1
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
2
|
Marzęta-Assas P, Jacenik D, Zasłona Z. Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition. Int J Mol Sci 2024; 25:9782. [PMID: 39337272 PMCID: PMC11431790 DOI: 10.3390/ijms25189782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arginases are key enzymes that hydrolyze L-arginine to urea and L-ornithine in the urea cycle. The two arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), regulate the proliferation of cancer cells, migration, and apoptosis; affect immunosuppression; and promote the synthesis of polyamines, leading to the development of cancer. Arginases also compete with nitric oxide synthase (NOS) for L-arginine, and their participation has also been confirmed in cardiovascular diseases, stroke, and inflammation. Due to the fact that arginases play a crucial role in the development of various types of diseases, finding an appropriate candidate to inhibit the activity of these enzymes would be beneficial for the therapy of many human diseases. In this review, based on numerous experimental, preclinical, and clinical studies, we provide a comprehensive overview of the biological and physiological functions of ARG1 and ARG2, their molecular mechanisms of action, and affected metabolic pathways. We summarize the recent clinical trials' advances in targeting arginases and describe potential future drugs.
Collapse
Affiliation(s)
| | - Damian Jacenik
- Molecure S.A., 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | | |
Collapse
|
3
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
4
|
Hofmann L, Harasymczuk M, Huber D, Szczepanski MJ, Dworacki G, Whiteside TL, Theodoraki MN. Arginase-1 in Plasma-Derived Exosomes as Marker of Metastasis in Patients with Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:5449. [PMID: 38001706 PMCID: PMC10670520 DOI: 10.3390/cancers15225449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Immunoregulatory Arginase-1 (Arg-1) is present in the tumor microenvironment of solid tumors. Its association to clinicopathology and its prognostic impact are inconsistent among different tumor types and biological fluids. This study evaluated Arg-1 protein levels in tumors and the circulation of patients with head and neck squamous cell carcinoma (HNSCC) in relation to clinical stage and prognosis. Tumor Arg-1 expression was monitored via immunohistochemistry while plasma Arg-1 levels via ELISA in 37 HNSCC patients. Arg-1 presence in plasma-derived exosomes was assessed using Western blots in 20 HNSCC patients. High tumor Arg-1 expression correlated with favorable clinicopathology and longer recurrence-free survival (RFS), while high plasma Arg-1 levels were associated with unfavorable clinicopathology. All patients with low tumor and high plasma Arg-1 had nodal metastases and developed recurrence. This discrepancy was attributed to the presence of Arg-1-carrying exosomes. Arg-1 was found in plasma-derived exosomes from all HNSCC patients. High exosomal Arg-1 levels were associated with positive lymph nodes and short RFS. Circulating Arg-1+ exosomes represent a mechanism of active Arg-1 export from the tumor to the periphery. Exosomes reflected biologically relevant Arg-1 levels in metastatic HNSCC and emerged as potentially more accurate biomarkers of metastatic disease and RFS than tissue or plasma Arg-1 levels.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89075 Ulm, Germany
| | - Malgorzata Harasymczuk
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
- Department of Clinical Immunology, University of Medical Sciences, 61-701 Poznan, Poland
| | - Diana Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89075 Ulm, Germany
| | - Miroslaw J. Szczepanski
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz Dworacki
- Department of Clinical Immunology, University of Medical Sciences, 61-701 Poznan, Poland
| | - Theresa L. Whiteside
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89075 Ulm, Germany
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
5
|
Niu F, Yu Y, Li Z, Ren Y, Li Z, Ye Q, Liu P, Ji C, Qian L, Xiong Y. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed Pharmacother 2022; 149:112840. [PMID: 35316752 DOI: 10.1016/j.biopha.2022.112840] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Arginase is a key hydrolase in the urea cycle that hydrolyses L-arginine to urea and L-ornithine. Increasing number of studies in recent years demonstrate that two mammalian arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), were aberrantly upregulated in various types of cancers, and played crucial roles in the regulation of tumor growth and metastasis through various mechanisms such as regulating L-arginine metabolism, influencing tumor immune microenvironment, etc. Thus, arginase receives increasing focus as an attractive target for cancer therapy. In this review, we provide a comprehensive overview of the physiological and biological roles of arginase in a variety of cancers, and shed light on the underlying mechanisms of arginase mediating cancer cells growth and development, as well as summarize the recent clinical research advances of targeting arginase for cancer therapy.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Qiang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ping Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China; Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, Shaanxi, China
| | - Chenshuang Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China; Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, Shaanxi, China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Lennartz M, Gehrig E, Weidemann S, Gorbokon N, Menz A, Büscheck F, Hube-Magg C, Hinsch A, Reiswich V, Höflmayer D, Fraune C, Jacobsen F, Bernreuther C, Lebok P, Sauter G, Wilczak W, Steurer S, Burandt E, Marx AH, Simon R, Krech T, Clauditz TS, Minner S, Dum D, Uhlig R. Large-Scale Tissue Microarray Evaluation Corroborates High Specificity of High-Level Arginase-1 Immunostaining for Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11122351. [PMID: 34943588 PMCID: PMC8699869 DOI: 10.3390/diagnostics11122351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Arginase-1 catalyzes the conversion of arginine to ornithine and urea. Because of its predominant expression in hepatocytes, it serves as a marker for hepatocellular carcinoma, although other tumor entities can also express arginase-1. To comprehensively determine arginase-1 expression in normal and neoplastic tissues, tissue microarrays containing 14,912 samples from 117 different tumor types and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. In normal tissues, arginase-1 was expressed in the liver, the granular layer of the epidermis, and in granulocytes. Among tumors, a nuclear and cytoplasmic arginase-1 immunostaining was predominantly observed in hepatocellular carcinoma, where 96% of 49 cancers were at least moderately positive. Although 22 additional tumor categories showed occasional arginase immunostaining, strong staining was exceedingly rare in these entities. Staining of a few tumor cells was observed in squamous cell carcinomas of various sites. Staining typically involved maturing cells with the beginning of keratinization in these tumors and was significantly associated with a low grade in 635 squamous cell carcinomas of various sites (p = 0.003). Teratoma, urothelial carcinoma and pleomorphic adenomas sometimes also showed arginase expression in areas with squamous differentiation. In summary, arginase-1 immunohistochemistry is highly sensitive and specific for hepatocellular carcinoma if weak and focal staining is disregarded.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Eva Gehrig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Andreas H. Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Correspondence: ; Tel.: +49-40-74105-7214
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| |
Collapse
|
7
|
The Role of Arginine Metabolism in Oral Tongue Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13236068. [PMID: 34885177 PMCID: PMC8656740 DOI: 10.3390/cancers13236068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancers that are ‘arginine auxotrophic’ rely on extracellular arginine as a crucial substrate for proliferation and growth. Capitalizing on this vulnerability, there are numerous clinical trials evaluating the therapeutic benefits of depleting arginine in multiple types of cancer, including those occurring in the head and neck. However, head and neck cancers are different and are nonauxotrophic for arginine. Here, we explored the intricacies of arginine metabolism in tongue cancer in order to better understand the therapeutic potential of this biological vulnerability. We showed that reprogramming arginase 1 (ARG1) expression in tongue cancer cells inhibits growth compared with controls. Further, RNA-sequencing showed that HIFα, natural killer cell and interferon signaling were concordantly deregulated. Abstract Early diagnosis and treatment do not prevent the high morbidity and poor prognosis of oral tongue squamous cell carcinoma (TSCC). Earlier studies have shown that ARG1 signaling is deregulated in TSCC. Here, we investigated the complexity of ARG1 metabolism in this cancer subsite to appreciate the therapeutic potential of this potential biological vulnerability. Various functional studies show that ARG1 overexpression in oral cancer cells inhibits cell proliferation and invasion compared with controls. Further, RNA-sequencing revealed numerous differentially expressed genes (DEGs) and associated networks were dysregulated by ARG1 overexpression, including hypoxia-inducible factor (HIFα) signaling, the natural killer cell signaling pathway and interferon signaling. Our work provides a foundation for understanding the mechanism of action of disrupted arginine metabolism in oral tongue squamous cell carcinoma. This may impact the community for developing further therapeutic approaches.
Collapse
|
8
|
ARG1 mRNA Level Is a Promising Prognostic Marker in Head and Neck Squamous Cell Carcinomas. Diagnostics (Basel) 2021; 11:diagnostics11040628. [PMID: 33807310 PMCID: PMC8065482 DOI: 10.3390/diagnostics11040628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) can be induced by smoking or alcohol consumption, but a growing part of cases relate to a persistent high-risk papillomavirus (HPV) infection. Viral etiology has a beneficial impact on the prognosis, which may be explained by a specific immune response. Tumor associated macrophages (TAMs) represent the main immune population of the tumor microenvironment with a controversial influence on the prognosis. In this study, the level, phenotype, and spatial distribution of TAMs were evaluated, and the expression of TAM-associated markers was compared in HPV positive (HPV+) and HPV negative (HPV−) tumors. Seventy-three formalin and embedded in paraffin (FFPE) tumor specimens were examined using multispectral immunohistochemistry for the detection of TAM subpopulations in the tumor parenchyma and stroma. Moreover, the mRNA expression of TAM markers was evaluated using RT-qPCR. Results were compared with respect to tumor etiology, and the prognostic significance was evaluated. In HPV− tumors, we observed more pro-tumorigenic M2 in the stroma and a non-macrophage arginase 1 (ARG1)-expressing population in both compartments. Moreover, higher mRNA expression of M2 markers—cluster of differentiation 163 (CD163), ARG1, and prostaglandin-endoperoxide synthase 2 (PTGS2)—was detected in HPV− patients, and of M1 marker nitric oxide synthase 2 (NOS2) in HPV+ group. The expression of ARG1 mRNA was revealed as a negative prognostic factor for overall survival of HNSCC patients.
Collapse
|