKT/ERK cascade activation. Targeting LCN2 or SRC compromised the growth of CRC cells with LCN2-induced 5-FU resistance. Our findings demonstrate a novel mechanism of acquired resistance to 5-FU, suggesting that LCN2 can be used as a biomarker and/or therapeutic target for advanced CRC.
Collapse
|
3
|
Li J, Wang Z, Tie C. High expression of ladinin-1 (LAD1) predicts adverse outcomes: a new candidate docetaxel resistance gene for prostatic cancer (PCa). Bioengineered 2021; 12:5749-5759. [PMID: 34516317 PMCID: PMC8806705 DOI: 10.1080/21655979.2021.1968647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Docetaxel resistance is one of the major obstacles that undermine the treatment outcome of PCa. Exploring molecular mechanisms associated with docetaxel resistance could provide insights into the formulation of novel strategies enhancing the efficacy of PCa treatment. Ladinin-1 (LAD1) is an anchoring filament protein in basement membranes, which contributes to the association of the epithelial cells with the underlying mesenchyme. LAD1 has been implicated in the progression of different cancers. However, its role in PCa remains to be investigated. In the present study, we found that LAD1 was highly expressed in docetaxel-resistant PCa cells, while its expression was significantly suppressed in tumor samples after docetaxel treatment. Moreover, the expression level of LAD1 in PCa tissues was significantly higher than that of normal tissue, and high expression level of LAD1 was significantly associated with adverse outcomes of PCa patients. Finally, high expression of LAD1 in PCa tissue was also correlated with the expression level of genes involving in tumor cell proliferation and invasive behaviors. Collectively, our data suggest that LAD1 may serve as a potential prognostic factor in PCa patients.
Collapse
Affiliation(s)
- Jianping Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Chong Tie
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
4
|
Gote V, Pal D. Octreotide-Targeted Lcn2 siRNA PEGylated Liposomes as a Treatment for Metastatic Breast Cancer. Bioengineering (Basel) 2021; 8:bioengineering8040044. [PMID: 33916786 PMCID: PMC8067132 DOI: 10.3390/bioengineering8040044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Lcn2 overexpression in metastatic breast cancer (MBC) can lead to cancer progression by inducing the epithelial-to-mesenchymal transition and enhancing tumor angiogenesis. In this study, we engineered a PEGylated liposomal system encapsulating lipocalin 2 (Lcn2) small interfering RNA (Lcn2 siRNA) for selective targeting MBC cell line MCF-7 and triple-negative breast cancer cell line MDA-MB-231. The PEGylated liposomes were decorated with octreotide (OCT) peptide. OCT is an octapeptide analog of somatostatin growth hormone, having affinity for somatostatin receptors, overexpressed on breast cancer cells. Optimized OCT-targeted Lcn2 siRNA encapsulated PEGylated liposomes (OCT-Lcn2-Lipo) had a mean size of 152.00 nm, PDI, 0.13, zeta potential 4.10 mV and entrapment and loading efficiencies of 69.5% and 7.8%, respectively. In vitro uptake and intracellular distribution of OCT-Lcn2-Lipo in MCF-7 and MDA-MB-231 and MCF-12A cells demonstrated higher uptake for the OCT-targeted liposomes at 6 h by flow cytometry and confocal microscopy. OCT-Lcn2-lipo could achieve approximately 55-60% silencing of Lcn2 mRNA in MCF-7 and MDA-MB-231 cells. OCT-Lcn2-Lipo also demonstrated in vitro anti-angiogenic effects in MCF-7 and MDA-MB-231 cells by reducing VEGF-A and reducing the endothelial cells (HUVEC) migration levels. This approach may be useful in inhibiting angiogenesis in MBC.
Collapse
|
5
|
Meurer SK, Tezcan O, Lammers T, Weiskirchen R. Differential regulation of Lipocalin 2 (LCN2) in doxorubicin-resistant 4T1 triple negative breast cancer cells. Cell Signal 2020; 74:109731. [DOI: 10.1016/j.cellsig.2020.109731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
|
6
|
Malone MK, Smrekar K, Park S, Blakely B, Walter A, Nasta N, Park J, Considine M, Danilova LV, Pandey NB, Fertig EJ, Popel AS, Jin K. Cytokines secreted by stromal cells in TNBC microenvironment as potential targets for cancer therapy. Cancer Biol Ther 2020; 21:560-569. [PMID: 32213106 PMCID: PMC7515526 DOI: 10.1080/15384047.2020.1739484] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/08/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In triple-negative breast cancer (TNBC), the lack of therapeutic markers and effective targeted therapies result in an incurable metastatic disease associated with a poor prognosis. Crosstalks within the tumor microenvironment (TME), including those between cancer and stromal cells, affect the tumor heterogeneity, growth, and metastasis. Previously, we have demonstrated that IL-6, IL-8, and CCL5 play a significant role in TNBC growth and metastasis. In this study, we performed a systematic analysis of cytokine factors secreted from four stromal components (fibroblasts, macrophages, lymphatic endothelial cells, and blood microvascular endothelial cells) induced by four TNBC cell types. Through bioinformatic analysis, we selected putative candidates of secreted factors from stromal cells, which are involved in EMT activity, cell proliferation, metabolism, and matrisome pathways. Among the candidates, LCN2, GM-CSF, CST3, IL-6, IL-8, and CHI3L1 are ranked highly. Significantly, Lipocalin-2 (LCN2) is upregulated in the crosstalk of stromal cells and four different TNBC cells. We validated the increase of LCN2 secreted from four stromal cells induced by TNBC cells. Using a specific LCN2 antibody, we observed the inhibition of TNBC cell growth and migration. Taken together, these results propose secreted factors as molecular targets to treat TNBC progression via crosstalk with stromal components.
Collapse
Affiliation(s)
- Marie K. Malone
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Karly Smrekar
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Sunju Park
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Brianna Blakely
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Alec Walter
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Nicholas Nasta
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Jay Park
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ludmila V. Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Niranjan B. Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Aleksander S. Popel
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kideok Jin
- Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, Albany, NY, USA
| |
Collapse
|
7
|
Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther 2018; 11:8099-8106. [PMID: 30519052 PMCID: PMC6239117 DOI: 10.2147/ott.s181223] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although systematic therapeutic approaches have reduced cancer-associated mortality, metastatic breast cancer can still evade therapy, particularly triple-negative breast cancer, which remains associated with high rates of cancer metastasis and has the worst clinical prognosis. Lipocalin 2 (LCN2) is a secreted glycoprotein that transports small lipophilic ligands. Its abnormal expression serves critical roles in the epithelial-to-mesenchymal transition process, angiogenesis, and cell migration and invasion in breast cancer. Notably, LCN2 functions as an initiator of carcinogenesis and metastasis by involving multiple signaling pathways. The present review aims to summarize research findings on the abnormal expression of LCN2 in breast cancer progression. Furthermore, the review highlights the latest developments of potential LCN2-targeting agents and proposed LCN2-associated molecular mechanisms with regard to breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Chenxia Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ke Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengjie Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiping Huang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,
| | - Fengxue Zhang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,
| | - Hongqi Wang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,
| |
Collapse
|
8
|
Feng M, Feng J, Chen W, Wang W, Wu X, Zhang J, Xu F, Lai M. Lipocalin2 suppresses metastasis of colorectal cancer by attenuating NF-κB-dependent activation of snail and epithelial mesenchymal transition. Mol Cancer 2016; 15:77. [PMID: 27912767 PMCID: PMC5135816 DOI: 10.1186/s12943-016-0564-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023] Open
Abstract
Background Lipocalin2 (LCN2) is a secretory protein that is aberrantly expressed in several types of cancer and has been involved in metastatic progression. However, neither mechanisms nor the role that LCN2 plays in the metastasis of colorectal cancer are clear. Methods LCN2 expression in colorectal cancer was detected by immunohistochemistry in 400 tissue specimens and Kaplan-Meier survival analysis was performed. In vitro, real-time PCR, western blot, colony formation assay, immunofluorescence assay, wound healing assay, migration and invasion experiment were performed to investigate the effects of LCN2 in epithelial mesenchymal transition (EMT), migration and invasion, respectively. In vivo mouse xenograft and metastasis models were utilized to determine tumorigenicity and metastasis ability, and immunohistochemistry, real-time PCR, western blot were used to evaluate the related protein expression. Luciferase reporter assay was used to explore the role of LCN2 on NF-ĸB promoter. Results LCN2 was highly expressed in 66.5% of the specimens, and significantly correlated with positive E-cadherin in the membrane and negative nuclear β-catenin. Higher expression of LCN2 together with negative NF-κB expression was negatively related to nuclear accumulation of snail and predicted favorable prognosis. LCN2 blocked cell proliferation, migration and invasion in vitro and in vivo, and inhibited translocation of NF-κB into nucleus. NF-κB could reverse the effect of LCN2 on EMT and promote snail expression. Rescued snail expression had similar effect without influencing NF-κB activity. Conclusion LCN2 may be an important negative regulator in EMT, invasion and metastasis of CRC via acting as upstream of NF-κB/snail signaling pathway. Thereby combinative manipulation of LCN2 and NF-κB/snail pathway may represent a novel and promising therapeutic approach for the patients with CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0564-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meibao Feng
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jieqiong Feng
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wuzhen Chen
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wubin Wang
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuesong Wu
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangying Xu
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Shahsavari Z, Karami-Tehrani F, Salami S. Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast Cancer Cell Line. Asian Pac J Cancer Prev 2015; 16:7261-6. [DOI: 10.7314/apjcp.2015.16.16.7261] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|