Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS.
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021;
2021:6614112. [PMID:
33688336 PMCID:
PMC7920718 DOI:
10.1155/2021/6614112]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Objectives
Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is expected to provide an optional active rehabilitation training method for patients with walking dysfunction, which will affect their quality of life seriously. Sparse representation classification (SRC) oxyhemoglobin (HbO) concentration was used to decode walking imagery and idle state to construct fNIRS-BCI based on walking imagery.
Methods
15 subjects were recruited and fNIRS signals were collected during walking imagery and idle state. Firstly, band-pass filtering and baseline drift correction for HbO signal were carried out, and then the mean value, peak value, and root mean square (RMS) of HbO and their combinations were extracted as classification features; SRC was used to identify the extracted features and the result of SRC was compared with those of support vector machine (SVM), K-Nearest Neighbor (KNN), linear discriminant analysis (LDA), and logistic regression (LR).
Results
The experimental results showed that the average classification accuracy for walking imagery and idle state by SRC using three features combination was 91.55±3.30%, which was significantly higher than those of SVM, KNN, LDA, and LR (86.37±4.42%, 85.65±5.01%, 86.43±4.41%, and 76.14±5.32%, respectively), and the classification accuracy of other combined features was higher than that of single feature.
Conclusions
The study showed that introducing SRC into fNIRS-BCI can effectively identify walking imagery and idle state. It also showed that different time windows for feature extraction have an impact on the classification results, and the time window of 2–8 s achieved a better classification accuracy (94.33±2.60%) than other time windows. Significance. The study was expected to provide a new and optional active rehabilitation training method for patients with walking dysfunction. In addition, the experiment was also a rare study based on fNIRS-BCI using SRC to decode walking imagery and idle state.
Collapse