1
|
Anand SK. A computer simulation study of a chiral active ring polymer. J Chem Phys 2024; 161:184901. [PMID: 39513442 DOI: 10.1063/5.0232538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
We investigate a ring polymer under the influence of chiral active Brownian forces in two dimensions using coarse-grained computer simulations. We observe a non-monotonic behavior of the radius of gyration of an active Brownian ring as a function of active force. However, the shrinkage of the ring in the intermediate strength of active forces becomes more pronounced in the presence of chiral active forces, and the shrinkage is monotonic at a given activity level as a function of the angular frequency controlling the direction of the active force. The distribution of radius of gyration, inter-monomer distance, and radial distribution suggest that the monomers come close to each other, eventually leading to the shrinkage of the ring. Moreover, the bond-correlation suggests that the chirality introduces a local folding of the monomers. Furthermore, using the diameter correlation function, we show that the ring performs tank-treading motion with a frequency following power-law relation with active force with exponent 3/2. The mean squared displacement of the monomers further assists the tank-treading dynamics by exhibiting oscillatory behavior.
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Jain N, Thakur S. Structure and dynamics of chemically active ring polymers: swelling to collapse. SOFT MATTER 2023; 19:7358-7369. [PMID: 37740385 DOI: 10.1039/d3sm00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The ring structures are common in many synthetic or natural systems and experience both local and long-range forces by chemical sensing. This work is an effort to investigate the structural and dynamical properties of a chemically active ring in an explicit solvent bath utilizing hybrid molecular dynamics (MD) and multiparticle collision dynamics (MPCD) simulation techniques. We show that by tuning the chemical properties of the ring, it can be converted from a chemo-attractant to a chemo-repellent, thereby changing the steady state to be either collapsed or swelled as compared to its passive limit. We quantify these observations by comparing the scaling laws, local structures and the dynamics of active and passive rings. Furthermore, we show the impact of varying numbers of active sites by calculating the contact probability of the collapse state that highlights diverse structures. We also analyze the dynamics of the ring by finding the relaxation time and the mean square displacement of the centre of mass. A faster relaxation with enhanced diffusion is observed for the active rings.
Collapse
Affiliation(s)
- Namita Jain
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| |
Collapse
|
3
|
Philipps CA, Gompper G, Winkler RG. Dynamics of active polar ring polymers. Phys Rev E 2022; 105:L062501. [PMID: 35854564 DOI: 10.1103/physreve.105.l062501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The conformational and dynamical properties of isolated semiflexible active polar ring polymers are investigated analytically. A ring is modeled as a continuous Gaussian polymer exposed to tangential active forces. The analytical solution of the linear non-Hermitian equation of motion in terms of an eigenfunction expansion shows that ring conformations are independent of activity. In contrast, activity strongly affects the internal ring dynamics and yields characteristic time regimes, which are absent in passive rings. On intermediate timescales, flexible rings show an activity-enhanced diffusive regime, while semiflexible rings exhibit ballistic motion. Moreover, a second active time regime emerges on longer timescales, where rings display a snake-like motion, which is reminiscent to a tank-treading rotational dynamics in shear flow, dominated by the mode with the longest relaxation time.
Collapse
Affiliation(s)
- Christian A Philipps
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| |
Collapse
|
4
|
Warrington SJ, Strutt H, Strutt D. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins. Methods Mol Biol 2022; 2438:1-30. [PMID: 35147932 DOI: 10.1007/978-1-0716-2035-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.
Collapse
Affiliation(s)
| | - Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
6
|
Locatelli E, Bianco V, Malgaretti P. Activity-Induced Collapse and Arrest of Active Polymer Rings. PHYSICAL REVIEW LETTERS 2021; 126:097801. [PMID: 33750170 DOI: 10.1103/physrevlett.126.097801] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
We investigate, using numerical simulations, the conformations of isolated active ring polymers. We find that their behavior depends crucially on their size: Short rings (N≲100) swell, whereas longer rings (N≳200) collapse, at sufficiently high activity. By investigating the nonequilibrium process leading to the steady state, we find a universal route driving both outcomes; we highlight the central role of steric interactions, at variance with linear chains, and of topology conservation. We further show that the collapsed rings are arrested by looking at different observables, all underlining the presence of an extremely long timescales at the steady state, associated with the internal dynamics of the collapsed section. Finally, we found that in some circumstances the collapsed state spins about its axis.
Collapse
Affiliation(s)
| | - Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Complutense University of Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- IV Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Helmholtz Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany
| |
Collapse
|
7
|
Peng H, Qiao R, Dong B. Polarity Establishment and Maintenance in Ascidian Notochord. Front Cell Dev Biol 2020; 8:597446. [PMID: 33195278 PMCID: PMC7661463 DOI: 10.3389/fcell.2020.597446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Cell and tissue polarity due to the extracellular signaling and intracellular gene cascades, in turn, signals the directed cell behaviors and asymmetric tissue architectures that play a crucial role in organogenesis and embryogenesis. The notochord is a characteristic midline organ in chordate embryos that supports the body structure and produces positioning signaling. This review summarizes cellular and tissue-level polarities during notochord development in ascidians. At the early stage, planar cell polarity (PCP) is initialized, which drives cell convergence extension and migration to form a rod-like structure. Subsequently, the notochord undergoes a mesenchymal-epithelial transition, becoming an unusual epithelium in which cells have two opposing apical domains facing the extracellular lumen deposited between adjacent notochord cells controlled by apical-basal (AB) polarity. Cytoskeleton distribution is one of the main downstream events of cell polarity. Some cytoskeleton polarity patterns are a consequence of PCP: however, an additional polarized cytoskeleton, together with Rho signaling, might serve as a guide for correct AB polarity initiation in the notochord. In addition, the notochord's mechanical properties are associated with polarity establishment and transformation, which bridge signaling regulation and tissue mechanical properties that enable the coordinated organogenesis during embryo development.
Collapse
Affiliation(s)
- Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Runyu Qiao
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Maniscalco C, Hall AE, Nance J. An interphase contractile ring reshapes primordial germ cells to allow bulk cytoplasmic remodeling. J Cell Biol 2020; 219:132628. [PMID: 31819975 PMCID: PMC7041695 DOI: 10.1083/jcb.201906185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Some cells discard undesired inherited components in bulk by forming large compartments that are subsequently eliminated. Caenorhabditis elegans primordial germ cells (PGCs) jettison mitochondria and cytoplasm by forming a large lobe that is cannibalized by intestinal cells. Although PGCs are nonmitotic, we find that lobe formation is driven by constriction of a contractile ring and requires the RhoGEF ECT-2, a RhoA activator also essential for cytokinesis. Whereas centralspindlin activates ECT-2 to promote cytokinetic contractile ring formation, we show that the ECT-2 regulator NOP-1, but not centralspindlin, is essential for PGC lobe formation. We propose that lobe contractile ring formation is locally inhibited by the PGC nucleus, which migrates to one side of the cell before the cytokinetic ring assembles on the opposite cortex. Our findings reveal how components of the cytokinetic contractile ring are reemployed during interphase to create compartments used for cellular remodeling, and they reveal differences in the spatial cues that dictate where the contractile ring will form.
Collapse
Affiliation(s)
- Chelsea Maniscalco
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Allison E Hall
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY.,Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
9
|
Mietke A, Jemseena V, Kumar KV, Sbalzarini IF, Jülicher F. Minimal Model of Cellular Symmetry Breaking. PHYSICAL REVIEW LETTERS 2019; 123:188101. [PMID: 31763902 DOI: 10.1103/physrevlett.123.188101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The cell cortex, a thin film of active material assembled below the cell membrane, plays a key role in cellular symmetry-breaking processes such as cell polarity establishment and cell division. Here, we present a minimal model of the self-organization of the cell cortex that is based on a hydrodynamic theory of curved active surfaces. Active stresses on this surface are regulated by a diffusing molecular species. We show that coupling of the active surface to a passive bulk fluid enables spontaneous polarization and the formation of a contractile ring on the surface via mechanochemical instabilities. We discuss the role of external fields in guiding such pattern formation. Our work reveals that key features of cellular symmetry breaking and cell division can emerge in a minimal model via general dynamic instabilities.
Collapse
Affiliation(s)
- Alexander Mietke
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - V Jemseena
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, 560 089 Bengaluru, India
| | - K Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, 560 089 Bengaluru, India
| | - Ivo F Sbalzarini
- Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
10
|
Lu Q, Bhattachan P, Dong B. Ascidian notochord elongation. Dev Biol 2018; 448:147-153. [PMID: 30458170 DOI: 10.1016/j.ydbio.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/27/2022]
Abstract
The elongation of embryo and tissue is a key morphogenetic event in embryogenesis and organogenesis. Notochord, a typical chordate organ, undergoes elongation to perform its regulatory roles and to form the structural support in the embryo. Notochord elongation is morphologically similar across all chordates, but ascidian has evolved distinct molecular and cellular processes. Here, we summarize the current understanding of ascidian notochord elongation. We divide the process into three phases and discuss the underlying molecular mechanisms in each phase. In the first phase, the notochord converges and extends through invagination and mediolateral intercalation, and partially elongates to form a single diameter cell column along the anterior-posterior axis. In the second phase, a cytokinesis-like actomyosin ring is constructed at the equator of each cell and drives notochord to elongate approximately two-fold. The molecular composition and architecture of the ascidian notochord contractile ring are similar to that of the cytokinetic ring. However, the notochord contractile ring does not impose cell division but only drives cell elongation followed by disassembly. We discuss the self-organizing property of the circumferential actomyosin ring, and why it disassembles when certain notochord length is achieved. The similar ring structures are also present in the elongation process of other organs in evolutionarily divergent animals such as Drosophila and C. elegans. We hereby propose that actomyosin ring-based circumferential contraction is a common mechanism adopted in diverse systems to drive embryo and tissue elongation. In the third phase, the notochord experiences tubulogenesis and the endothelial-like cells crawl bi-directionally on the notochord sheath to further lengthen the notochord. In this review, we also discuss extracellular matrix proteins, notochord sheath, and surrounding tissues that may contribute to notochord integrity and morphogenesis.
Collapse
Affiliation(s)
- Qiongxuan Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Punit Bhattachan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Agarwal P, Zaidel-Bar R. Principles of Actomyosin Regulation In Vivo. Trends Cell Biol 2018; 29:150-163. [PMID: 30385150 DOI: 10.1016/j.tcb.2018.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
The actomyosin cytoskeleton is responsible for most force-driven processes in cells and tissues. How it assembles into the necessary structures at the right time and place is an important question. Here, we focus on molecular mechanisms of actomyosin regulation recently elucidated in animal models, and highlight several common principles that emerge. The architecture of the actomyosin network - an important determinant of its function - results from actin polymerization, crosslinking and turnover, localized myosin activation, and contractility-driven self-organization. Spatiotemporal regulation is achieved by tissue-specific expression and subcellular localization of Rho GTPase regulators. Subcellular anchor points of actomyosin structures control the outcome of their contraction, and molecular feedback mechanisms dictate whether they are transient, cyclic, or persistent.
Collapse
Affiliation(s)
- Priti Agarwal
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Adameyko I. Supracellular contractions propel migration. Science 2018; 362:290-291. [PMID: 30337397 DOI: 10.1126/science.aav3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden. .,Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
14-3-3εa directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis. Proc Natl Acad Sci U S A 2018; 115:E8873-E8881. [PMID: 30158171 PMCID: PMC6156656 DOI: 10.1073/pnas.1808756115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ascidians have become a powerful model system in which to uncover basic mechanisms that govern body plan specification and elaboration. In particular, the ascidian notochord is a highly tractable model for tubulogenesis. Here, we use chemical genetics to identify roles for 14-3-3εa, and its binding partner ezrin/radixin/moesin (ERM), in tubulogenesis. Combining genetic and chemical perturbations with live cell imaging, we present evidence that 14-3-3εa–ERM interactions are required for tubulogenesis and that they act by promoting a directed cytoplasmic flow, previously uncharacterized, which carries lumen-associated components from the basal domain to the apical domain to feed lumen growth. Because many core components of this system are highly conserved, these results have broad implications for tubulogenesis in many other contexts. The Ciona notochord has emerged as a simple and tractable in vivo model for tubulogenesis. Here, using a chemical genetics approach, we identified UTKO1 as a selective small molecule inhibitor of notochord tubulogenesis. We identified 14-3-3εa protein as a direct binding partner of UTKO1 and showed that 14-3-3εa knockdown leads to failure of notochord tubulogenesis. We found that UTKO1 prevents 14-3-3εa from interacting with ezrin/radixin/moesin (ERM), which is required for notochord tubulogenesis, suggesting that interactions between 14-3-3εa and ERM play a key role in regulating the early steps of tubulogenesis. Using live imaging, we found that, as lumens begin to open between neighboring cells, 14-3-3εa and ERM are highly colocalized at the basal cortex where they undergo cycles of accumulation and disappearance. Interestingly, the disappearance of 14-3-3εa and ERM during each cycle is tightly correlated with a transient flow of 14-3-3εa, ERM, myosin II, and other cytoplasmic elements from the basal surface toward the lumen-facing apical domain, which is often accompanied by visible changes in lumen architecture. Both pulsatile flow and lumen formation are abolished in larvae treated with UTKO1, in larvae depleted of either 14-3-3εa or ERM, or in larvae expressing a truncated form of 14-3-3εa that lacks the ability to interact with ERM. These results suggest that 14-3-3εa and ERM interact at the basal cortex to direct pulsatile basal accumulation and basal–apical transport of factors that are essential for lumen formation. We propose that similar mechanisms may underlie or may contribute to lumen formation in tubulogenesis in other systems.
Collapse
|
14
|
Hashimoto H, Munro E. Dynamic interplay of cell fate, polarity and force generation in ascidian embryos. Curr Opin Genet Dev 2018; 51:67-77. [PMID: 30007244 DOI: 10.1016/j.gde.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A fundamental challenge in developmental biology is to understand how forces produced by individual cells are patterned in space and time and then integrated to produce stereotyped changes in tissue-level or embryo-level morphology. Ascidians offer a unique opportunity to address this challenge by studying how small groups of cells collectively execute complex, but highly stereotyped morphogenetic movements. Here we highlight recent progress and open questions in the study of ascidian morphogenesis, emphasizing the dynamic interplay of cell fate determination, cellular force generation and tissue-level mechanics.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
15
|
|
16
|
Maguire JE, Pandey A, Wu Y, Di Gregorio A. Investigating Evolutionarily Conserved Molecular Mechanisms Controlling Gene Expression in the Notochord. TRANSGENIC ASCIDIANS 2018. [DOI: 10.1007/978-981-10-7545-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Abstract
Tissue-specific transcription regulators emerged as key developmental control genes, which operate in the context of complex gene regulatory networks (GRNs) to coordinate progressive cell fate specification and tissue morphogenesis. We discuss how GRNs control the individual cell behaviors underlying complex morphogenetic events. Cell behaviors classically range from mesenchymal cell motility to cell shape changes in epithelial sheets. These behaviors emerge from the tissue-specific, multiscale integration of the local activities of universal and pleiotropic effectors, which underlie modular subcellular processes including cytoskeletal dynamics, cell-cell and cell-matrix adhesion, signaling, polarity, and vesicle trafficking. Extrinsic cues and intrinsic cell competence determine the subcellular spatiotemporal patterns of effector activities. GRNs influence most subcellular activities by controlling only a fraction of the effector-coding genes, which we argue is enriched in effectors involved in reading and processing the extrinsic cues to contextualize intrinsic subcellular processes and canalize developmental cell behaviors. The properties of the transcription-cell behavior interface have profound implications for evolution and disease.
Collapse
Affiliation(s)
- Yelena Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003
| |
Collapse
|
18
|
Veeman MT, McDonald JA. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona. F1000Res 2016; 5. [PMID: 27303647 PMCID: PMC4892338 DOI: 10.12688/f1000research.8011.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/16/2022] Open
Abstract
Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the
Drosophila ovarian border cells and the
Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC) and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa.
Collapse
Affiliation(s)
- Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, Kansas, 66506, USA
| |
Collapse
|
19
|
Dunn A. How Hydra Eats. Biophys J 2016; 110:1467-1468. [DOI: 10.1016/j.bpj.2016.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 11/17/2022] Open
|