1
|
Nässel DR. A brief history of insect neuropeptide and peptide hormone research. Cell Tissue Res 2025; 399:129-159. [PMID: 39653844 PMCID: PMC11787221 DOI: 10.1007/s00441-024-03936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 02/02/2025]
Abstract
This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays. With the annotation of the Drosophila genome, and more specifically of the NPHs and their receptors in Drosophila and other insects, a new era followed. This started with matching of NPH ligands to orphan receptors, and studies to localize NPHs with improved detection methods. Important advances were made with introduction of a rich repertoire of innovative molecular genetic approaches to localize and interfere with expression or function of NPHs and their receptors. These methods enabled cell- or circuit-specific interference with NPH signaling for in vivo assays to determine roles in behavior and physiology, imaging of neuronal activity, and analysis of connectivity in peptidergic circuits. Recent years have seen a dramatic increase in reports on the multiple functions of NPHs in development, physiology and behavior. Importantly, we can now appreciate the pleiotropic functions of NPHs, as well as the functional peptidergic "networks" where state dependent NPH signaling ensures behavioral plasticity and systemic homeostasis.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Patel AA, Cardona A, Cox DN. Neural substrates of cold nociception in Drosophila larva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.31.551339. [PMID: 37577520 PMCID: PMC10418107 DOI: 10.1101/2023.07.31.551339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metazoans detect and differentiate between innocuous (non-painful) and/or noxious (harmful) environmental cues using primary sensory neurons, which serve as the first node in a neural network that computes stimulus specific behaviors to either navigate away from injury-causing conditions or to perform protective behaviors that mitigate extensive injury. The ability of an animal to detect and respond to various sensory stimuli depends upon molecular diversity in the primary sensors and the underlying neural circuitry responsible for the relevant behavioral action selection. Recent studies in Drosophila larvae have revealed that somatosensory class III multidendritic (CIII md) neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Recent advances in circuit bases of behavior have identified and functionally validated Drosophila larval somatosensory circuitry involved in innocuous (mechanical) and noxious (heat and mechanical) cues. However, central processing of cold nociceptive cues remained unexplored. We implicate multisensory integrators (Basins), premotor (Down-and-Back) and projection (A09e and TePns) neurons as neural substrates required for cold-evoked behavioral and calcium responses. Neural silencing of cell types downstream of CIII md neurons led to significant reductions in cold-evoked behaviors and neural co-activation of CIII md neurons plus additional cell types facilitated larval contraction (CT) responses. Further, we demonstrate that optogenetic activation of CIII md neurons evokes calcium increases in these neurons. Finally, we characterize the premotor to motor neuron network underlying cold-evoked CT and delineate the muscular basis of CT response. Collectively, we demonstrate how Drosophila larvae process cold stimuli through functionally diverse somatosensory circuitry responsible for generating stimulus-specific behaviors.
Collapse
Affiliation(s)
- Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Agard MA, Zandawala M, Paluzzi JPV. Another fly diuretic hormone: tachykinins increase fluid and ion transport by adult Drosophila melanogaster Malpighian 'renal' tubules. J Exp Biol 2024; 227:jeb247668. [PMID: 39319454 DOI: 10.1242/jeb.247668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Insects such as the model organism Drosophila melanogaster must modulate their internal physiology to withstand changes in temperature and availability of water and food. Regulation of the excretory system by peptidergic hormones is one mechanism by which insects maintain their internal homeostasis. Tachykinins are a family of neuropeptides that have been shown to stimulate fluid secretion from the Malpighian 'renal' tubules (MTs) in some insect species, but it is unclear if that is the case in the fruit fly, D. melanogaster. A central objective of the current study was to examine the physiological role of tachykinin signaling in the MTs of adult D. melanogaster. Using the genetic toolbox available in this model organism along with in vitro and whole-animal bioassays, our results indicate that Drosophila tachykinins (DTKs) function as diuretic hormones by binding to the DTK receptor (DTKR) localized in stellate cells of the MTs. Specifically, DTK activates cation and anion transport across the stimulated MTs, which impairs their survival in response to desiccation because of their inability to conserve water. Thus, besides their previously described roles in neuromodulation of pathways controlling locomotion and food search, olfactory processing, aggression, lipid metabolism and metabolic stress, processing of noxious stimuli and hormone release, DTKs also appear to function as bona fide endocrine factors regulating the excretory system and appear essential for the maintenance of hydromineral balance.
Collapse
Affiliation(s)
- Marishia A Agard
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Meet Zandawala
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno 89557, NV, USA
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Tsuji M, Nishizuka Y, Emoto K. Threat gates visual aversion via theta activity in Tachykinergic neurons. Nat Commun 2023; 14:3987. [PMID: 37443364 PMCID: PMC10345120 DOI: 10.1038/s41467-023-39667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Animals must adapt sensory responses to an ever-changing environment for survival. Such sensory modulation is especially critical in a threatening situation, in which animals often promote aversive responses to, among others, visual stimuli. Recently, threatened Drosophila has been shown to exhibit a defensive internal state. Whether and how threatened Drosophila promotes visual aversion, however, remains elusive. Here we report that mechanical threats to Drosophila transiently gate aversion from an otherwise neutral visual object. We further identified the neuropeptide tachykinin, and a single cluster of neurons expressing it ("Tk-GAL42 ∩ Vglut neurons"), that are responsible for gating visual aversion. Calcium imaging analysis revealed that mechanical threats are encoded in Tk-GAL42 ∩ Vglut neurons as elevated activity. Remarkably, we also discovered that a visual object is encoded in Tk-GAL42 ∩ Vglut neurons as θ oscillation, which is causally linked to visual aversion. Our data reveal how a single cluster of neurons adapt organismal sensory response to a threatening situation through a neuropeptide and a combination of rate/temporal coding schemes.
Collapse
Affiliation(s)
- Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuto Nishizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Wang Y, Lopez-Bellido R, Huo X, Kavelaars A, Galko MJ. The insulin receptor regulates the persistence of mechanical nociceptive sensitization in flies and mice. Biol Open 2023; 12:bio059864. [PMID: 37259940 PMCID: PMC10245137 DOI: 10.1242/bio.059864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
Early phase diabetes is often accompanied by pain sensitization. In Drosophila, the insulin receptor (InR) regulates the persistence of injury-induced thermal nociceptive sensitization. Whether Drosophila InR also regulates the persistence of mechanical nociceptive sensitization remains unclear. Mice with a sensory neuron deletion of the insulin receptor (Insr) show normal nociceptive baselines; however, it is uncertain whether deletion of Insr in nociceptive sensory neurons leads to persistent nociceptive hypersensitivity. In this study, we used fly and mouse nociceptive sensitization models to address these questions. In flies, InR mutants and larvae with sensory neuron-specific expression of RNAi transgenes targeting InR exhibited persistent mechanical hypersensitivity. Mice with a specific deletion of the Insr gene in Nav1.8+ nociceptive sensory neurons showed nociceptive thermal and mechanical baselines similar to controls. In an inflammatory paradigm, however, these mutant mice showed persistent mechanical (but not thermal) hypersensitivity, particularly in female mice. Mice with the Nav1.8+ sensory neuron-specific deletion of Insr did not show metabolic abnormalities typical of a defect in systemic insulin signaling. Our results show that some aspects of the regulation of nociceptive hypersensitivity by the insulin receptor are shared between flies and mice and that this regulation is likely independent of metabolic effects.
Collapse
Affiliation(s)
- Yan Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roger Lopez-Bellido
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaojiao Huo
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Genetics & Epigenetics Graduate Program, The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
11
|
Patel AA, Sakurai A, Himmel NJ, Cox DN. Modality specific roles for metabotropic GABAergic signaling and calcium induced calcium release mechanisms in regulating cold nociception. Front Mol Neurosci 2022; 15:942548. [PMID: 36157080 PMCID: PMC9502035 DOI: 10.3389/fnmol.2022.942548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium (Ca2+) plays a pivotal role in modulating neuronal-mediated responses to modality-specific sensory stimuli. Recent studies in Drosophila reveal class III (CIII) multidendritic (md) sensory neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Functional analyses revealed CIII-mediated multimodal behavioral output is dependent upon activation levels with stimulus-evoked Ca2+ displaying relatively low vs. high intracellular levels in response to gentle touch vs. noxious cold, respectively. However, the mechanistic bases underlying modality-specific differential Ca2+ responses in CIII neurons remain incompletely understood. We hypothesized that noxious cold-evoked high intracellular Ca2+ responses in CIII neurons may rely upon Ca2+ induced Ca2+ release (CICR) mechanisms involving transient receptor potential (TRP) channels and/or metabotropic G protein coupled receptor (GPCR) activation to promote cold nociceptive behaviors. Mutant and/or CIII-specific knockdown of GPCR and CICR signaling molecules [GABA B -R2, Gαq, phospholipase C, ryanodine receptor (RyR) and Inositol trisphosphate receptor (IP3R)] led to impaired cold-evoked nociceptive behavior. GPCR mediated signaling, through GABA B -R2 and IP3R, is not required in CIII neurons for innocuous touch evoked behaviors. However, CICR via RyR is required for innocuous touch-evoked behaviors. Disruptions in GABA B -R2, IP3R, and RyR in CIII neurons leads to significantly lower levels of cold-evoked Ca2+ responses indicating GPCR and CICR signaling mechanisms function in regulating Ca2+ release. CIII neurons exhibit bipartite cold-evoked firing patterns, where CIII neurons burst during rapid temperature change and tonically fire during steady state cold temperatures. GABA B -R2 knockdown in CIII neurons resulted in disorganized firing patterns during cold exposure. We further demonstrate that application of GABA or the GABA B specific agonist baclofen potentiates cold-evoked CIII neuron activity. Upon ryanodine application, CIII neurons exhibit increased bursting activity and with CIII-specific RyR knockdown, there is an increase in cold-evoked tonic firing and decrease in bursting. Lastly, our previous studies implicated the TRPP channel Pkd2 in cold nociception, and here, we show that Pkd2 and IP3R genetically interact to specifically regulate cold-evoked behavior, but not innocuous mechanosensation. Collectively, these analyses support novel, modality-specific roles for metabotropic GABAergic signaling and CICR mechanisms in regulating intracellular Ca2+ levels and cold-evoked behavioral output from multimodal CIII neurons.
Collapse
Affiliation(s)
| | | | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
12
|
Abstract
Modulation of nociception allows animals to optimize chances of survival by adapting their behaviour in different contexts. In mammals, this is executed by neurons from the brain and is referred to as the descending control of nociception. Whether insects have such control, or the neural circuits allowing it, has rarely been explored. Based on behavioural, neuroscientific and molecular evidence, we argue that insects probably have descending controls for nociception. Behavioural work shows that insects can modulate nocifensive behaviour. Such modulation is at least in part controlled by the central nervous system since the information mediating such prioritization is processed by the brain. Central nervous system control of nociception is further supported by neuroanatomical and neurobiological evidence showing that the insect brain can facilitate or suppress nocifensive behaviour, and by molecular studies revealing pathways involved in the inhibition of nocifensive behaviour both peripherally and centrally. Insects lack the endogenous opioid peptides and their receptors that contribute to mammalian descending nociception controls, so we discuss likely alternative molecular mechanisms for the insect descending nociception controls. We discuss what the existence of descending control of nociception in insects may reveal about pain perception in insects and finally consider the ethical implications of these novel findings.
Collapse
Affiliation(s)
- Matilda Gibbons
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Sajedeh Sarlak
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Lars Chittka
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
13
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
14
|
Hale C, Moulton JK, Otis Y, Ganter G. ARMADILLO REGULATES NOCICEPTIVE SENSITIVITY IN THE ABSENCE OF INJURY. Mol Pain 2022; 18:17448069221111155. [PMID: 35712882 PMCID: PMC9500252 DOI: 10.1177/17448069221111155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal pain has recently been estimated to affect ∼50 million adults each year within the United States. With many treatment options for abnormal pain, such as opioid analgesics, carrying numerous deleterious side effects, research into safer and more effective treatment options is crucial. To help elucidate the mechanisms controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used to characterize well-conserved pathways through the use of genetic modification and/or injury to alter the sensitivity of experimental animals. Mammalian models have provided evidence of β-catenin signaling involvement in neuropathic pain development. By capitalizing on the conserved nature of β-catenin functions in the fruit fly, here we describe a role for Armadillo, the fly homolog to mammalian β-catenin, in regulating baseline sensitivity in the primary nociceptor of the fly, in the absence of injury, using under- and over-expression of Armadillo in a cell-specific manner. Underexpression of Armadillo resulted in hyposensitivity, while overexpression of wild-type Armadillo or expression of a degradation-resistant Armadillo resulted in hypersensitivity. Neither underexpression nor overexpression of Armadillo resulted in observed dendritic morphological changes that could contribute to behavioral phenotypes observed. These results showed that focused manipulation of Armadillo expression within the nociceptors is sufficient to modulate baseline response in the nociceptors to a noxious stimulus and that these changes are not shown to be associated with a morphogenetic effect.
Collapse
Affiliation(s)
- Christine Hale
- Graduate School of Biomedical Science and Engineering6251University of Maine System
| | | | - Yvonne Otis
- School of Biological Sciences172741University of New England College of Arts and Sciences
| | | |
Collapse
|
15
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
16
|
Nociception and hypersensitivity involve distinct neurons and molecular transducers in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2113645119. [PMID: 35294287 PMCID: PMC8944580 DOI: 10.1073/pnas.2113645119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceFunctional plasticity of the nociceptive circuit is a remarkable feature and is of clinical relevance. As an example, nociceptors lower their threshold upon tissue injury, a process known as allodynia that would facilitate healing by guarding the injured areas. However, long-lasting hypersensitivity could lead to chronic pain, a debilitating disease not effectively treated. Therefore, it is crucial to dissect the mechanisms underlying basal nociception and nociceptive hypersensitivity. In both vertebrate and invertebrate species, conserved transient receptor potential (Trp) channels are the primary transducers of noxious stimuli. Here, we provide a precedent that in Drosophila larvae, heat sensing in the nociception and hypersensitivity states is mediated by distinct heat-sensitive neurons and TrpA1 alternative isoforms.
Collapse
|
17
|
Lee S, Kim MA, Park JM, Park K, Sohn YC. Multiple tachykinins and their receptors characterized in the gastropod mollusk Pacific abalone: Expression, signaling cascades, and potential role in regulating lipid metabolism. Front Endocrinol (Lausanne) 2022; 13:994863. [PMID: 36187101 PMCID: PMC9521575 DOI: 10.3389/fendo.2022.994863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tachykinin (TK) families, including the first neuropeptide substance P, have been intensively explored in bilaterians. Knowledge of signaling of TK receptors (TKRs) has enabled the comprehension of diverse physiological processes. However, TK signaling systems are largely unknown in Lophotrochozoa. This study identified two TK precursors and two TKR isoforms in the Pacific abalone Haliotis discus hannai (Hdh), and characterized Hdh-TK signaling. Hdh-TK peptides harbored protostomian TK-specific FXGXRamide or unique YXGXRamide motifs at the C-termini. A phylogenetic analysis showed that lophotrochozoan TKRs, including Hdh-TKRs, form a monophyletic group distinct from arthropod TKRs and natalisin receptor groups. Although reporter assays demonstrated that all examined Hdh-TK peptides activate intracellular cAMP accumulation and Ca2+ mobilization in Hdh-TKR-expressing mammalian cells, Hdh-TK peptides with N-terminal aromatic residues and C-terminal FXGXRamide motifs were more active than shorter or less aromatic Hdh-TK peptides with a C-terminal YXGXRamide. In addition, we showed that ligand-stimulated Hdh-TKRs mediate ERK1/2 phosphorylation in HEK293 cells and that ERK1/2 phosphorylation is inhibited by PKA and PKC inhibitors. In three-dimensional in silico Hdh-TKR binding modeling, higher docking scores of Hdh-TK peptides were consistent with the lower EC50 values in the reporter assays. The transcripts for Hdh-TK precursors and Hdh-TKR were highly expressed in the neural ganglia, with lower expression levels in peripheral tissues. When abalone were starved for 3 weeks, Hdh-TK1 transcript levels, but not Hdh-TK2, were increased in the cerebral ganglia (CG), intestine, and hepatopancreas, contrasting with the decreased lipid content and transcript levels of sterol regulatory element-binding protein (SREBP). At 24 h post-injection in vivo, the lower dose of Hdh-TK1 mixture increased SREBP transcript levels in the CG and hepatopancreas and accumulative food consumption of abalone. Higher doses of Hdh-TK1 and Hdh-TK2 mixtures decreased the SREBP levels in the CG. When Hdh-TK2-specific siRNA was injected into abalone, intestinal SREBP levels were significantly increased, whereas administration of both Hdh-TK1 and Hdh-TK2 siRNA led to decreased SREBP expression in the CG. Collectively, our results demonstrate the first TK signaling system in gastropod mollusks and suggest a possible role for TK peptides in regulating lipid metabolism in the neural and peripheral tissues of abalone.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jong-Moon Park
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
- *Correspondence: Young Chang Sohn,
| |
Collapse
|
18
|
Dabbara H, Schultz A, Im SH. Drosophila insulin receptor regulates diabetes-induced mechanical nociceptive hypersensitivity. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34549177 PMCID: PMC8449261 DOI: 10.17912/micropub.biology.000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Painful diabetic neuropathy (PDN) is one of the predominant complications of diabetes that causes numbness, tingling, and extreme pain sensitivity. Understanding the mechanisms of PDN pathogenesis is important for patient treatments. Here we report Drosophila models of diabetes-induced mechanical nociceptive hypersensitivity. Type 2 diabetes-like conditions and loss of insulin receptor function in multidendritic sensory neurons lead to mechanical nociceptive hypersensitivity. Furthermore, we also found that restoring insulin signaling in multidendritic sensory neurons can block diabetes-induced mechanical nociceptive hypersensitivity. Our work highlights the critical role of insulin signaling in nociceptive sensory neurons in the regulation of diabetes-induced nociceptive hypersensitivities.
Collapse
Affiliation(s)
| | | | - Seol Hee Im
- Department of Biology, Haverford College, Haverford, PA
| |
Collapse
|
19
|
McParland A, Moulton J, Brann C, Hale C, Otis Y, Ganter G. The brinker repressor system regulates injury-induced nociceptive sensitization in Drosophila melanogaster. Mol Pain 2021; 17:17448069211037401. [PMID: 34399634 PMCID: PMC8375337 DOI: 10.1177/17448069211037401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Chronic pain is a debilitating condition affecting millions of people worldwide, and an improved understanding of the pathophysiology of chronic pain is urgently needed. Nociceptors are the sensory neurons that alert the nervous system to potentially harmful stimuli such as mechanical pressure or noxious thermal temperature. When an injury occurs, the nociceptive threshold for pain is reduced and an increased pain signal is produced. This process is called nociceptive sensitization. This sensitization normally subsides after the injury is healed. However, dysregulation can occur which results in sensitization that persists after the injury has healed. This process is thought to perpetuate chronic pain. The Hedgehog (Hh) signaling pathway has been previously implicated in nociceptive sensitization in response to injury in Drosophila melanogaster. Downstream of Hh signaling, the Bone Morphogenetic Protein (BMP) pathway has also been shown to be necessary for this process. Here, we describe a role for nuclear components of BMP’s signaling pathway in the formation of injury-induced nociceptive sensitization. Brinker (Brk), and Schnurri (Shn) were suppressed in nociceptors using an RNA-interference (RNAi) “knockdown” approach. Knockdown of Brk resulted in hypersensitivity in the absence of injury, indicating that it normally acts to suppress nociceptive sensitivity. Animals in which transcriptional activator Shn was knocked down in nociceptors failed to develop normal allodynia after ultraviolet irradiation injury, indicating that Shn normally acts to promote hypersensitivity after injury. These results indicate that Brk-related transcription regulators play a crucial role in the formation of nociceptive sensitization and may therefore represent valuable new targets for pain-relieving medications.
Collapse
Affiliation(s)
- Aidan McParland
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie Moulton
- College of Arts and Sciences, University of New England, Biddeford, ME, USA
| | - Courtney Brann
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Christine Hale
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Yvonne Otis
- College of Arts and Sciences, University of New England, Biddeford, ME, USA
| | - Geoffrey Ganter
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| |
Collapse
|
20
|
Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila. Commun Biol 2021; 4:693. [PMID: 34099879 PMCID: PMC8184744 DOI: 10.1038/s42003-021-02219-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolism influences locomotor behaviors, but the understanding of neural curcuit control for that is limited. Under standard light-dark cycles, Drosophila exhibits bimodal morning (M) and evening (E) locomotor activities that are controlled by clock neurons. Here, we showed that a high-nutrient diet progressively extended M activity but not E activity. Drosophila tachykinin (DTk) and Tachykinin-like receptor at 86C (TkR86C)-mediated signaling was required for the extension of M activity. DTk neurons were anatomically and functionally connected to the posterior dorsal neuron 1s (DN1ps) in the clock neuronal network. The activation of DTk neurons reduced intracellular Ca2+ levels in DN1ps suggesting an inhibitory connection. The contacts between DN1ps and DTk neurons increased gradually over time in flies fed a high-sucrose diet, consistent with the locomotor behavior. DN1ps have been implicated in integrating environmental sensory inputs (e.g., light and temperature) to control daily locomotor behavior. This study revealed that DN1ps also coordinated nutrient information through DTk signaling to shape daily locomotor behavior. Lee and colleagues report the effect of a high-sucrose diet on Drosophila locomotor activity via DTk-TkR86C neuropeptide signalling. This signalling pattern appears to involve a circadian element, with pacemaker neuron involvement having a possible time-of-day effect on locomotor behaviour.
Collapse
|
21
|
Habenstein J, Thamm M, Rössler W. Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus. J Comp Neurol 2021; 529:3155-3170. [PMID: 33950523 DOI: 10.1002/cne.25166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Age-related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin-A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin-A- and tachykinin-ir neurons innervate primary sensory neuropils and high-order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell-body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage-related change in the expression of allatostatin-A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA-changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants.
Collapse
Affiliation(s)
- Jens Habenstein
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
The Drosophila melanogaster Neprilysin Nepl15 is involved in lipid and carbohydrate storage. Sci Rep 2021; 11:2099. [PMID: 33483521 PMCID: PMC7822871 DOI: 10.1038/s41598-021-81165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
The prototypical M13 peptidase, human Neprilysin, functions as a transmembrane "ectoenzyme" that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.
Collapse
|
23
|
Ma Z, Freeman MR. TrpML-mediated astrocyte microdomain Ca 2+ transients regulate astrocyte-tracheal interactions. eLife 2020; 9:e58952. [PMID: 33284108 PMCID: PMC7721441 DOI: 10.7554/elife.58952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes exhibit spatially-restricted near-membrane microdomain Ca2+transients in their fine processes. How these transients are generated and regulate brain function in vivo remains unclear. Here we show that Drosophila astrocytes exhibit spontaneous, activity-independent microdomain Ca2+ transients in their fine processes. Astrocyte microdomain Ca2+ transients are mediated by the TRP channel TrpML, stimulated by reactive oxygen species (ROS), and can be enhanced in frequency by the neurotransmitter tyramine via the TyrRII receptor. Interestingly, many astrocyte microdomain Ca2+ transients are closely associated with tracheal elements, which dynamically extend filopodia throughout the central nervous system (CNS) to deliver O2 and regulate gas exchange. Many astrocyte microdomain Ca2+ transients are spatio-temporally correlated with the initiation of tracheal filopodial retraction. Loss of TrpML leads to increased tracheal filopodial numbers, growth, and increased CNS ROS. We propose that local ROS production can activate astrocyte microdomain Ca2+ transients through TrpML, and that a subset of these microdomain transients promotes tracheal filopodial retraction and in turn modulate CNS gas exchange.
Collapse
Affiliation(s)
- Zhiguo Ma
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
24
|
Lopez-Bellido R, Galko MJ. An Improved Assay and Tools for Measuring Mechanical Nociception in Drosophila Larvae. J Vis Exp 2020. [PMID: 33191934 DOI: 10.3791/61911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Published assays for mechanical nociception in Drosophila have led to variable assessments of behavior. Here, we fabricated, for use with Drosophila larvae, customized metal nickel-titanium alloy (nitinol) filaments. These mechanical probes are similar to the von Frey filaments used in vertebrates to measure mechanical nociception. Here, we demonstrate how to make and calibrate these mechanical probes and how to generate a full behavioral dose-response from subthreshold (innocuous or non-noxious range) to suprathreshold (low to high noxious range) stimuli. To demonstrate the utility of the probes, we investigated tissue damage-induced hypersensitivity in Drosophila larvae. Mechanical allodynia (hypersensitivity to a normally innocuous mechanical stimulus) and hyperalgesia (exaggerated responsiveness to a noxious mechanical stimulus) have not yet been established in Drosophila larvae. Using mechanical probes that are normally innocuous or probes that typically elicit an aversive behavior, we found that Drosophila larvae develop mechanical hypersensitization (both allodynia and hyperalgesia) after tissue damage. Thus, the mechanical probes and assay that we illustrate here will likely be important tools to dissect the fundamental molecular/genetic mechanisms of mechanical hypersensitivity.
Collapse
Affiliation(s)
| | - Michael J Galko
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center; Genetics and Epigenetics Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center;
| |
Collapse
|
25
|
Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019; 13:1262. [PMID: 31824255 PMCID: PMC6880623 DOI: 10.3389/fnins.2019.01262] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
26
|
Lopez-Bellido R, Himmel NJ, Gutstein HB, Cox DN, Galko MJ. An assay for chemical nociception in Drosophila larvae. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190282. [PMID: 31544619 PMCID: PMC6790381 DOI: 10.1098/rstb.2019.0282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Chemically induced nociception has not yet been studied intensively in genetically tractable models. Hence, our goal was to establish a Drosophila assay that can be used to study the cellular and molecular/genetic bases of chemically induced nociception. Drosophila larvae exposed to increasing concentrations of hydrochloric acid (HCl) produced an increasingly intense aversive rolling response. HCl (0.5%) was subthreshold and provoked no response. All classes of peripheral multidendritic (md) sensory neurons (classes I-IV) are required for full responsiveness to acid, with class IV making the largest contribution. At the cellular level, classes IV, III and I showed increases in calcium following acid exposure. In the central nervous system, Basin-4 second-order neurons are the key regulators of chemically induced nociception, with a slight contribution from other types. Finally, chemical nociception can be sensitized by tissue damage. Subthreshold HCl provoked chemical allodynia in larvae 4 h after physical puncture wounding. Pinch wounding and UV irradiation, which do not compromise the cuticle, did not cause chemical allodynia. In sum, we developed a novel assay to study chemically induced nociception in Drosophila larvae. This assay, combined with the high genetic resolving power of Drosophila, should improve our basic understanding of fundamental mechanisms of chemical nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Roger Lopez-Bellido
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel J. Himmel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Howard B. Gutstein
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson UT Health Graduate School of Biomedical Sciences, TX 77030, USA
- Genetics and Epigenetics Graduate Program, The MD Anderson UT Health Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
27
|
Mukherjee R, Trimmer BA. Local and generalized sensitization of thermally evoked defensive behavior in caterpillars. J Comp Neurol 2019; 528:805-815. [DOI: 10.1002/cne.24797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
|
28
|
Khuong TM, Hamoudi Z, Manion J, Loo L, Muralidharan A, Neely GG. Peripheral straightjacket (α2δ Ca 2+ channel subunit) expression is required for neuropathic sensitization in Drosophila. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190287. [PMID: 31544607 DOI: 10.1098/rstb.2019.0287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nerve injury leads to devastating and often untreatable neuropathic pain. While acute noxious sensation (nociception) is a crucial survival mechanism and is conserved across phyla, chronic neuropathic pain is considered a maladaptive response owing to its devastating impact on a patient's quality of life. We have recently shown that a neuropathic pain-like response occurs in adult Drosophila. However, the mechanisms underlying this phenomenon are largely unknown. Previous studies have shown that the α2δ peripheral calcium channel subunit straightjacket (stj) is a conserved factor required for thermal pain perception. We demonstrate here that stj is required in peripheral ppk+ sensory neurons for acute thermal responses and that it mediates nociceptive hypersensitivity in an adult Drosophila model of neuropathic pain-like disease. Given that calcium channels are the main targets of gabapentinoids (pregabalin and gabapentin), we assessed if these drugs can alleviate nociceptive hypersensitivity. Our findings suggest that gabapentinoids may prevent nociceptive hypersensitivity by preserving central inhibition after nerve injury. Together, our data further highlight the similarity of some mechanisms for pain-like conditions across phyla and validates the scientific use of Drosophila neuropathic sensitization models for analgesic drug discovery. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Thang M Khuong
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zina Hamoudi
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - John Manion
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lipin Loo
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arjun Muralidharan
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - G Gregory Neely
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
29
|
Growth Factor Signaling Regulates Mechanical Nociception in Flies and Vertebrates. J Neurosci 2019; 39:6012-6030. [PMID: 31138657 DOI: 10.1523/jneurosci.2950-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanical sensitization is one of the most difficult clinical pain problems to treat. However, the molecular and genetic bases of mechanical nociception are unclear. Here we develop a Drosophila model of mechanical nociception to investigate the ion channels and signaling pathways that regulate mechanical nociception. We fabricated von Frey filaments that span the subthreshold to high noxious range for Drosophila larvae. Using these, we discovered that pressure (force/area), rather than force per se, is the main determinant of aversive rolling responses to noxious mechanical stimuli. We demonstrated that the RTK PDGF/VEGF receptor (Pvr) and its ligands (Pvfs 2 and 3) are required for mechanical nociception and normal dendritic branching. Pvr is expressed and functions in class IV sensory neurons, whereas Pvf2 and Pvf3 are produced by multiple tissues. Constitutive overexpression of Pvr and its ligands or inducible overexpression of Pvr led to mechanical hypersensitivity that could be partially separated from morphological effects. Genetic analyses revealed that the Piezo and Pain ion channels are required for mechanical hypersensitivity observed upon ectopic activation of Pvr signaling. PDGF, but not VEGF, peptides caused mechanical hypersensitivity in rats. Pharmacological inhibition of VEGF receptor Type 2 (VEGFR-2) signaling attenuated mechanical nociception in rats, suggesting a conserved role for PDGF and VEGFR-2 signaling in regulating mechanical nociception. VEGFR-2 inhibition also attenuated morphine analgesic tolerance in rats. Our results reveal that a conserved RTK signaling pathway regulates baseline mechanical nociception in flies and rats.SIGNIFICANCE STATEMENT Hypersensitivity to touch is poorly understood and extremely difficult to treat. Using a refined Drosophila model of mechanical nociception, we discovered a conserved VEGF-related receptor tyrosine kinase signaling pathway that regulates mechanical nociception in flies. Importantly, pharmacological inhibition of VEGF receptor Type 2 signaling in rats causes analgesia and blocks opioid tolerance. We have thus established a robust, genetically tractable system for the rapid identification and functional analysis of conserved genes underlying mechanical pain sensitivity.
Collapse
|
30
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
31
|
Gjelsvik KJ, Follansbee TL, Ganter GK. Bone Morphogenetic Protein Glass Bottom Boat (BMP5/6/7/8) and its receptor Wishful Thinking (BMPRII) are required for injury-induced allodynia in Drosophila. Mol Pain 2019; 14:1744806918802703. [PMID: 30259786 PMCID: PMC6161205 DOI: 10.1177/1744806918802703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Chronic pain affects millions of people worldwide; however, its cellular and molecular mechanisms have not been completely elucidated. It is thought that chronic pain is triggered by nociceptive sensitization, which produces elevated nocifensive responses. A model has been developed in Drosophila melanogaster to investigate the underlying mechanisms of chronic pain using ultraviolet-induced tissue injury to trigger thermal allodynia, a nociceptive hypersensitivity to a normally innocuous stimulus. Larvae were assayed for their behavioral latencies to produce a distinct avoidance response under different thermal conditions. Previously, Decapentaplegic, a member of the Bone Morphogenetic Protein (BMP) family and orthologous to mammalian BMP2/4, was shown to be necessary for the induction of allodynia. Here, we further investigate the BMP pathway to identify other essential molecules necessary to activate the nociceptive sensitization pathway. Results Using the GAL4-UAS-RNAi system to induce a cell-specific knockdown of gene expression, we further explored BMP pathway components to identify other key players in the induction of nociceptive sensitization by comparing the responses of manipulated animals to those of controls. Here, we show that a second BMP, Glass Bottom Boat, and its receptor Wishful Thinking are both necessary for injury-induced thermal allodynia since the formation of sensitization was found to be severely attenuated when either of these components was suppressed. The effects on pain perception appear to be specific to the sensitization system, as the ability to respond to a normally noxious stimulus in the absence of injury was left intact, and no nociceptor morphological defects were observed. Conclusion These results provide further support of the hypothesis that the BMP pathway plays a crucial role in the development of nociceptive sensitization. Because of its strong conservation between invertebrates and mammals, the BMP pathway may be worthy of future investigation for the development of targeted treatments to alleviate chronic pain.
Collapse
Affiliation(s)
- Kayla Jane Gjelsvik
- 1 Department of Biology, College of Arts and Sciences, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Taylor Leon Follansbee
- 1 Department of Biology, College of Arts and Sciences, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Geoffrey Karl Ganter
- 1 Department of Biology, College of Arts and Sciences, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| |
Collapse
|
32
|
Turner HN, Patel AA, Cox DN, Galko MJ. Injury-induced cold sensitization in Drosophila larvae involves behavioral shifts that require the TRP channel Brv1. PLoS One 2018; 13:e0209577. [PMID: 30586392 PMCID: PMC6306221 DOI: 10.1371/journal.pone.0209577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Nociceptive sensitization involves an increase in responsiveness of pain sensing neurons to sensory stimuli, typically through the lowering of their nociceptive threshold. Nociceptive sensitization is common following tissue damage, inflammation, and disease and serves to protect the affected area while it heals. Organisms can become sensitized to a range of noxious and innocuous stimuli, including thermal stimuli. The basic mechanisms underlying sensitization to warm or painfully hot stimuli have begun to be elucidated, however, sensitization to cold is not well understood. Here, we develop a Drosophila assay to study cold sensitization after UV-induced epidermal damage in larvae. Larvae respond to acute cold stimuli with a set of unique behaviors that include a contraction of the head and tail (CT) or a raising of the head and tail into a U-Shape (US). Under baseline, non-injured conditions larvae primarily produce a CT response to an acute cold (10°C) stimulus, however, we show that cold-evoked responses shift following tissue damage: CT responses decrease, US responses increase and some larvae exhibit a lateral body roll (BR) that is typically only observed in response to high temperature and noxious mechanical stimuli. At the cellular level, class III neurons are required for the decrease in CT, chordotonal neurons are required for the increase in US, and chordotonal and class IV neurons are required for the appearance of BR responses after UV. At the molecular level, we found that the transient receptor potential (TRP) channel brivido-1 (brv1) is required for these behavioral shifts. Our Drosophila model will allow us to precisely identify the genes and circuits involved in cold nociceptive sensitization.
Collapse
Affiliation(s)
- Heather N. Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (DNC); (MJG)
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DNC); (MJG)
| |
Collapse
|
33
|
Herman JA, Willits AB, Bellemer A. Gαq and Phospholipase Cβ signaling regulate nociceptor sensitivity in Drosophila melanogaster larvae. PeerJ 2018; 6:e5632. [PMID: 30258723 PMCID: PMC6151255 DOI: 10.7717/peerj.5632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022] Open
Abstract
Drosophila melanogaster larvae detect noxious thermal and mechanical stimuli in their environment using polymodal nociceptor neurons whose dendrites tile the larval body wall. Activation of these nociceptors by potentially tissue-damaging stimuli elicits a stereotyped escape locomotion response. The cellular and molecular mechanisms that regulate nociceptor function are increasingly well understood, but gaps remain in our knowledge of the broad mechanisms that control nociceptor sensitivity. In this study, we use cell-specific knockdown and overexpression to show that nociceptor sensitivity to noxious thermal and mechanical stimuli is correlated with levels of Gαq and phospholipase Cβ signaling. Genetic manipulation of these signaling mechanisms does not result in changes in nociceptor morphology, suggesting that changes in nociceptor function do not arise from changes in nociceptor development, but instead from changes in nociceptor activity. These results demonstrate roles for Gαq and phospholipase Cβ signaling in facilitating the basal sensitivity of the larval nociceptors to noxious thermal and mechanical stimuli and suggest future studies to investigate how these signaling mechanisms may participate in neuromodulation of sensory function.
Collapse
Affiliation(s)
- Joshua A Herman
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Adam B Willits
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| |
Collapse
|
34
|
Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, Rabinowitch I, Bai J, Rankin CH, Lu H, Beets I, Schafer WR. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018; 99:1233-1246.e6. [PMID: 30146306 PMCID: PMC6162336 DOI: 10.1016/j.neuron.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yoshinori Tanizawa
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yongmin Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Buyun Zhao
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Ithai Rabinowitch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK; Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
| |
Collapse
|
35
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
36
|
BMP signaling downstream of the Highwire E3 ligase sensitizes nociceptors. PLoS Genet 2018; 14:e1007464. [PMID: 30001326 PMCID: PMC6042685 DOI: 10.1371/journal.pgen.1007464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 01/18/2023] Open
Abstract
A comprehensive understanding of the molecular machinery important for nociception is essential to improving the treatment of pain. Here, we show that the BMP signaling pathway regulates nociception downstream of the E3 ubiquitin ligase highwire (hiw). hiw loss of function in nociceptors caused antagonistic and pleiotropic phenotypes with simultaneous insensitivity to noxious heat but sensitized responses to optogenetic activation of nociceptors. Thus, hiw functions to both positively and negatively regulate nociceptors. We find that a sensory reception-independent sensitization pathway was associated with BMP signaling. BMP signaling in nociceptors was up-regulated in hiw mutants, and nociceptor-specific expression of hiw rescued all nociception phenotypes including the increased BMP signaling. Blocking the transcriptional output of the BMP pathway with dominant negative Mad suppressed nociceptive hypersensitivity that was induced by interfering with hiw. The up-regulated BMP signaling phenotype in hiw genetic mutants could not be suppressed by mutation in wallenda suggesting that hiw regulates BMP in nociceptors via a wallenda independent pathway. In a newly established Ca2+ imaging preparation, we observed that up-regulated BMP signaling caused a significantly enhanced Ca2+ signal in the axon terminals of nociceptors that were stimulated by noxious heat. This response likely accounts for the nociceptive hypersensitivity induced by elevated BMP signaling in nociceptors. Finally, we showed that 24-hour activation of BMP signaling in nociceptors was sufficient to sensitize nociceptive responses to optogenetically-triggered nociceptor activation without altering nociceptor morphology. Overall, this study demonstrates the previously unrevealed roles of the Hiw-BMP pathway in the regulation of nociception and provides the first direct evidence that up-regulated BMP signaling physiologically sensitizes responses of nociceptors and nociception behaviors. Although pain is a universally experienced sensation that has a significant impact on human lives and society, the molecular mechanisms of pain remain poorly understood. Elucidating these mechanisms is particularly important to gaining insight into the clinical development of currently incurable chronic pain diseases. Taking an advantage of the powerful genetic model organism Drosophila melanogaster (fruit flies), we unveil the Highwire-BMP signaling pathway as a novel molecular pathway that regulates the sensitivity of nociceptive sensory neurons. Highwire and the molecular components of the BMP signaling pathway are known to be widely conserved among animal phyla, from nematode worms to humans. Since abnormal sensitivity of nociceptive sensory neurons can play a critical role in the development of chronic pain conditions, a deeper understanding of the regulation of nociceptor sensitivity has the potential to advance effective therapeutic strategies to treat difficult pain conditions.
Collapse
|
37
|
Brazill JM, Cruz B, Zhu Y, Zhai RG. Nmnat mitigates sensory dysfunction in a Drosophila model of paclitaxel-induced peripheral neuropathy. Dis Model Mech 2018; 11:dmm.032938. [PMID: 29716954 PMCID: PMC6031360 DOI: 10.1242/dmm.032938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/25/2018] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the major dose-limiting side effect of many commonly used chemotherapeutic agents, including paclitaxel. Currently, there are no neuroprotective or effective symptomatic treatments for CIPN. Lack of understanding of the in vivo mechanisms of CIPN has greatly impeded the identification of therapeutic targets. Here, we optimized a model of paclitaxel-induced peripheral neuropathy using Drosophila larvae that recapitulates aspects of chemotherapy-induced sensory dysfunction. We showed that nociceptive sensitivity is associated with disrupted organization of microtubule-associated MAP1B/Futsch and aberrant stabilization of peripheral sensory dendrites. These findings establish a robust and amenable model for studying peripheral mechanisms of CIPN. Using this model, we uncovered a critical role for nicotinamide mononucleotide adenylyltransferase (Nmnat) in maintaining the integrity and function of peripheral sensory neurons and uncovered Nmnat's therapeutic potential against diverse sensory symptoms of CIPN. Summary: Neurotoxic side effects of chemotherapy are poorly understood. Here, the authors optimize a Drosophila model of paclitaxel-induced sensory dysfunction, which is then used to explore the neuroprotective capacity of Nmnat.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Beverley Cruz
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA .,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
38
|
Song W, Zhao L, Tao Y, Guo X, Jia J, He L, Huang Y, Zhu Y, Chen P, Qin H. The interruptive effect of electric shock on odor response requires mushroom bodies in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2018; 18:e12488. [PMID: 29808570 DOI: 10.1111/gbb.12488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 11/28/2022]
Abstract
Nociceptive stimulus involuntarily interrupts concurrent activities. This interruptive effect is related to the protective function of nociception that is believed to be under stringent evolutionary pressure. To determine whether such interruptive effect is conserved in invertebrate and potentially uncover underlying neural circuits, we examined Drosophila melanogaster. Electric shock (ES) is a commonly used nociceptive stimulus for nociception related research in Drosophila. Here, we showed that background noxious ES dramatically interrupted odor response behaviors in a T-maze, which is termed blocking odor response by electric shock (BOBE). The interruptive effect is not odor specific. ES could interrupt both odor avoidance and odor approach. To identify involved brain areas, we focused on the odor avoidance to 3-OCT. By spatially abolishing neurotransmission with temperature sensitive ShibireTS1 , we found that mushroom bodies (MBs) are necessary for BOBE. Among the 3 major MB Kenyon cell (KCs) subtypes, α/β neurons and γ neurons but not α'/β' neurons are required for normal BOBE. Specifically, abolishing the neurotransmission of either α/β surface (α/βs ), α/β core (α/βc ) or γ dorsal (γd ) neurons alone is sufficient to abrogate BOBE. This pattern of MB subset requirement is distinct from that of aversive olfactory learning, indicating a specialized BOBE pathway. Consistent with this idea, BOBE was not diminished in several associative memory mutants and noxious ES interrupted both innate and learned odor avoidance. Overall, our results suggest that MB α/β and γ neurons are parts of a previously unappreciated central neural circuit that processes the interruptive effect of nociception.
Collapse
Affiliation(s)
- W Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - L Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Y Tao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - X Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - J Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - L He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Y Huang
- College of Electrical Engineering, Guangxi University, Nanning, China
| | - Y Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - P Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - H Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
39
|
Zandawala M, Moghul I, Yañez Guerra LA, Delroisse J, Abylkassimova N, Hugall AF, O'Hara TD, Elphick MR. Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuroid echinoderms. Open Biol 2018; 7:rsob.170129. [PMID: 28878039 PMCID: PMC5627052 DOI: 10.1098/rsob.170129] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 11/12/2022] Open
Abstract
Neuropeptides are a diverse class of intercellular signalling molecules that mediate neuronal regulation of many physiological and behavioural processes. Recent advances in genome/transcriptome sequencing are enabling identification of neuropeptide precursor proteins in species from a growing variety of animal taxa, providing new insights into the evolution of neuropeptide signalling. Here, detailed analysis of transcriptome sequence data from three brittle star species, Ophionotus victoriae, Amphiura filiformis and Ophiopsila aranea, has enabled the first comprehensive identification of neuropeptide precursors in the class Ophiuroidea of the phylum Echinodermata. Representatives of over 30 bilaterian neuropeptide precursor families were identified, some of which occur as paralogues. Furthermore, homologues of endothelin/CCHamide, eclosion hormone, neuropeptide-F/Y and nucleobinin/nesfatin were discovered here in a deuterostome/echinoderm for the first time. The majority of ophiuroid neuropeptide precursors contain a single copy of a neuropeptide, but several precursors comprise multiple copies of identical or non-identical, but structurally related, neuropeptides. Here, we performed an unprecedented investigation of the evolution of neuropeptide copy number over a period of approximately 270 Myr by analysing sequence data from over 50 ophiuroid species, with reference to a robust phylogeny. Our analysis indicates that the composition of neuropeptide ‘cocktails’ is functionally important, but with plasticity over long evolutionary time scales.
Collapse
Affiliation(s)
- Meet Zandawala
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Luis Alfonso Yañez Guerra
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jérôme Delroisse
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Nikara Abylkassimova
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Andrew F Hugall
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Timothy D O'Hara
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
40
|
Im SH, Patel AA, Cox DN, Galko MJ. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization. Dis Model Mech 2018; 11:dmm034231. [PMID: 29752280 PMCID: PMC5992604 DOI: 10.1242/dmm.034231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi -expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity.
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Atit A Patel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
41
|
Jang W, Baek M, Han YS, Kim C. Duox mediates ultraviolet injury-induced nociceptive sensitization in Drosophila larvae. Mol Brain 2018. [PMID: 29540218 PMCID: PMC5852969 DOI: 10.1186/s13041-018-0358-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nociceptive sensitization is an increase in pain perception in response to stimulus. Following brief irradiation of Drosophila larvae with UV, nociceptive sensitization occurs in class IV multiple dendritic (mdIV) neurons, which are polymodal sensory nociceptors. Diverse signaling pathways have been identified that mediate nociceptive sensitization in mdIV neurons, including TNF, Hedgehog, BMP, and Tachykinin, yet the underlying mechanisms are not completely understood. RESULTS Here we report that duox heterozygous mutant larvae, which have normal basal nociception, exhibit an attenuated hypersensitivity response to heat and mechanical force following UV irradiation. Employing the ppk-Gal4 line, which is exclusively expressed in mdIV neurons, we further show that silencing duox in mdIV neurons attenuates UV-induced sensitization. CONCLUSIONS Our findings reveal a novel role for duox in nociceptive sensitization of Drosophila larvae, and will enhance our understanding of the mechanisms underlying this process in Drosophila sensory neurons.
Collapse
Affiliation(s)
- Wijeong Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minwoo Baek
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Changsoo Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
42
|
Petersen M, Tenedini F, Hoyer N, Kutschera F, Soba P. Assaying Thermo-nociceptive Behavior in Drosophila Larvae. Bio Protoc 2018; 8:e2737. [PMID: 34179265 DOI: 10.21769/bioprotoc.2737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/02/2022] Open
Abstract
Thermo-nociception, the detection and behavioral response to noxious temperatures, is a highly conserved action to avoid injury and ensure survival. Basic molecular mechanisms of thermal responses have been elucidated in several model organisms and are of clinical relevance as thermal hypersensitivity (thermos-allodynia) is common in neuropathic pain syndromes. Drosophila larvae show stereotyped escape behavior upon noxious heat stimulation, which can be easily quantified and coupled with molecular genetic approaches. It has been successfully used to elucidate key molecular components and circuits involved in thermo-nociceptive responses. We provide a detailed and updated protocol of this previously described method ( Tracey et al., 2003 ) to apply a defined local heat stimulus to larvae using a fast-regulating hot probe.
Collapse
Affiliation(s)
- Meike Petersen
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Campus Hamburg-Eppendorf, Hamburg, Germany
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Campus Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Hoyer
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Campus Hamburg-Eppendorf, Hamburg, Germany
| | - Fritz Kutschera
- ZMNH workshop, Center for Molecular Neurobiology (ZMNH), University Medical Campus Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Campus Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Yoshino J, Morikawa RK, Hasegawa E, Emoto K. Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae. Curr Biol 2017; 27:2499-2504.e3. [PMID: 28803873 DOI: 10.1016/j.cub.2017.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Noxious stimuli trigger a stereotyped escape response in animals. In Drosophila larvae, class IV dendrite arborization (C4 da) sensory neurons in the peripheral nervous system are responsible for perception of multiple nociceptive modalities, including noxious heat and harsh mechanical stimulation, through distinct receptors [1-9]. Silencing or ablation of C4 da neurons largely eliminates larval responses to noxious stimuli [10-12], whereas optogenetic activation of C4 da neurons is sufficient to provoke corkscrew-like rolling behavior similar to what is observed when larvae receive noxious stimuli, such as high temperature or harsh mechanical stimulation [10-12]. The receptors and the regulatory mechanisms for C4 da activation in response to a variety of noxious stimuli have been well studied [13-23], yet how C4 da activation triggers the escape behavior in the circuit level is still incompletely understood. Here we identify segmentally arrayed local interneurons (medial clusters of C4 da second-order interneurons [mCSIs]) in the ventral nerve cord that are necessary and sufficient to trigger rolling behavior. GFP reconstitution across synaptic partners (GRASP) analysis indicates that C4 da axons form synapses with mCSI dendrites. Optogenetic activation of mCSIs induces the rolling behavior, whereas silencing mCSIs reduces the probability of rolling behavior upon C4 da activation. Further anatomical and functional studies suggest that the C4 da-mCSI nociceptive circuit evokes rolling behavior at least in part through segmental nerve a (SNa) motor neurons. Our findings thus uncover a local circuit that promotes escape behavior upon noxious stimuli in Drosophila larvae and provide mechanistic insights into how noxious stimuli are transduced into the stereotyped escape behavior in the circuit level.
Collapse
Affiliation(s)
- Jiro Yoshino
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rei K Morikawa
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Hasegawa
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
44
|
Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway. J Neurosci 2017; 37:8524-8533. [PMID: 28855331 DOI: 10.1523/jneurosci.3458-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/24/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans.SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs.
Collapse
|
45
|
Sensory integration and neuromodulatory feedback facilitate Drosophila mechanonociceptive behavior. Nat Neurosci 2017; 20:1085-1095. [PMID: 28604684 PMCID: PMC5931224 DOI: 10.1038/nn.4580] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Nociception is an evolutionary conserved mechanism to encode and process harmful environmental stimuli. Like most animals, Drosophila larvae respond to a variety of nociceptive stimuli, including noxious touch and temperature, with a stereotyped escape response through activation of multimodal nociceptors. How behavioral responses to these different modalities are processed and integrated by the downstream network remains poorly understood. By combining transsynaptic labeling, ultrastructural analysis, calcium imaging, optogenetic and behavioral analyses, we uncovered a circuit specific for mechano- but not thermo-nociception. Interestingly, integration of mechanosensory input from innocuous and nociceptive sensory neurons is required for robust mechano-nociceptive responses. We further show that neurons integrating mechanosensory input facilitate primary nociceptive output via releasing short Neuropeptide F (sNPF), the Drosophila Neuropeptide Y (NPY) homolog. Our findings unveil how integration of somatosensory input and neuropeptide-mediated modulation can produce robust modality-specific escape behavior.
Collapse
|
46
|
Jo J, Im SH, Babcock DT, Iyer SC, Gunawan F, Cox DN, Galko MJ. Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization. Cell Death Dis 2017; 8:e2786. [PMID: 28492538 PMCID: PMC5520682 DOI: 10.1038/cddis.2016.474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Babcock
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srividya C Iyer
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Felona Gunawan
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
Turner HN, Landry C, Galko MJ. Novel Assay for Cold Nociception in Drosophila Larvae. J Vis Exp 2017. [PMID: 28448025 DOI: 10.3791/55568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
How organisms sense and respond to noxious temperatures is still poorly understood. Further, the mechanisms underlying sensitization of the sensory machinery, such as in patients experiencing peripheral neuropathy or injury-induced sensitization, are not well characterized. The genetically tractable Drosophila model has been used to study the cells and genes required for noxious heat detection, which has yielded multiple conserved genes of interest. Little is known however about the cells and receptors important for noxious cold sensing. Although, Drosophila does not survive prolonged exposure to cold temperatures (≤10 ºC), and will avoid cool, preferring warmer temperatures in behavioral preference assays, how they sense and possibly avoid noxious cold stimuli has only recently been investigated. Here we describe and characterize the first noxious cold (≤10 ºC) behavioral assay in Drosophila. Using this tool and assay, we show an investigator how to qualitatively and quantitatively assess cold nociceptive behaviors. This can be done under normal/healthy culture conditions, or presumably in the context of disease, injury or sensitization. Further, this assay can be applied to larvae selected for desired genotypes, which might impact thermosensation, pain, or nociceptive sensitization. Given that pain is a highly conserved process, using this assay to further study thermal nociception will likely glean important understanding of pain processes in other species, including vertebrates.
Collapse
Affiliation(s)
- Heather N Turner
- Department of Genetics, UT MD Anderson Cancer Center; Neuroscience Program, Graduate School of Biomedical Sciences at Houston; Section of Neurobiology, University of Southern California
| | | | - Michael J Galko
- Department of Genetics, UT MD Anderson Cancer Center; Neuroscience Program, Graduate School of Biomedical Sciences at Houston; Genes and Development Program, Graduate School of Biomedical Sciences at Houston;
| |
Collapse
|
48
|
Tabuena DR, Solis A, Geraldi K, Moffatt CA, Fuse M. Central neural alterations predominate in an insect model of nociceptive sensitization. J Comp Neurol 2017; 525:1176-1191. [PMID: 27650422 PMCID: PMC5258852 DOI: 10.1002/cne.24124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/20/2016] [Accepted: 09/11/2016] [Indexed: 12/12/2022]
Abstract
Many organisms respond to noxious stimuli with defensive maneuvers. This is noted in the hornworm, Manduca sexta, as a defensive strike response. After tissue damage, organisms typically display sensitized responses to both noxious or normally innocuous stimuli. To further understand this phenomenon, we used novel in situ and in vitro preparations based on paired extracellular nerve recordings and videography to identify central and peripheral nerves responsible for nociception and sensitization of the defensive behavior in M. sexta. In addition, we used the in vivo defensive strike response threshold assayed with von Frey filaments to examine the roles that N-methyl-D-aspartate receptor (NMDAR) and hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels play in this nociceptive sensitization using the inhibitors MK-801 and AP5 (NMDAR), and ivabradine and ZD7288 (HCN). Using our new preparations, we found that afferent activity evoked by noxious pinch in these preparations was conveyed to central ganglia by axons in the anterior- and lateral-dorsal nerve branches, and that sensitization induced by tissue damage was mediated centrally. Furthermore, sensitization was blocked by all inhibitors tested except the inactive isomer L-AP5, and reversed by ivabradine both in vivo and in vitro. Our findings suggest that M. sexta's sensitization occurs through central signal amplification. Due to the relatively natural sensitization method and conserved molecular actions, we suggest that M. sexta may be a valuable model for studying the electrophysiological properties of nociceptive sensitization and potentially related conditions such as allodynia and hyperalgesia in a comparative setting that offers unique experimental advantages. J. Comp. Neurol. 525:1176-1191, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dennis R Tabuena
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| | - Allan Solis
- City College of San Francisco, 50 Phelan Ave, San Francisco, CA 94112
| | - Ken Geraldi
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| | - Christopher A Moffatt
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| | - Megumi Fuse
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| |
Collapse
|
49
|
Tsuyama T, Tsubouchi A, Usui T, Imamura H, Uemura T. Mitochondrial dysfunction induces dendritic loss via eIF2α phosphorylation. J Cell Biol 2017; 216:815-834. [PMID: 28209644 PMCID: PMC5346966 DOI: 10.1083/jcb.201604065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are key contributors to the etiology of diseases associated with neuromuscular defects or neurodegeneration. How changes in cellular metabolism specifically impact neuronal intracellular processes and cause neuropathological events is still unclear. We here dissect the molecular mechanism by which mitochondrial dysfunction induced by Prel aberrant function mediates selective dendritic loss in Drosophila melanogaster class IV dendritic arborization neurons. Using in vivo ATP imaging, we found that neuronal cellular ATP levels during development are not correlated with the progression of dendritic loss. We searched for mitochondrial stress signaling pathways that induce dendritic loss and found that mitochondrial dysfunction is associated with increased eIF2α phosphorylation, which is sufficient to induce dendritic pathology in class IV arborization neurons. We also observed that eIF2α phosphorylation mediates dendritic loss when mitochondrial dysfunction results from other genetic perturbations. Furthermore, mitochondrial dysfunction induces translation repression in class IV neurons in an eIF2α phosphorylation-dependent manner, suggesting that differential translation attenuation among neuron subtypes is a determinant of preferential vulnerability.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Asako Tsubouchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
50
|
Honjo K, Mauthner SE, Wang Y, Skene JHP, Tracey WD. Nociceptor-Enriched Genes Required for Normal Thermal Nociception. Cell Rep 2016; 16:295-303. [PMID: 27346357 DOI: 10.1016/j.celrep.2016.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/02/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.
Collapse
Affiliation(s)
- Ken Honjo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Stephanie E Mauthner
- Gill Center for Biomolecular Sciences and Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yu Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - J H Pate Skene
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Sciences and Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|