1
|
Corrigendum to "XRRA1 Targets ATM/CHK1/2-Mediated DNA Repair in Colorectal Cancer". BIOMED RESEARCH INTERNATIONAL 2021; 2021:3030267. [PMID: 33728327 PMCID: PMC7935600 DOI: 10.1155/2021/3030267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022]
Abstract
[This corrects the article DOI: 10.1155/2017/5718968.].
Collapse
|
2
|
Xia Y, Wang L, Ma X, Li X. Investigation on the Genomic Characterization of Uterine Sarcoma for rAd- p53 Combined with Chemotherapy Treatment. Hum Gene Ther 2020; 31:881-890. [PMID: 32013587 DOI: 10.1089/hum.2019.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim is to investigate the genomic characterization of uterine sarcoma for rAd-p53 (Gendicine®) combined with chemotherapy treatment. We recently published an article on 12 cases of uterine sarcomas, which were treated with rAd-p53 combined with chemotherapy. We found that rAd-p53 combined with chemotherapy is effective for various uterine sarcomas. Pretreatment pathological specimens of four uterine sarcoma patients were collected from the above recent clinical research and numbered 1-4A/B. Tumor samples were subjected to targeted sequencing by using a 416 genes panel. We profiled the mutation spectrum and tumor mutation burden in the tumors, identified mutated genes, and explored their gene function. We also verified the p53 protein expression using immunohistochemistry. We identified a total of 30 mutated genes that were found from the next-generation sequencing test results. The average number of mutated genes was up to seven in the five samples. TP53 gene was mutated in two of the four patients, No. 1 and No. 4B. They are c.C833G (p.P278R) missense mutation and a point mutation (C141*) that result in a premature stop codon. We did not find a mutated TP53 gene in the other two cases, but we identified mutated genes, including CREBBP, LYN, CDKN2A, and JAK2, which were located upstream of the TP53 gene; they may have an impact on TP53. We also identified 11 additional genes which are involved in p53-related signaling pathways or have interaction with p53. Compared to solid tumor mutational burden (TMB) distribution, none of their TMB was ranking in the top 25%. Mutant p53 protein expression was positive in two specimens. Our results demonstrated that the TP53 signaling pathway plays an important role in uterine sarcoma tumorigenesis. TP53 and the upstream genes such as CREBBP, LYN, CDKN2A, and JAK2 may be involved in the genomic characterization for rAd-p53 (Gendicine) combined with chemotherapy in uterine sarcoma. Besides, the average amount of mutated genes from every patient is large.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Min A, Kim JE, Kim YJ, Lim JM, Kim S, Kim JW, Lee KH, Kim TY, Oh DY, Bang YJ, Im SA. Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gastric cancer cells. Cancer Lett 2018; 430:123-132. [PMID: 29729292 DOI: 10.1016/j.canlet.2018.04.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
Palbociclib is a specific inhibitor of CDK4/6 and has been shown to provide a survival benefit in hormone receptor-positive advanced breast cancer. TCGA database reported that about half of gastric cancers exhibit abnormalities in cell-cycle-related molecules, suggesting that gastric cancer is a good candidate for palbociclib treatment; however, the antitumor effects and predictive markers of palbociclib in gastric cancer remain incompletely described. Herein, the effect and predictive markers of palbociclib on gastric cancer cells were investigated. Our results reveal that palbociclib showed anti-proliferative effects by inducing G1 phase cell-cycle arrest and cellular senescence in some gastric cancer cells. Basal protein expression level of cyclin E showed an inverse correlation of cancer cell sensitivity to palbociclib. In addition, palbociclib enhanced the antitumor effect of 5-FU in vitro and in vivo by modulating thymidine synthase expression. These results suggest that cyclin E protein expression determines the anti-proliferative effect of palbociclib, and palbociclib acts synergistically with 5-FU in gastric cancer. These findings provide a rationale for future clinical trials of palbociclib and 5-FU combination-based chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea
| | - Jung Eun Kim
- Cancer Research Institute, Seoul National University, South Korea
| | - Yu-Jin Kim
- Cancer Research Institute, Seoul National University, South Korea
| | - Jee Min Lim
- Cancer Research Institute, Seoul National University, South Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, South Korea
| | - Jin Won Kim
- Cancer Research Institute, Seoul National University, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Rho GTPases operating at the Golgi complex: Implications for membrane traffic and cancer biology. Tissue Cell 2016; 49:163-169. [PMID: 27720426 DOI: 10.1016/j.tice.2016.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022]
Abstract
The Golgi complex is the central unit of the secretory pathway, modifying, processing and sorting proteins and lipids to their correct cellular localisation. Changes to proteins at the Golgi complex can have deleterious effects on the function of this organelle, impeding trafficking routes through it, potentially resulting in disease. It is emerging that several Rho GTPase proteins, namely Cdc42, RhoBTB3, RhoA and RhoD are at least in part localised to the Golgi complex, and a number of studies have shown that dysregulation of their levels or activity can be associated with cellular changes which ultimately drive cancer progression. In this mini-review we highlight some of the recent work that explores links between form and function of the Golgi complex, Rho GTPases and cancer.
Collapse
|