1
|
Yang L, Zhao Q, Wang X, Pilapong C, Li Y, Zou J, Jin J, Rong J. Investigation on the regulatory T cells signature and relevant Foxp3/STAT3 axis in esophageal cancer. Cancer Med 2023; 12:4993-5008. [PMID: 36226375 PMCID: PMC9972178 DOI: 10.1002/cam4.5194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) have an important role in accelerating the immunosuppression of tumor. Tregs regulation is a hopeful strategy to improve the dismal prognosis of Esophageal cancer (EC), while its mechanisms have not yet been fully clarified. METHODS To characterize the role of Tregs in EC, we comprehensively explored its prognostic value, clinical pathology partnership, related biological functions and potential mechanisms at transcriptome level. Through the integrated analysis of GEO and TCGA datasets, we comprehensively evaluated the Tregs infiltration patterns in EC patients. The correlation between Tregs infiltration and genomic characteristics, as well as biological functions were analyzed by a variety of computational algorithms. RESULTS We observed that Tregs were significantly upregulated in EC and involved in various immune processes. According to TCGA and GEO transcriptional classification schemes, Tregs specific genes were observed to be highly expressed in tumor samples, as well as were closely associated with poor prognosis and worse clinical outcomes. In addition, EC patients can be stratified into high-risk and low-risk immune subgroups according to Tregs/macrophages infiltration level, and the results showed significant differences in tumor development, biological processes and probe gene expression pattern. The multi-variate analysis revealed that the interaction between STAT3 and Foxp3 was a potential prognostic signature of Tregs in EC, especially the modulation effect of STAT3 on Foxp3 expression, which has not been well studied in EC. We also identified that STAT3 and Foxp3 expression presented a high accuracy in predicting Tregs infiltration level in EC patients (AUC: 0.817; 95% CI: 0.756-0.878). CONCLUSIONS Our results revealed that Tregs have the potential to predict prognosis and tumor deterioration in EC patients. A comprehensive landscape of Tregs regulation mechanisms will help us interpret the immunosuppression of tumor microenvironment (TME) and novel strategies for EC immunotherapy.
Collapse
Affiliation(s)
- Lin Yang
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China.,Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xing Wang
- Shichuan Nursing Vocational College, Chengdu, People's Republic of China
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yi Li
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China
| | - Jun Zou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China
| | - Jinfeng Rong
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China
| |
Collapse
|
2
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
3
|
König L, Mairinger FD, Hoffmann O, Bittner AK, Schmid KW, Kimmig R, Kasimir-Bauer S, Bankfalvi A. Dissimilar patterns of tumor-infiltrating immune cells at the invasive tumor front and tumor center are associated with response to neoadjuvant chemotherapy in primary breast cancer. BMC Cancer 2019; 19:120. [PMID: 30717704 PMCID: PMC6360695 DOI: 10.1186/s12885-019-5320-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) are described as an important immune modulator in the tumor microenvironment and are associated with breast cancer (BC) outcome. The spatial analysis of TILs and TIL subtype distribution at the invasive tumor front (ITF) and the tumor center (TC) might provide further insights into tumor progression. METHODS We analyzed core biopsies from 87 pre-therapeutic BC patients for total TILs and the following subtypes: CD3+, CD4+, CD8+, CD20+ and CD68+ cells in correlation to clinicopathological parameters and disseminated tumor cells (DTCs) in the bone marrow. RESULTS TILs and TIL subtypes showed significantly different spatial distribution among both tumor areas. TILs, especially CD3+ T cells were associated with the tumor status and tumor grading. BC patients responding to neoadjuvant chemotherapy had significantly more TILs and CD3+ T cells at the TC. The presence of DTCs after NACT was related to CD4+ infiltration at the TC. CONCLUSION The dissimilar spatial association of TILs and TIL subtypes with clinicopathological parameters, NACT response and minimal residual disease underlines the necessity of detailed TIL analysis for a better understanding of immune modulatory processes.
Collapse
Affiliation(s)
- Lisa König
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Fabian D. Mairinger
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Kurt W. Schmid
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Agnes Bankfalvi
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
4
|
Yu Y, Zhu S, Li P, Min L, Zhang S. Helicobacter pylori infection and inflammatory bowel disease: a crosstalk between upper and lower digestive tract. Cell Death Dis 2018; 9:961. [PMID: 30237392 PMCID: PMC6148320 DOI: 10.1038/s41419-018-0982-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori has coexisted with humans for approximately 60,000 years and greater than 50% of the global population is infected with H. pylori. H. pylori was successfully cultured in vitro in 1983 and studies of H. pylori have achieved substantial advances over the last 35 years. Since then, H. pylori has been characterized as the primary pathogenic factor for chronic gastritis, peptic ulcer, and gastric malignancy. Numerous patients have received H. pylori eradication treatment, but only 1-2% of H. pylori-infected individuals ultimately develop gastric cancer. Recently, numerous epidemiological and basic experimental studies suggested a role for chronic H. pylori infection in protecting against inflammatory bowel disease (IBD) by inducing systematic immune tolerance and suppressing inflammatory responses. Here we summarize the current research progress on the association between H. pylori and IBD, and further describe the detailed molecular mechanism underlying H. pylori-induced dendritic cells (DCs) with the tolerogenic phenotype and immunosuppressive regulatory T cells (Tregs). Based on the potential protective role of H. pylori infection on IBD, we suggest that the interaction between H. pylori and the host is complicated, and H. pylori eradication treatment should be administered with caution, especially for children and young adults.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
5
|
Pei X, Wang X, Li H. LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol 2018; 118:24-30. [PMID: 29886172 DOI: 10.1016/j.ijbiomac.2018.06.033] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the mechanism of lncRNA SNHG1 in the immune escape of breast cancer (BC). METHODS SNHG1, miR-448 and IL-10 levels were evaluated by qRT-PCR. The protein levels of IDO and Foxp3 were measured by Western blot. SNHG1 and miR-448 interaction was tested by RIP assay and RNA pull-down assay. MiR-448 and IDO interaction was observed by luciferase reporter assay. RESULTS Compared with CD4+T cells, miR-448 expression in CD4+ TIL cells was decreased, while the expression of SNHG1, IDO, IL-10 and Foxp3 were increased. Moreover, SNHG1 directly contacted with miR-448, which could negatively regulate IDO. In cells treated with siRNA-SNHG and miR-448 inhibitor, interference SNHG1 up-regulated miR-448 expression and down-regulated IDO expression, while miR-448 inhibitor reversed this effect. In addition, miR-448 inhibitor reversed the inhibitory effect of siRNA-SNHG1 on Treg cell differentiation, and siRNA-SNHG1 could reduce tumor volume and down-regulated the expressions of SNHG1, IL-10, IDO and Foxp3. CONCLUSION Interference SNHG1 could inhibit the differentiation of Treg cells by promoting miR-448 expression and reducing IDO level, thereby impeding the immune escape of BC.
Collapse
Affiliation(s)
- Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
6
|
Janssen LME, Ramsay EE, Logsdon CD, Overwijk WW. The immune system in cancer metastasis: friend or foe? J Immunother Cancer 2017; 5:79. [PMID: 29037250 PMCID: PMC5644253 DOI: 10.1186/s40425-017-0283-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Metastatic disease is the leading cause of death among cancer patients and involves a complex and inefficient process. Every step of the metastatic process can be rate limiting and is influenced by non-malignant host cells interacting with the tumor cell. Over a century ago, experiments first indicated a link between the immune system and metastasis. This phenomenon, called concomitant immunity, indicates that the primary tumor induces an immune response, which may not be sufficient to destroy the primary tumor, but prevents the growth of a secondary tumor or metastases. Since that time, many different immune cells have been shown to play a role in both inhibiting and promoting metastatic disease. Here we review classic and new observations, describing the links between the immune system and metastasis that inform the development of cancer therapies.
Collapse
Affiliation(s)
- Louise M E Janssen
- Departments of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Emma E Ramsay
- Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Craig D Logsdon
- Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Willem W Overwijk
- Departments of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
7
|
Yu B, Wang J, He C, Wang W, Tang J, Zheng R, Zhou C, Zhang H, Fu Z, Li Q, Xu J. Cytokine-induced killer cell therapy for modulating regulatory T cells in patients with non-small cell lung cancer. Exp Ther Med 2017; 14:831-840. [PMID: 28673007 DOI: 10.3892/etm.2017.4562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Previous studies have reported that regulatory T cells (Tregs), which are physiologically engaged in the maintenance of immunological self-tolerance, have a critical role in the regulation of the antitumor immune response. Targeting Tregs has the potential to augment cancer vaccine approaches. The current study therefore aimed to evaluate the role of cytokine-induced killer (CIK) cell infusion in modulating Tregs in patients with non-small cell lung cancer (NSCLC). A total of 15 patients with advanced NSCLC were treated by an infusion of CIK cells derived from autologous peripheral blood mononuclear cells (PBMCs). By using flow cytometry and liquid chip analysis, subsets of T cells and natural killer (NK) cells in peripheral blood, and plasma cytokine profiles in the treated patients, were analyzed at 2 and 4 weeks after CIK cell infusion. Cytotoxicity of PBMCs (n=15) and NK cells (n=6) isolated from NSCLC patients was evaluated before and after CIK cell therapy. Progression-free survival (PFS) and overall survival (OS) were also assessed. Analysis of the immune cell populations before and after treatment showed a significant increase in NK cells (P<0.05) concomitant with a significant decrease in Tregs (P<0.01) at 2 weeks post-infusion of CIK cells compared with the baseline. NK group 2D receptor (NKG2D) expression on NK cells was also significantly increased at 2 weeks post-infusion compared with the baseline (P<0.05). There was a positive correlation between NKG2D expression and the infusion number of CIK cells (P<0.05). When evaluated at 2 weeks after CIK cell therapy, the cytotoxicity of PBMCs and isolated NK cells was significantly increased compared with the baseline (P<0.01 and P<0.05). Correspondingly, plasma cytokine profiles showed significant enhancement of the following antitumor cytokines: Interferon (IFN)-γ (P<0.05), IFN-γ-inducible protein 10 (P<0.01), tumor necrosis factor-α (P<0.001), granulocyte-macrophage colony-stimulating factor (P<0.01), monocyte chemotactic protein-3 (P<0.01) and interleukin-21 (P<0.05) at 2 weeks post-infusion, compared with the baseline. At the same time, the expression of transforming growth factor-β1, which is primarily produced by Tregs, was significantly decreased compared with the baseline (P<0.05). Median PFS and OS in the CIK cell treatment group were significantly increased compared with the control group (PFS, 9.98 vs. 5.44 months, P=0.038; OS, 24.17 vs. 20.19 months, P=0.048). No severe side-effects were observed during the treatment period. In conclusion, CIK cell therapy was able to suppress Tregs and enhance the antitumor immunity of NK cells in advanced NSCLC patients. Therefore, CIK cell treatment may improve PFS and OS in patients with advanced NSCLC. CIK cell infusion may have therapeutic value for patients with advanced NSCLC, as a treatment that can be combined with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Baodan Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Junli Wang
- Department of Respiration, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Chen He
- Department of Respiratory Medicine, The Affiliated Shenzhen Bao'an Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Wei Wang
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Jianli Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Runhui Zheng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Huanhuan Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhiping Fu
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Qiasheng Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Jun Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
8
|
Changes in regulatory T cells in patients with ovarian cancer undergoing surgery: Preliminary results. Int Immunopharmacol 2017; 47:244-250. [PMID: 28437737 DOI: 10.1016/j.intimp.2017.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Abstract
Regulatory T cells (Treg) suppress immune responses in patients with cancer. Surgery is the most effective therapeutic strategy for ovarian cancer (OC). However, the interplay between the Treg population and surgical resection remains unclear. 61 patients with OC who received no prior treatment were enrolled in the study. Treg percentages were characterized from peripheral blood mononuclear cells. We investigated CD4+CD25+, CD4+CD25+Foxp3+, CD8+CD28-, and CD8+Foxp3+ Tregs in OC patients and their postoperative changes using flow cytometry. Treg percentages were significantly higher in OC patients than those in benign ovarian tumors (BOT) and healthy controls. Higher percentages of Tregs were found in patients with stage III/IV than stage I/II OC. Treg percentages were significantly decreased postoperatively. The postoperative Treg percentages in patients with stage I/II OC were similar to those in BOT patients, while postoperative Treg percentages in patients with stage III/IV OC remained higher. Tregs were markedly lower on postoperative day (POD) 3 than preoperatively. They increased slightly after 7days, but remained lower than preoperative levels. These data suggested that Tregs continued to decline from POD 7 to POD 30. Treg percentages are correlated with the tumor burden and could be a key factor in monitoring the immunological status of patients with OC.
Collapse
|