1
|
Zhu S, Paydar M, Wang F, Li Y, Wang L, Barrette B, Bessho T, Kwok BH, Peng A. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. eLife 2020; 9:53402. [PMID: 31951198 PMCID: PMC7012618 DOI: 10.7554/elife.53402] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.
Collapse
Affiliation(s)
- Songli Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Feifei Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yanqiu Li
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Benoit Barrette
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, United States
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| |
Collapse
|
2
|
Bukowska B, Rogalska A, Marczak A. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B. Life Sci 2016; 151:86-92. [PMID: 26944437 DOI: 10.1016/j.lfs.2016.02.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Despite more modern therapeutics approaches and the use of new drugs for chemotherapy, patients with ovarian cancer still have poor prognosis and therefore, new strategies for its cure are highly needed. One of the promising ways is combined therapy, which has many advantages as minimizing drug resistance, enhancing efficacy of treatment, and reducing toxicity. Combined therapy has rich and successful history in the field of ovarian cancer treatment. Currently use therapy is usually based on platinum-containing agent (carboplatin or cisplatin) and a member of taxanes (paclitaxel or docetaxel). In the mid-2000s this standard regimen has been expanded with bevacizumab, monoclonal antibody directed to Vascular Endothelial Growth Factor (VEGF). Another drug combination with promising perspectives is WP 631 given together with epothilone B (Epo B). WP 631 is a bisanthracycline composed of two molecules of daunorubicin linked with a p-xylenyl linker. Epo B is a 16-membered macrolide manifesting similar mechanism of action to taxanes. Their effectiveness against ovarian cancer as single agents is well established. However, the combination of WP 631 and Epo B appeared to act synergistically, meaning that it is much more potent than the single drugs. The mechanism lying under its efficacy includes disturbing essential cell cycle-regulating proteins leading to mitotic slippage and following apoptosis, as well as affecting EpCAM and HMGB1 expression. In this article, we summarized the current state of knowledge regarding combined therapy based on WP 631 and Epo B as a potential way of ovarian cancer treatment.
Collapse
Affiliation(s)
- Barbara Bukowska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| |
Collapse
|