1
|
Dias DB, Chan W, Ellinghaus A, Fritsche-Guenther R, Wiebach J, Bembennek A, Laske T, Baumbach J, Duda GN, Kirwan JA, Poh PSP. Endogenous dysregulated energy and amino acid metabolism delay scaffold-guided large volume bone regeneration in a diabetic rat model with Leptin receptor deficiency. Acta Biomater 2025:S1742-7061(25)00328-9. [PMID: 40319991 DOI: 10.1016/j.actbio.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Scaffold-guided bone regeneration (SGBR) offers a promising solution for treating large-volume bone defects. However, its efficacy in compromised healing environments, such as those associated with metabolic conditions like Type 2 Diabetes (T2D), remains poorly understood. This study evaluates the potential of 3D-printed polycaprolactone (PCL) scaffolds for large-volume bone regeneration in preclinical models simulating T2D-induced metabolic challenges. Our results reveal that scaffolds alone are insufficient to overcome the metabolic barriers to effective bone regeneration. Metabolomic analysis of regenerating tissue identified significant disruptions in key metabolic pathways involved in energy production and amino acid synthesis in T2D rats compared to controls. Notably, aconitic acid, ornithine, and glycine levels were elevated in non-diabetic conditions, whereas phosphoenolpyruvate was markedly increased under T2D conditions. Secondary harmonic generation (SHG) imaging further demonstrated impaired collagen organization within T2D regenerating tissue, correlating with disrupted collagen synthesis critical for bone matrix formation. In vitro, the exogenous supplementation of alpha-ketoglutarate (α-KG)-a crucial citric acid cycle intermediate-enhanced mineralized tissue formation in human adipose-derived mesenchymal stem cells (hAdMSCs) from T2D donors, achieving levels superior to non-T2D cells. These findings underscore the metabolic underpinnings of impaired bone regeneration in T2D. Optimized 3D printed scaffolds alone do not counterbalance the impaired regeneration in T2D. Here we highlight a therapeutic potential of metabolic supplementation to optimize SGBR outcomes. This study provides a critical foundation for advancing translational research and developing regenerative therapies tailored to high-risk metabolic disease populations. STATEMENT OF SIGNIFICANCE: Scaffold-guided bone regeneration (SGBR) holds great promise for addressing large bone defects, but its efficacy in metabolically challenged conditions like Type 2 Diabetes (T2D) remains limited. This study uses a metabolomics-driven approach to reveal how metabolic dysregulation in T2D, including disruptions in energy and amino acid pathways, impairs collagen organization and extracellular matrix (ECM) formation-critical for successful bone healing. By identifying α-ketoglutarate (α-KG) as a potential supplement to restore metabolic balance, this work offers novel insights into enhancing scaffold performance under compromised conditions. These findings provide a foundation for integrating bioactive compounds into scaffold designs, advancing personalized strategies in regenerative medicine, and addressing a critical gap in bone defect treatment for diabetic patients.
Collapse
Affiliation(s)
- Daniela B Dias
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany; Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany.
| | - WingLee Chan
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany; Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | | | - Janine Wiebach
- Berlin Institute of Health at Charité-BIH Metabolomics, Berlin 10117, Germany
| | - André Bembennek
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22761, Germany
| | - Tanja Laske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22761, Germany; Viral Systems Modeling, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22761, Germany; Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany; Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany.
| | - Jennifer A Kirwan
- Berlin Institute of Health at Charité-BIH Metabolomics, Berlin 10117, Germany.
| | - Patrina S P Poh
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany; Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 13353, Germany.
| |
Collapse
|
2
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Effects of Stellate Ganglion Block on Healing of Fractures Induced in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4503463. [PMID: 32879882 PMCID: PMC7448117 DOI: 10.1155/2020/4503463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/13/2020] [Accepted: 07/23/2020] [Indexed: 01/15/2023]
Abstract
Objective Sympathetic blocks are used as an adjunct for pain management in the treatment of orthopedic and traumatic conditions. Stellate ganglion (ganglion stellatum) provides sympathetic innervation of the head, neck and cervicothoracic regions, and upper extremities. No study was found in the literature investigating the effects of stellate ganglion block performed in the upper extremity, on blood supply to bone, density, vascularization, and bone metabolism. Therefore, the objective of this study was to investigate the effects of stellate ganglion block on healing of closed forearm fractures that were induced in rats. Material and Methods. A total of 42 Wistar albino rats weighing between 398 and 510 g were used in this study. The rats were randomly divided into 2 groups with one group treated with stellate ganglion and the other included as the control group. In each 2 groups, a closed forearm fracture was created, confirmed with X-ray, and then stabilized by splint application. The forearm bones were examined with X-ray views on the same day and were then decalcified. Results When histological findings of the fracture region were examined, predominantly cartilage and less woven bone were found in 7 rats, equally distributed cartilage and immature bone in 14 rats, and predominantly imitation bone and less cartilage formation in 21 rats. In the control group, the agreement between the 1st and 2nd orthopedists for the radiological evaluation of bone formation was moderate. Conclusion The group administered stellate ganglion block showed a more significant fracture healing.
Collapse
|
5
|
Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne) 2018; 9:6. [PMID: 29416527 PMCID: PMC5787540 DOI: 10.3389/fendo.2018.00006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
DiDomenico L, Flynn Z, Reed M. Treating Charcot Arthropathy Is a Challenge: Explaining Why My Treatment Algorithm Has Changed. Clin Podiatr Med Surg 2018; 35:105-121. [PMID: 29156160 DOI: 10.1016/j.cpm.2017.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charcot deformity is a challenge that foot and ankle surgeons struggle to manage successfully. Despite the advances in knowledge, technology, and treatment modalities, limb loss is still greater than 10%. This article discusses the efficacy of conservative measures and traditional surgical approaches. It proposes a multidisciplinary team approach, medical optimization, and lifestyle modification to put the patient in the best position to heal. Also discussed is the authors' staged surgical treatment protocol to enhance outcomes and decrease the rate of limb loss.
Collapse
Affiliation(s)
- Lawrence DiDomenico
- St. Elizabeth Medical Center, 8175 Market Street, Youngstown, OH 44512, USA.
| | - Zachary Flynn
- St. Elizabeth Medical Center, 8175 Market Street, Youngstown, OH 44512, USA
| | - Michael Reed
- Northside Medical Center, 500 Gypsy Lane, Youngstown, OH 44512, USA
| |
Collapse
|
7
|
Ippolito JA, Krell ES, Cottrell J, Meyer R, Clark D, Nguyen D, Sudah S, Muñoz M, Lim E, Lin A, Lee TJH, O'Connor JP, Benevenia J, Lin SS. Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res 2017; 35:2174-2180. [PMID: 28084655 DOI: 10.1002/jor.23521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/09/2017] [Indexed: 02/04/2023]
Abstract
This study evaluated the effect of local vanadyl acetylacetonate (VAC), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, and radiographic scoring were performed, as well as histomorphometry, including percent bone, percent cartilage, and osteoclast numbers. Fractures treated with local 1.5 mg/kg VAC possessed significantly increased mechanical properties compared to controls at 6 weeks post-fracture, including increased torque to failure (15%; p = 0.046), shear modulus (89%; p = 0.043), and shear stress (81%; p = 0.009). The radiographic scoring analysis showed increased cortical bridging at 4 weeks and 6 weeks (119%; p = 0.036 and 209%; p = 0.002) in 1.5 mg/kg VAC treated groups. Histomorphometry of the fracture callus at days 10 and 14 showed increased percent cartilage (121%; p = 0.009 and 45%; p = 0.035) and percent mineralized tissue (66%; p = 0.035 and 58%; p = 0.006) with local VAC treated groups compared to control. Additionally, fewer osteoclasts were observed in the local VAC treated animals as compared to controls at day 14 (0.45% ± 0.29% vs. 0.83% ± 0.36% of callus area; p = 0.032). The results suggest local administration of VAC acts to modulate osteoclast activity and increase percentage of early callus cartilage, ultimately enhancing mechanical properties comparably to non-diabetic animals treated with local VAC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2174-2180, 2017.
Collapse
Affiliation(s)
- Joseph A Ippolito
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Ethan S Krell
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| | - Ryan Meyer
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Devin Clark
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Daniel Nguyen
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Suleiman Sudah
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Maximillian Muñoz
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Elisha Lim
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Anthony Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Thomas Jae Hoon Lee
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - James Patrick O'Connor
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Joseph Benevenia
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Sheldon S Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| |
Collapse
|
8
|
Abstract
Chemokines are a family of small cytokines that share a typical key structure that is stabilized by disulfide bonds between the cysteine residues at the NH2-terminal of the protein, and they are secreted by a great variety of cells in several different conditions. Their function is directly dependent on their interactions with their receptors. Chemokines are involved in cell maturation and differentiation, infection, autoimmunity, cancer, and, in general, in any situation where immune components are involved. However, their role in postfracture inflammation and fracture healing is not yet well established. In this article, we will discuss the response of chemokines to bone fracture and their potential roles in postfracture inflammation and healing based on data from our studies and from other previously published studies.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Musculoskeletal Disease Center, Loma Linda VA Health Care Systems, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- *Correspondence: Bouchra Edderkaoui,
| |
Collapse
|
9
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|