1
|
Liu Y, Liu B, Zhang R, Zhu Z, Zhao L, Jiang R, Wang Y, Qi F, Wang R, Zhao H, Zhou J, Gao J. Cohesin ring gates are specialized for meiotic cell division. J Mol Cell Biol 2025; 16:mjae047. [PMID: 39401990 PMCID: PMC12080224 DOI: 10.1093/jmcb/mjae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 05/16/2025] Open
Abstract
Cohesin is a ring complex closed with structural maintenance of chromosome 1 (SMC-1), SMC-3, and a kleisin subunit, mediating sister chromatid cohesion in mitosis and meiosis. Kleisin N- and C-terminal domains interact with SMC-3 and SMC-1, forming two distinct cohesin gates. Whether these gates are specialized for mitosis and meiosis remains elusive. Here, we create Caenorhabditis elegans mutants that express chimeric proteins swapping N- and C-terminal domains between different kleisins to investigate how these gates are specialized for different cell division programs. Replacing the meiotic REC-8 N-terminus with that of a cell division-unrelated kleisin COH-1 or the mitotic kleisin sister chromatid cohesion protein 1 (SCC-1) disrupts inter-sister chromatid cohesion and causes severe meiotic defects. Swapping the REC-8 C-terminus with that of COH-1 or SCC-1 largely retains the meiotic functions of REC-8 but causes age-related chromosome abnormalities. A specialized C-terminus is also required for the functions of SCC-1. Furthermore, point mutations in the REC-8 C-terminus cause severe meiotic defects without impairing the SMC-1-kleisin interaction, suggesting an integrated SMC-1-kleisin gate. These findings suggest the requirements for specialized cohesin gates in different biological processes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Bohan Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ruirui Zhang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Zixuan Zhu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Zhao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ruijie Jiang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Yinghao Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Feifei Qi
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Huijie Zhao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Li L, Tang X, Guo X, Rao D, Zeng L, Xue J, Liu S, Tu S, Shen EZ. Spatiotemporal single-cell architecture of gene expression in the Caenorhabditis elegans germ cells. Cell Discov 2025; 11:26. [PMID: 40097379 PMCID: PMC11914268 DOI: 10.1038/s41421-025-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Spermatogenesis is an intricate and tightly controlled process encompassing various layers of gene expression regulation. Despite the advance of our current understanding, the developmental trajectory and regulatory mechanisms dictating spermatogenesis remain elusive. In this study, we have generated single-cell gene expression profiles for Caenorhabditis elegans sperm cells and constructed gene regulatory networks alongside the developmental trajectories of these cells. Our findings indicate that each pre- and post-developmental stage is closely linked by co-expressed genes, while simultaneously being uniquely identified by the combined expression of specific gene families. To illustrate the applicability of this exhaustive gene expression catalog, we used gene regulatory networks to uncover potential transcription factors for (1) the expression of genes in the phosphorylation pathway, identifying NHR-23-to-phosphatase regulation for the meiotic cell division process; and (2) the expression of constituent components of small RNA pathways, identifying ELT-1-to-Argonaute protein regulation for siRNA maintenance and sperm activation. We expect that this sperm cell-specific gene expression directory will prompt investigations into the underlying mechanisms determining anatomy, differentiation, and function across the reproductive system. Finally, our expression data can be explored using the web application CelegansGermAtlas ( https://scgerm-atlas.sjtu.edu.cn/website/#/home ).
Collapse
Affiliation(s)
- Lili Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoyin Tang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xuanxuan Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Di Rao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuxian Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Blazickova J, Trivedi S, Bowman R, Sivakumar Geetha S, Subah S, Scuzzarella M, Chang A, Chandran UR, Yanowitz JL, Smolikove S, Jantsch V, Zetka M, Silva N. Overlapping and separable activities of BRA-2 and HIM-17 promote occurrence and regulation of pairing and synapsis during Caenorhabditis elegans meiosis. Nat Commun 2025; 16:2516. [PMID: 40082424 PMCID: PMC11906835 DOI: 10.1038/s41467-025-57862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Faithful meiotic segregation requires pairwise alignment of the homologous chromosomes and their synaptonemal complex (SC) mediated stabilization. Here, we investigate factors that promote and coordinate these events during C. elegans meiosis. We identify BRA-2 (BMP Receptor Associated family member 2) as an interactor of HIM-17, previously shown to promote double-strand break formation. We found that loss of bra-2 impairs synapsis elongation without affecting homolog recognition, chromosome movement or SC maintenance. Epistasis analyses reveal previously unrecognized activities for HIM-17 in regulating homolog pairing and SC assembly in a partially overlapping manner with BRA-2. We show that removing bra-2 or him-17 restores nuclear clustering, recruitment of PLK-2 at the nuclear periphery, and abrogation of ectopic synapsis in htp-1 mutants, suggesting intact CHK-2-mediated signaling and presence of a barrier that prevents SC polymerization in the absence of homology. Our findings shed light on the regulatory mechanisms ensuring faithful pairing and synapsis.
Collapse
Affiliation(s)
- Jitka Blazickova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Bowman
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Sowmya Sivakumar Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Chromosome Biology, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Silma Subah
- Department of Biology, Faculty of Science, McGill University, Montreal, QC, Canada
| | | | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Verena Jantsch
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Chromosome Biology, Vienna Biocenter, Vienna, Austria
| | - Monique Zetka
- Department of Biology, Faculty of Science, McGill University, Montreal, QC, Canada
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Lu L, Abbott AL. Role of male gonad-enriched microRNAs in sperm production in Caenorhabditis elegans. Genetics 2024; 228:iyae147. [PMID: 39259277 PMCID: PMC12098942 DOI: 10.1093/genetics/iyae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing (RNA-seq) of dissected gonads and functional analysis of new loss-of-function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of individual miRNAs (mir-58.1 and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and a set of miRNAs (mir-49, mir-57, mir-83, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mutants missing mir-58.1, mir-83, mir-235, and mir-4807-4810.1, which may contribute to the observed defects in sperm production. Further, analysis of multiple mutants of these miRNAs suggested genetic interactions between these miRNAs. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53201, USA
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
5
|
Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P. Condensin I folds the Caenorhabditis elegans genome. Nat Genet 2024; 56:1737-1749. [PMID: 39039278 DOI: 10.1038/s41588-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The structural maintenance of chromosome (SMC) complexes-cohesin and condensins-are crucial for chromosome separation and compaction during cell division. During the interphase, mammalian cohesins additionally fold the genome into loops and domains. Here we show that, in Caenorhabditis elegans, a species with holocentric chromosomes, condensin I is the primary, long-range loop extruder. The loss of condensin I and its X-specific variant, condensin IDC, leads to genome-wide decompaction, chromosome mixing and disappearance of X-specific topologically associating domains, while reinforcing fine-scale epigenomic compartments. In addition, condensin I/IDC inactivation led to the upregulation of X-linked genes and unveiled nuclear bodies grouping together binding sites for the X-targeting loading complex of condensin IDC. C. elegans condensin I/IDC thus uniquely organizes holocentric interphase chromosomes, akin to cohesin in mammals, as well as regulates X-chromosome gene expression.
Collapse
Affiliation(s)
- Moushumi Das
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jennifer I Semple
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anja Haemmerli
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Valeriia Volodkina
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Janik Scotton
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Todor Gitchev
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ahrmad Annan
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julie Campos
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Alexander Dakhovnik
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Li X, Bruckmann A, Dresselhaus T, Begcy K. Heat stress at the bicellular stage inhibits sperm cell development and transport into pollen tubes. PLANT PHYSIOLOGY 2024; 195:2111-2128. [PMID: 38366643 PMCID: PMC11213256 DOI: 10.1093/plphys/kiae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
For successful double fertilization in flowering plants (angiosperms), pollen tubes deliver 2 nonmotile sperm cells toward female gametes (egg and central cell, respectively). Heatwaves, especially during the reproduction period, threaten male gametophyte (pollen) development, resulting in severe yield losses. Using maize (Zea mays) as a crop and grass model system, we found strong seed set reduction when moderate heat stress was applied for 2 d during the uni- and bicellular stages of pollen development. We show that heat stress accelerates pollen development and impairs pollen germination capabilities when applied at the unicellular stage. Heat stress at the bicellular stage impairs sperm cell development and transport into pollen tubes. To understand the course of the latter defects, we used marker lines and analyzed the transcriptomes of isolated sperm cells. Heat stress affected the expression of genes associated with transcription, RNA processing and translation, DNA replication, and the cell cycle. This included the genes encoding centromeric histone 3 (CENH3) and α-tubulin. Most genes that were misregulated encode proteins involved in the transition from metaphase to anaphase during pollen mitosis II. Heat stress also activated spindle assembly check point and meta- to anaphase transition genes in sperm cells. In summary, misregulation of the identified genes during heat stress at the bicellular stage results in sperm cell development and transport defects ultimately leading to sterility.
Collapse
Affiliation(s)
- Xingli Li
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL32611, USA
| |
Collapse
|
7
|
Fajish G, Challa K, Salim S, Vp A, Mwaniki S, Zhang R, Fujita Y, Ito M, Nishant KT, Shinohara A. DNA double-strand breaks regulate the cleavage-independent release of Rec8-cohesin during yeast meiosis. Genes Cells 2024; 29:86-98. [PMID: 37968127 DOI: 10.1111/gtc.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The mitotic cohesin complex necessary for sister chromatid cohesion and chromatin loop formation shows local and global association to chromosomes in response to DNA double-strand breaks (DSBs). Here, by genome-wide binding analysis of the meiotic cohesin with Rec8, we found that the Rec8-localization profile along chromosomes is altered from middle to late meiotic prophase I with cleavage-independent dissociation. Each Rec8-binding site on the chromosome axis follows a unique alternation pattern with dissociation and probably association. Centromeres showed altered Rec8 binding in late prophase I relative to mid-prophase I, implying chromosome remodeling of the regions. Rec8 dissociation ratio per chromosome is correlated well with meiotic DSB density. Indeed, the spo11 mutant deficient in meiotic DSB formation did not change the distribution of Rec8 along chromosomes in late meiotic prophase I. These suggest the presence of a meiosis-specific regulatory pathway for the global binding of Rec8-cohesin in response to DSBs.
Collapse
Affiliation(s)
- Ghanim Fajish
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sagar Salim
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Ajith Vp
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Stephen Mwaniki
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Ruihao Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Lu L, Abbott AL. Male gonad-enriched microRNAs function to control sperm production in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561762. [PMID: 37873419 PMCID: PMC10592766 DOI: 10.1101/2023.10.10.561762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing of dissected gonads and functional analysis of new loss of function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of 3 individual miRNAs (mir-58.1, mir-83, and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and 5 additional miRNAs (mir-49, mir-57, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mir-58.1, mir-83, mir-235, and mir-4807-4810.1 mutants that may contribute to the reduced number of sperm. Further, analysis of multiple mutants of these miRNAs suggested complex genetic interactions between these miRNAs for sperm production. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
| | - Allison L. Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
| |
Collapse
|
9
|
Castellano-Pozo M, Sioutas G, Barroso C, Prince JP, Lopez-Jimenez P, Davy J, Jaso-Tamame AL, Crawley O, Shao N, Page J, Martinez-Perez E. The kleisin subunit controls the function of C. elegans meiotic cohesins by determining the mode of DNA binding and differential regulation by SCC-2 and WAPL-1. eLife 2023; 12:e84138. [PMID: 37650378 PMCID: PMC10497282 DOI: 10.7554/elife.84138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.
Collapse
Affiliation(s)
| | | | | | - Josh P Prince
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | | | - Joseph Davy
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | | | - Oliver Crawley
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Nan Shao
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Jesus Page
- Universidad Autónoma de MadridMadridSpain
| | - Enrique Martinez-Perez
- MRC London Institute of Medical SciencesLondonUnited Kingdom
- Imperial College Faculty of MedicineLondonUnited Kingdom
| |
Collapse
|
10
|
Yu Z, Kim HJ, Dernburg AF. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat Struct Mol Biol 2023; 30:436-450. [PMID: 36879153 PMCID: PMC10113158 DOI: 10.1038/s41594-023-00929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Cohesins are ancient and ubiquitous regulators of chromosome architecture and function, but their diverse roles and regulation remain poorly understood. During meiosis, chromosomes are reorganized as linear arrays of chromatin loops around a cohesin axis. This unique organization underlies homolog pairing, synapsis, double-stranded break induction, and recombination. We report that axis assembly in Caenorhabditis elegans is promoted by DNA-damage response (DDR) kinases that are activated at meiotic entry, even in the absence of DNA breaks. Downregulation of the cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 also contribute to stabilizing axis-associated meiotic cohesins. Further, our data suggest that cohesin-enriched domains that promote DNA repair in mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and Wapl seem to play conserved roles in cohesin regulation in meiotic prophase and proliferating cells.
Collapse
Affiliation(s)
- Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, Berkeley, CA, USA.
| |
Collapse
|
11
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Brenner JL, Jyo EM, Mohammad A, Fox P, Jones V, Mardis E, Schedl T, Maine EM. TRIM-NHL protein, NHL-2, modulates cell fate choices in the C. elegans germ line. Dev Biol 2022; 491:43-55. [PMID: 36063869 PMCID: PMC9922029 DOI: 10.1016/j.ydbio.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022]
Abstract
Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.
Collapse
Affiliation(s)
- John L Brenner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erin M Jyo
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vovanti Jones
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elaine Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
13
|
Boukaba A, Wu Q, Liu J, Chen C, Liang J, Li J, Strunnikov A. Mapping separase-mediated cleavage in situ. NAR Genom Bioinform 2022; 4:lqac085. [PMID: 36415827 PMCID: PMC9673495 DOI: 10.1093/nargab/lqac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Separase is a protease that performs critical functions in the maintenance of genetic homeostasis. Among them, the cleavage of the meiotic cohesin during meiosis is a key step in producing gametes in eukaryotes. However, the exact chromosomal localization of this proteolytic cleavage was not addressed due to the lack of experimental tools. To this end, we developed a method based on monoclonal antibodies capable of recognizing the predicted neo-epitopes produced by separase-mediated proteolysis in the RAD21 and REC8 cohesin subunits. To validate the epigenomic strategy of mapping cohesin proteolysis, anti-RAD21 neo-epitopes antibodies were used in ChIP-On-ChEPseq analysis of human cells undergoing mitotic anaphase. Second, a similar analysis applied for mapping of REC8 cleavage in germline cells in Macaque showed a correlation with a subset of alpha-satellites and other repeats, directly demonstrating that the site-specific mei-cohesin proteolysis hotspots are coincident but not identical with centromeres. The sequences for the corresponding immunoglobulin genes show a convergence of antibodies with close specificity. This approach could be potentially used to investigate cohesin ring opening events in other chromosomal locations, if applied to single cells.
Collapse
Affiliation(s)
- Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Cheng Chen
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jierong Liang
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jingjing Li
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Alexander V Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| |
Collapse
|
14
|
Cohesin is required for meiotic spindle assembly independent of its role in cohesion in C. elegans. PLoS Genet 2022; 18:e1010136. [PMID: 36279281 PMCID: PMC9632809 DOI: 10.1371/journal.pgen.1010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Accurate chromosome segregation requires a cohesin-mediated physical attachment between chromosomes that are to be segregated apart, and a bipolar spindle with microtubule plus ends emanating from exactly two poles toward the paired chromosomes. We asked whether the striking bipolar structure of C. elegans meiotic chromosomes is required for bipolarity of acentriolar female meiotic spindles by time-lapse imaging of mutants that lack cohesion between chromosomes. Both a spo-11 rec-8 coh-4 coh-3 quadruple mutant and a spo-11 rec-8 double mutant entered M phase with separated sister chromatids lacking any cohesion. However, the quadruple mutant formed an apolar spindle whereas the double mutant formed a bipolar spindle that segregated chromatids into two roughly equal masses. Residual non-cohesive COH-3/4-dependent cohesin on separated sister chromatids of the double mutant was sufficient to recruit haspin-dependent Aurora B kinase, which mediated bipolar spindle assembly in the apparent absence of chromosomal bipolarity. We hypothesized that cohesin-dependent Aurora B might activate or inhibit spindle assembly factors in a manner that would affect their localization on chromosomes and found that the chromosomal localization patterns of KLP-7 and CLS-2 correlated with Aurora B loading on chromosomes. These results demonstrate that cohesin is essential for spindle assembly and chromosome segregation independent of its role in sister chromatid cohesion.
Collapse
|
15
|
Morgan C, Nayak A, Hosoya N, Smith GR, Lambing C. Meiotic chromosome organization and its role in recombination and cancer. Curr Top Dev Biol 2022; 151:91-126. [PMID: 36681479 PMCID: PMC10022578 DOI: 10.1016/bs.ctdb.2022.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.
Collapse
Affiliation(s)
| | - Aditya Nayak
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christophe Lambing
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
16
|
Sakuno T, Tashiro S, Tanizawa H, Iwasaki O, Ding DQ, Haraguchi T, Noma KI, Hiraoka Y. Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Res 2022; 50:3799-3816. [PMID: 35333350 PMCID: PMC9023276 DOI: 10.1093/nar/gkac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.
Collapse
Affiliation(s)
- Takeshi Sakuno
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Sanki Tashiro
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Osamu Iwasaki
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Ken-ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
17
|
Baudrimont A, Paouneskou D, Mohammad A, Lichtenberger R, Blundon J, Kim Y, Hartl M, Falk S, Schedl T, Jantsch V. Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. SCIENCE ADVANCES 2022; 8:eabl8861. [PMID: 35171669 PMCID: PMC8849337 DOI: 10.1126/sciadv.abl8861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/22/2021] [Indexed: 05/13/2023]
Abstract
Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Joshua Blundon
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
18
|
Barton RE, Massari LF, Robertson D, Marston AL. Eco1-dependent cohesin acetylation anchors chromatin loops and cohesion to define functional meiotic chromosome domains. eLife 2022; 11:e74447. [PMID: 35103590 PMCID: PMC8856730 DOI: 10.7554/elife.74447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that meiotic chromosomes are organised into functional domains by Eco1 acetyltransferase-dependent positioning of both chromatin loops and sister chromatid cohesion in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.
Collapse
Affiliation(s)
- Rachael E Barton
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Lucia F Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Adèle L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| |
Collapse
|
19
|
Sakuno T, Hiraoka Y. Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 2022; 13:200. [PMID: 35205245 PMCID: PMC8871791 DOI: 10.3390/genes13020200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.
Collapse
Affiliation(s)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
20
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 2021; 22:445-464. [PMID: 33767413 DOI: 10.1038/s41580-021-00349-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023]
Abstract
Genomic DNA is folded into loops and topologically associating domains (TADs), which serve important structural and regulatory roles. It has been proposed that these genomic structures are formed by a loop extrusion process, which is mediated by structural maintenance of chromosomes (SMC) protein complexes. Recent single-molecule studies have shown that the SMC complexes condensin and cohesin are indeed able to extrude DNA into loops. In this Review, we discuss how the loop extrusion hypothesis can explain key features of genome architecture; cellular functions of loop extrusion, such as separation of replicated DNA molecules, facilitation of enhancer-promoter interactions and immunoglobulin gene recombination; and what is known about the mechanism of loop extrusion and its regulation, for example, by chromatin boundaries that depend on the DNA binding protein CTCF. We also discuss how the loop extrusion hypothesis has led to a paradigm shift in our understanding of both genome architecture and the functions of SMC complexes.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
22
|
Almanzar DE, Gordon SG, Rog O. Meiotic sister chromatid exchanges are rare in C. elegans. Curr Biol 2021; 31:1499-1507.e3. [PMID: 33740426 PMCID: PMC8051885 DOI: 10.1016/j.cub.2020.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.
Collapse
Affiliation(s)
- David E Almanzar
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Spencer G Gordon
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Ofer Rog
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
23
|
Galander S, Marston AL. Meiosis I Kinase Regulators: Conserved Orchestrators of Reductional Chromosome Segregation. Bioessays 2020; 42:e2000018. [PMID: 32761854 PMCID: PMC7116124 DOI: 10.1002/bies.202000018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk.
Collapse
Affiliation(s)
- Stefan Galander
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Adèle L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
24
|
Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun 2020; 11:4869. [PMID: 32978394 PMCID: PMC7519143 DOI: 10.1038/s41467-020-18693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism. Poly(ADP-ribose) glycohydrolase (PARG) is involved in different cellular processes including DNA repair. Here the authors reveal a role for PARG in regulating meiotic DNA double strand break induction and repair in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Eva Janisiw
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria.,Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marilina Raices
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Balmir
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN Center for Reproductive Medicine, AHN McCandless, Pittsburgh, PA, USA
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
25
|
Castellano-Pozo M, Pacheco S, Sioutas G, Jaso-Tamame AL, Dore MH, Karimi MM, Martinez-Perez E. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat Commun 2020; 11:4345. [PMID: 32859945 PMCID: PMC7455720 DOI: 10.1038/s41467-020-18219-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. Exploiting the temporo-spatial organisation of the C. elegans germline and time-resolved methods of protein removal, we show that surveillance of the synaptonemal complex (SC) controls meiotic progression. In nuclei with fully synapsed homologues and crossover precursors, removing different meiosis-specific cohesin complexes, which are individually required for SC stability, or a SC central region component causes functional redeployment of the chromosome movement and DSB machinery, triggering whole-nucleus reorganisation. This apparent reversal of the meiotic programme requires CHK-2 kinase reactivation via signalling from chromosome axes containing HORMA proteins, but occurs in the absence of transcriptional changes. Our results uncover an unexpected plasticity of the meiotic programme and show how chromosome signalling orchestrates nuclear organisation and meiotic progression.
Collapse
Affiliation(s)
| | - Sarai Pacheco
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | | | | | - Marian H Dore
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | | | - Enrique Martinez-Perez
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Imperial College Faculty of Medicine, London, W12 0NN, UK.
| |
Collapse
|
26
|
D'Ambrosio J, Morvezen R, Brard-Fudulea S, Bestin A, Acin Perez A, Guéméné D, Poncet C, Haffray P, Dupont-Nivet M, Phocas F. Genetic architecture and genomic selection of female reproduction traits in rainbow trout. BMC Genomics 2020; 21:558. [PMID: 32795250 PMCID: PMC7430828 DOI: 10.1186/s12864-020-06955-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rainbow trout is a significant fish farming species under temperate climates. Female reproduction traits play an important role in the economy of breeding companies with the sale of fertilized eggs. The objectives of this study are threefold: to estimate the genetic parameters of female reproduction traits, to determine the genetic architecture of these traits by the identification of quantitative trait loci (QTL), and to assess the expected efficiency of a pedigree-based selection (BLUP) or genomic selection for these traits. RESULTS A pedigreed population of 1343 trout were genotyped for 57,000 SNP markers and phenotyped for seven traits at 2 years of age: spawning date, female body weight before and after spawning, the spawn weight and the egg number of the spawn, the egg average weight and average diameter. Genetic parameters were estimated in multi-trait linear animal models. Heritability estimates were moderate, varying from 0.27 to 0.44. The female body weight was not genetically correlated to any of the reproduction traits. Spawn weight showed strong and favourable genetic correlation with the number of eggs in the spawn and individual egg size traits, but the egg number was uncorrelated to the egg size traits. The genome-wide association studies showed that all traits were very polygenic since less than 10% of the genetic variance was explained by the cumulative effects of the QTLs: for any trait, only 2 to 4 QTLs were detected that explained in-between 1 and 3% of the genetic variance. Genomic selection based on a reference population of only one thousand individuals related to candidates would improve the efficiency of BLUP selection from 16 to 37% depending on traits. CONCLUSIONS Our genetic parameter estimates made unlikely the hypothesis that selection for growth could induce any indirect improvement for female reproduction traits. It is thus important to consider direct selection for spawn weight for improving egg production traits in rainbow trout breeding programs. Due to the low proportion of genetic variance explained by the few QTLs detected for each reproduction traits, marker assisted selection cannot be effective. However genomic selection would allow significant gains of accuracy compared to pedigree-based selection.
Collapse
Affiliation(s)
- J D'Ambrosio
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - R Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - S Brard-Fudulea
- SYSAAF, Section Avicole, Centre INRAE Val de Loire, 37380, Nouzilly, France
| | - A Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - A Acin Perez
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | - D Guéméné
- SYSAAF, Section Avicole, Centre INRAE Val de Loire, 37380, Nouzilly, France
| | - C Poncet
- Université Clermont-Auvergne, INRAE, GDEC, 63039, Clermont-Ferrand, France
| | - P Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - M Dupont-Nivet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - F Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
27
|
Woglar A, Yamaya K, Roelens B, Boettiger A, Köhler S, Villeneuve AM. Quantitative cytogenetics reveals molecular stoichiometry and longitudinal organization of meiotic chromosome axes and loops. PLoS Biol 2020; 18:e3000817. [PMID: 32813728 PMCID: PMC7458323 DOI: 10.1371/journal.pbio.3000817] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/31/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative, and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using Caenorhabditis elegans. Analyses of wild-type (WT) chromosomes and de novo circular minichromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with 2 functionally distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister-chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging 3 per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister-chromatid loops. Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.
Collapse
Affiliation(s)
- Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alistair Boettiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Simone Köhler
- European Molecular Biology Laboratory, Heidelberg, Heidelberg, Germany
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
28
|
Silva MC, Powell S, Ladstätter S, Gassler J, Stocsits R, Tedeschi A, Peters JM, Tachibana K. Wapl releases Scc1-cohesin and regulates chromosome structure and segregation in mouse oocytes. J Cell Biol 2020; 219:e201906100. [PMID: 32328639 PMCID: PMC7147110 DOI: 10.1083/jcb.201906100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cohesin is essential for genome folding and inheritance. In somatic cells, these functions are both mediated by Scc1-cohesin, which in mitosis is released from chromosomes by Wapl and separase. In mammalian oocytes, cohesion is mediated by Rec8-cohesin. Scc1 is expressed but neither required nor sufficient for cohesion, and its function remains unknown. Likewise, it is unknown whether Wapl regulates one or both cohesin complexes and chromosome segregation in mature oocytes. Here, we show that Wapl is required for accurate meiosis I chromosome segregation, predominantly releases Scc1-cohesin from chromosomes, and promotes production of euploid eggs. Using single-nucleus Hi-C, we found that Scc1 is essential for chromosome organization in oocytes. Increasing Scc1 residence time on chromosomes by Wapl depletion leads to vermicelli formation and intra-loop structures but, unlike in somatic cells, does not increase loop size. We conclude that distinct cohesin complexes generate loops and cohesion in oocytes and propose that the same principle applies to all cell types and species.
Collapse
Affiliation(s)
- Mariana C.C. Silva
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Antonio Tedeschi
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
29
|
Zhou C, Miao Y, Cui Z, ShiYang X, Zhang Y, Xiong B. The cohesin release factor Wapl interacts with Bub3 to govern SAC activity in female meiosis I. SCIENCE ADVANCES 2020; 6:eaax3969. [PMID: 32284991 PMCID: PMC7141834 DOI: 10.1126/sciadv.aax3969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/14/2020] [Indexed: 05/06/2023]
Abstract
During mitotic prophase, cohesins are removed from chromosome arms by Wapl to ensure faithful sister chromatid separation. However, during female meiosis I, the resolution of chiasmata requires the proteolytic cleavage of cohesin subunit Rec8 along chromosome arms by Separase to separate homologs, and thus the role of Wapl remained unknown. Here, we report that Wapl functions as a regulator of spindle assembly checkpoint (SAC) to prevent aneuploidy in meiosis I. Depletion of Wapl accelerates meiotic progression, inactivates SAC, and causes meiotic defects such as aberrant spindle/chromosome structure and incorrect kinetochore-microtubule (K-MT) attachment, consequently leading to aneuploid eggs. Notably, we identify Bub3 as a binding partner of Wapl by immunoprecipitation and mass spectrometry analysis. We further determine that Wapl controls the SAC activity by maintaining Bub3 protein level and document that exogenous Bub3 restores the normal meiosis in Wapl-depleted oocytes. Together, our findings uncover unique, noncanonical roles for Wapl in mediating control of the SAC in female meiosis I.
Collapse
|
30
|
Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat Commun 2019; 10:4795. [PMID: 31641121 PMCID: PMC6805904 DOI: 10.1038/s41467-019-12629-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process.
Collapse
Affiliation(s)
- Stephanie A Schalbetter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Geoffrey Fudenberg
- Gladstone Institutes for Data Science and Biotechnology, San Francisco, USA.
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katherine S Pollard
- Gladstone Institutes for Data Science and Biotechnology, San Francisco, USA.
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
31
|
Cahoon CK, Helm JM, Libuda DE. Synaptonemal Complex Central Region Proteins Promote Localization of Pro-crossover Factors to Recombination Events During Caenorhabditis elegans Meiosis. Genetics 2019; 213:395-409. [PMID: 31431470 PMCID: PMC6781886 DOI: 10.1534/genetics.119.302625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022] Open
Abstract
Crossovers (COs) between homologous chromosomes are critical for meiotic chromosome segregation and form in the context of the synaptonemal complex (SC), a meiosis-specific structure that assembles between aligned homologs. During Caenorhabditis elegans meiosis, central region components of the SC (SYP proteins) are essential to repair double-strand DNA breaks (DSBs) as COs. Here, we investigate the relationships between the SYP proteins and conserved pro-CO factors by examining the immunolocalization of these proteins in meiotic mutants where SYP proteins are absent, reduced, or mislocalized. Although COs do not form in syp null mutants, pro-CO factors COSA-1, MSH-5, and ZHP-3 nevertheless colocalize at DSB-dependent sites during late prophase, reflecting an inherent affinity of these factors for DSB repair sites. In contrast, in mutants where SYP proteins are present but form aggregates or display abnormal synapsis, pro-CO factors consistently track with SYP-1 localization. Further, pro-CO factors usually localize to a single site per SYP-1 structure, even in SYP aggregates or in mutants where the SC forms between sister chromatids, suggesting that CO regulation occurs within these aberrant SC structures. Moreover, we find that the meiotic cohesin REC-8 is required to ensure that SC formation occurs between homologs and not sister chromatids. Taken together, our findings support a model in which SYP proteins promote CO formation by promoting the localization of pro-CO factors to recombination events within an SC compartment, thereby ensuring that pro-CO factors identify a recombination event within an SC structure and that CO maturation occurs only between properly aligned homologous chromosomes.
Collapse
Affiliation(s)
- Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Jacquellyn M Helm
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
32
|
Roelens B, Barroso C, Montoya A, Cutillas P, Zhang W, Woglar A, Girard C, Martinez-Perez E, Villeneuve AM. Spatial Regulation of Polo-Like Kinase Activity During Caenorhabditis elegans Meiosis by the Nucleoplasmic HAL-2/HAL-3 Complex. Genetics 2019; 213:79-96. [PMID: 31345995 PMCID: PMC6727811 DOI: 10.1534/genetics.119.302479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
Proper partitioning of homologous chromosomes during meiosis relies on the coordinated execution of multiple interconnected events: Homologs must locate, recognize, and align with their correct pairing partners. Further, homolog pairing must be coupled to assembly of the synaptonemal complex (SC), a meiosis-specific tripartite structure that maintains stable associations between the axes of aligned homologs and regulates formation of crossovers between their DNA molecules to create linkages that enable their segregation. Here, we identify HAL-3 (Homolog Alignment 3) as an important player in coordinating these key events during Caenorhabditis elegans meiosis. HAL-3, and the previously identified HAL-2, are interacting and interdependent components of a protein complex that localizes to the nucleoplasm of germ cells. hal-3 (or hal-2) mutants exhibit multiple meiotic prophase defects including failure to establish homolog pairing, inappropriate loading of SC subunits onto unpaired chromosome axes, and premature loss of synapsis checkpoint protein PCH-2. Further, loss of hal function results in misregulation of the subcellular localization and activity of Polo-like kinases (PLK-1 and PLK-2), which dynamically localize to different defined subnuclear sites during wild-type prophase progression to regulate distinct cellular events. Moreover, loss of PLK-2 activity partially restores tripartite SC structure in a hal mutant background, suggesting that the defect in pairwise SC assembly in hal mutants reflects inappropriate PLK activity. Together, our data support a model in which the nucleoplasmic HAL-2/HAL-3 protein complex constrains both localization and activity of meiotic Polo-like kinases, thereby preventing premature interaction with stage-inappropriate targets.
Collapse
Affiliation(s)
- Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN, UK
| | - Pedro Cutillas
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN, UK
| | - Weibin Zhang
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | - Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | - Chloe Girard
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | | | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| |
Collapse
|
33
|
Challa K, Shinohara M, Shinohara A. Meiotic prophase-like pathway for cleavage-independent removal of cohesin for chromosome morphogenesis. Curr Genet 2019; 65:817-827. [PMID: 30923890 DOI: 10.1007/s00294-019-00959-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Sister chromatid cohesion is essential for chromosome segregation both in mitosis and meiosis. Cohesion between two chromatids is mediated by a protein complex called cohesin. The loading and unloading of the cohesin are tightly regulated during the cell cycle. In vertebrate cells, cohesin is released from chromosomes by two distinct pathways. The best characterized pathway occurs at the onset of anaphase, when the kleisin component of the cohesin is destroyed by a protease, separase. The cleavage of the cohesin by separase releases entrapped sister chromatids allowing anaphase to commence. In addition, prior to the metaphase-anaphase transition, most of cohesin is removed from chromosomes in a cleavage-independent manner. This cohesin release is referred to as the prophase pathway. In meiotic cells, sister chromatid cohesion is essential for the segregation of homologous chromosomes during meiosis I. Thus, it was assumed that the prophase pathway for cohesin removal from chromosome arms would be suppressed during meiosis to avoid errors in chromosome segregation. However, recent studies revealed the presence of a meiosis-specific prophase-like pathway for cleavage-independent removal of cohesin during late prophase I in different organisms. In budding yeast, the cleavage-independent removal of cohesin is mediated through meiosis-specific phosphorylation of cohesin subunits, Rec8, the meiosis-specific kleisin, and the yeast Wapl ortholog, Rad61/Wpl1. This pathway plays a role in chromosome morphogenesis during late prophase I, promoting chromosome compaction. In this review, we give an overview of the prophase pathway for cohesin dynamics during meiosis, which has a complex regulation leading to differentially localized populations of cohesin along meiotic chromosomes.
Collapse
Affiliation(s)
- Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Friedrich Miescher Institute for Biomedical Research, CH-4058, Basel, Switzerland
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
34
|
Wang LI, Das A, McKim KS. Sister centromere fusion during meiosis I depends on maintaining cohesins and destabilizing microtubule attachments. PLoS Genet 2019; 15:e1008072. [PMID: 31150390 PMCID: PMC6581285 DOI: 10.1371/journal.pgen.1008072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022] Open
Abstract
Sister centromere fusion is a process unique to meiosis that promotes co-orientation of the sister kinetochores, ensuring they attach to microtubules from the same pole during metaphase I. We have found that the kinetochore protein SPC105R/KNL1 and Protein Phosphatase 1 (PP1-87B) regulate sister centromere fusion in Drosophila oocytes. The analysis of these two proteins, however, has shown that two independent mechanisms maintain sister centromere fusion. Maintenance of sister centromere fusion by SPC105R depends on Separase, suggesting cohesin proteins must be maintained at the core centromeres. In contrast, maintenance of sister centromere fusion by PP1-87B does not depend on either Separase or WAPL. Instead, PP1-87B maintains sister centromeres fusion by regulating microtubule dynamics. We demonstrate that this regulation is through antagonizing Polo kinase and BubR1, two proteins known to promote stability of kinetochore-microtubule (KT-MT) attachments, suggesting that PP1-87B maintains sister centromere fusion by inhibiting stable KT-MT attachments. Surprisingly, C(3)G, the transverse element of the synaptonemal complex (SC), is also required for centromere separation in Pp1-87B RNAi oocytes. This is evidence for a functional role of centromeric SC in the meiotic divisions, that might involve regulating microtubule dynamics. Together, we propose two mechanisms maintain co-orientation in Drosophila oocytes: one involves SPC105R to protect cohesins at sister centromeres and another involves PP1-87B to regulate spindle forces at end-on attachments.
Collapse
Affiliation(s)
- Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
35
|
Yang C, Hamamura Y, Sofroni K, Böwer F, Stolze SC, Nakagami H, Schnittger A. SWITCH 1/DYAD is a WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis. Nat Commun 2019; 10:1755. [PMID: 30988453 PMCID: PMC6465247 DOI: 10.1038/s41467-019-09759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Mitosis and meiosis both rely on cohesin, which embraces the sister chromatids and plays a crucial role for the faithful distribution of chromosomes to daughter cells. Prior to the cleavage by Separase at anaphase onset, cohesin is largely removed from chromosomes by the non-proteolytic action of WINGS APART-LIKE (WAPL), a mechanism referred to as the prophase pathway. To prevent the premature loss of sister chromatid cohesion, WAPL is inhibited in early mitosis by Sororin. However, Sororin homologs have only been found to function as WAPL inhibitors during mitosis in vertebrates and Drosophila. Here we show that SWITCH 1/DYAD defines a WAPL antagonist that acts in meiosis of Arabidopsis. Crucially, SWI1 becomes dispensable for sister chromatid cohesion in the absence of WAPL. Despite the lack of any sequence similarities, we found that SWI1 is regulated and functions in a similar manner as Sororin hence likely representing a case of convergent molecular evolution across the eukaryotic kingdom.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Yuki Hamamura
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Kostika Sofroni
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Franziska Böwer
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | | | - Hirofumi Nakagami
- Max-Planck-Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany.
| |
Collapse
|
36
|
Meiosis-specific prophase-like pathway controls cleavage-independent release of cohesin by Wapl phosphorylation. PLoS Genet 2019; 15:e1007851. [PMID: 30605471 PMCID: PMC6317811 DOI: 10.1371/journal.pgen.1007851] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/25/2018] [Indexed: 01/09/2023] Open
Abstract
Sister chromatid cohesion on chromosome arms is essential for the segregation of homologous chromosomes during meiosis I while it is dispensable for sister chromatid separation during mitosis. It was assumed that, unlike the situation in mitosis, chromosome arms retain cohesion prior to onset of anaphase-I. Paradoxically, reduced immunostaining signals of meiosis-specific cohesin, including the kleisin Rec8, were observed on chromosomes during late prophase-I of budding yeast. This decrease is seen in the absence of Rec8 cleavage and depends on condensin-mediated recruitment of Polo-like kinase (PLK/Cdc5). In this study, we confirmed that this release indeed accompanies the dissociation of acetylated Smc3 as well as Rec8 from meiotic chromosomes during late prophase-I. This release requires, in addition to PLK, the cohesin regulator, Wapl (Rad61/Wpl1 in yeast), and Dbf4-dependent Cdc7 kinase (DDK). Meiosis-specific phosphorylation of Rad61/Wpl1 and Rec8 by PLK and DDK collaboratively promote this release. This process is similar to the vertebrate “prophase” pathway for cohesin release during G2 phase and pro-metaphase. In yeast, meiotic cohesin release coincides with PLK-dependent compaction of chromosomes in late meiotic prophase-I. We suggest that yeast uses this highly regulated cleavage-independent pathway to remove cohesin during late prophase-I to facilitate morphogenesis of condensed metaphase-I chromosomes. In meiosis the life and health of future generations is decided upon. Any failure in chromosome segregation has a detrimental impact. Therefore, it is currently believed that the physical connections between homologous chromosomes are maintained by meiotic cohesin with exceptional stability. Indeed, it was shown that cohesive cohesin does not show an appreciable turnover during long periods in oocyte development. In this context, it was long assumed but not properly investigated, that the prophase pathway for cohesin release would be specific to mitosis and would be safely suppressed during meiosis so as not to endanger essential connections between chromosomes. However, a previous study on budding yeast meiosis suggests the presence of cleavage-independent pathway of cohesin release during late prophase-I. In the work presented here we confirmed that the prophase pathway is not suppressed during meiosis, at least in budding yeast and showed that this cleavage-independent release is regulated by meiosis-specific phosphorylation of two cohesin subunits, Rec8 and Rad61(Wapl) by two cell-cycle regulators, PLK and DDK. Our results suggest that late meiotic prophase-I actively controls cohesin dynamics on meiotic chromosomes for chromosome segregation.
Collapse
|
37
|
Ishiguro K. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24:6-30. [PMID: 30479058 PMCID: PMC7379579 DOI: 10.1111/gtc.12652] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Cohesin is an evolutionary conserved multi-protein complex that plays a pivotal role in chromosome dynamics. It plays a role both in sister chromatid cohesion and in establishing higher order chromosome architecture, in somatic and germ cells. Notably, the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, distinct types of cohesin complexes are produced by altering the combination of meiosis-specific subunits. The meiosis-specific subunits endow the cohesin complex with specific functions for numerous meiosis-associated chromosomal events, such as chromosome axis formation, homologue association, meiotic recombination and centromeric cohesion for sister kinetochore geometry. This review mainly focuses on the cohesin complex in mammalian meiosis, pointing out the differences in its roles from those in mitosis. Further, common and divergent aspects of the meiosis-specific cohesin complex between mammals and other organisms are discussed.
Collapse
Affiliation(s)
- Kei‐ichiro Ishiguro
- Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| |
Collapse
|
38
|
Bohr T, Nelson CR, Giacopazzi S, Lamelza P, Bhalla N. Shugoshin Is Essential for Meiotic Prophase Checkpoints in C. elegans. Curr Biol 2018; 28:3199-3211.e3. [PMID: 30293721 PMCID: PMC6200582 DOI: 10.1016/j.cub.2018.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of conserved proteins that structure meiotic chromosome axes. Indeed, null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss-of-function allele of the axis component, HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways, and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei when HTP-3 is present but not yet loaded onto chromosome axes and genetically interacts with a central component of the cohesin complex, SMC-3, suggesting that it contributes to meiotic chromosome metabolism early in meiosis by regulating cohesin. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has focused on its regulation of sister chromatid cohesion during chromosome segregation, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin's functions beyond coordinating regulatory activities at the centromere.
Collapse
Affiliation(s)
- Tisha Bohr
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stefani Giacopazzi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Piero Lamelza
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
39
|
Kocsisova Z, Mohammad A, Kornfeld K, Schedl T. Cell Cycle Analysis in the C. elegans Germline with the Thymidine Analog EdU. J Vis Exp 2018. [PMID: 30394383 DOI: 10.3791/58339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell cycle analysis in eukaryotes frequently utilizes chromosome morphology, expression and/or localization of gene products required for various phases of the cell cycle, or the incorporation of nucleoside analogs. During S-phase, DNA polymerases incorporate thymidine analogs such as EdU or BrdU into chromosomal DNA, marking the cells for analysis. For C. elegans, the nucleoside analog EdU is fed to the worms during regular culture and is compatible with immunofluorescent techniques. The germline of C. elegans is a powerful model system for the studies of signaling pathways, stem cells, meiosis, and cell cycle because it is transparent, genetically facile, and meiotic prophase and cellular differentiation/gametogenesis occur in a linear assembly-like fashion. These features make EdU a great tool to study dynamic aspects of mitotically cycling cells and germline development. This protocol describes how to successfully prepare EdU bacteria, feed them to wild-type C. elegans hermaphrodites, dissect the hermaphrodite gonad, stain for EdU incorporation into DNA, stain with antibodies to detect various cell cycle and developmental markers, image the gonad and analyze the results. The protocol describes the variations in the method and analysis for the measurement of S-phase index, M-phase index, G2 duration, cell cycle duration, rate of meiotic entry, and rate of meiotic prophase progression. This method can be adapted to study the cell cycle or cell history in other tissues, stages, genetic backgrounds, and physiological conditions.
Collapse
Affiliation(s)
- Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
40
|
Berardi S, McFall A, Toledo-Hernandez A, Coote C, Graham H, Stine L, Rhodehouse K, Auernhamer A, Van Wynsberghe PM. The Period protein homolog LIN-42 regulates germline development in C. elegans. Mech Dev 2018; 153:42-53. [PMID: 30144508 DOI: 10.1016/j.mod.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Germline stem cells are maintained in the distal region of the C. elegans gonad. These cells undergo mitotic divisions, and GLP-1/Notch signaling dictates whether they remain in this state. The somatic distal tip cell (DTC) caps the end of the distal gonad and is essential for maintenance of the germline mitotic zone. As germ cells move away from the DTC they exit mitosis and enter early meiotic prophase. Here we identify the Period protein homolog LIN-42 as a new regulator of germline development in C. elegans. LIN-42 is expressed in almost all somatic cells including the DTC, and LIN-42 functions as a transcription factor in the heterochronic pathway and to regulate molting. We found that the mitotic proliferative zone size in the distal gonad was significantly reduced by ~25% in lin-42 mutants compared to WT N2 worms. A lin-42 mutation also reduced the mitotic proliferative zone size caused by glp-1 partial loss-of-function and gain-of-function alleles. LIN-42 mediates this effect, at least in part, by regulating expression of the GLP-1/Notch ligand LAG-2. We further show that lin-42 expression itself is regulated by ATX-2, which promotes germline proliferation and is the homolog of the RNA binding protein ataxin-2 that is implicated in human neurodegenerative diseases. Altogether our results establish a new role for the conserved, important Period protein homolog LIN-42 in regulating early germline development. These results also suggest that in addition to regulating behavioral rhythms, the circadian clock plays an important role in communicating environmental signals to essential reproductive pathways.
Collapse
Affiliation(s)
- Skyler Berardi
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Alanna McFall
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | | | - Carolyn Coote
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Hillary Graham
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Laurel Stine
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Kyle Rhodehouse
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Anna Auernhamer
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | | |
Collapse
|
41
|
Gao D, Zhu B, Cao X, Zhang M, Wang X. Roles of NIPBL in maintenance of genome stability. Semin Cell Dev Biol 2018; 90:181-186. [PMID: 30096364 DOI: 10.1016/j.semcdb.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
A cohesin-loading factor (NIPBL) is one of important regulatory factors in the maintenance of 3D genome organization and function, by interacting with a large number of factors, e.g. cohesion, CCCTC-binding factor (CTCF) or cohesin complex component. The present article overviews the critical and regulatory roles of NIBPL in cohesion loading on chromotin and in gene expression and transcriptional signaling. We explore molecular mechanisms by which NIPBL recruits endogenous histone deacetylase (HDAC) to induce histone deacetylation and influence multi-dimensions of genome, through which NIPBL "hop" movement in chromatin regulates gene expression and alters genome folding. NIPBL regulates the process of CTCF and cohesion into chromatin loops and topologically associated domains, binding of cohesion and H3K4mes3 through interaction among promoters and enhancers. HP1 recruits NIPBL to DNA damage site through RNF8/RNF168 ubiquitylation pathway. NIPBL contributes to regulation of genome-controlled gene expression through the influence of cohesin in chromosome structure. NIPBL interacts with cohesin and then increases transcriptional activities of REC8 promoter, leading to up-regulation of gene expression. NIPBL movement among chromosomal loops regulates gene expression through dynamic alterations of genome organization. Thus, we expect a new and deep insight to understand dynamics of chromosome and explore potential strategies of therapiesc on basis of NIPBL.
Collapse
Affiliation(s)
- Danyan Gao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Miaomiao Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China.
| |
Collapse
|
42
|
Mohammad A, Vanden Broek K, Wang C, Daryabeigi A, Jantsch V, Hansen D, Schedl T. Initiation of Meiotic Development Is Controlled by Three Post-transcriptional Pathways in Caenorhabditis elegans. Genetics 2018; 209:1197-1224. [PMID: 29941619 PMCID: PMC6063227 DOI: 10.1534/genetics.118.300985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
A major event in germline development is the transition from stem/progenitor cells to entry into meiosis and gametogenesis. This transition requires downregulation of mitotic cell cycle activity and upregulation of processes associated with meiosis. We identify the Caenorhabditis elegans SCFPROM-1 E3 ubiquitin-ligase complex as functioning to downregulate mitotic cell cycle protein levels including cyclin E, WAPL-1, and KNL-2 at meiotic entry and, independently, promoting homologous chromosome pairing as a positive regulator of the CHK-2 kinase. SCFPROM-1 is thus a novel regulator of meiotic entry, coordinating downregulation of mitotic cell cycle proteins and promoting homolog pairing. We further show that SCFPROM-1 functions redundantly, in parallel to the previously described GLD-1 and GLD-2 meiotic entry pathways, downstream of and inhibited by GLP-1 Notch signaling, which specifies the stem cell fate. Accordingly, C. elegans employs three post-transcriptional pathways, SCFPROM-1-mediated protein degradation, GLD-1-mediated translational repression, and GLD-2-mediated translational activation, to control and coordinate the initiation of meiotic development.
Collapse
Affiliation(s)
- Ariz Mohammad
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| | - Kara Vanden Broek
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Christopher Wang
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Tim Schedl
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| |
Collapse
|
43
|
Wolf PG, Cuba Ramos A, Kenzel J, Neumann B, Stemmann O. Studying meiotic cohesin in somatic cells reveals that Rec8-containing cohesin requires Stag3 to function and is regulated by Wapl and sororin. J Cell Sci 2018; 131:jcs212100. [PMID: 29724914 DOI: 10.1242/jcs.212100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/26/2018] [Indexed: 01/21/2023] Open
Abstract
The DNA-embracing, ring-shaped multiprotein complex cohesin mediates sister chromatid cohesion and is stepwise displaced in mitosis by Wapl and separase (also known as ESPL1) to facilitate anaphase. Proper regulation of chromosome cohesion throughout meiosis is critical for preventing formation of aneuploid gametes, which are associated with trisomies and infertility in humans. Studying cohesion in meiocytes is complicated by their difficult experimental amenability and the absence of cohesin turnover. Here, we use cultured somatic cells to unravel fundamental aspects of meiotic cohesin. When expressed in Hek293 cells, the kleisin Rec8 displays no affinity for the peripheral cohesin subunits Stag1 or Stag2 and remains cytoplasmic. However, co-expression of Stag3 is sufficient for Rec8 to enter the nucleus, load onto chromatin, and functionally replace its mitotic counterpart Scc1 (also known as RAD21) during sister chromatid cohesion and dissolution. Rec8-Stag3 cohesin physically interacts with Pds5, Wapl and sororin (also known as CDCA5). Importantly, Rec8-Stag3 cohesin is shown to be susceptible to Wapl-dependent ring opening and sororin-mediated protection. These findings exemplify that our model system is suitable to rapidly generate testable predictions for important unresolved issues of meiotic cohesion regulation.
Collapse
Affiliation(s)
- Peter G Wolf
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alexander Cuba Ramos
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Julia Kenzel
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Brigitte Neumann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
44
|
Hernandez MR, Davis MB, Jiang J, Brouhard EA, Severson AF, Csankovszki G. Condensin I protects meiotic cohesin from WAPL-1 mediated removal. PLoS Genet 2018; 14:e1007382. [PMID: 29768402 PMCID: PMC5973623 DOI: 10.1371/journal.pgen.1007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/29/2018] [Accepted: 04/27/2018] [Indexed: 11/22/2022] Open
Abstract
Condensin complexes are key determinants of higher-order chromatin structure and are required for mitotic and meiotic chromosome compaction and segregation. We identified a new role for condensin in the maintenance of sister chromatid cohesion during C. elegans meiosis. Using conventional and stimulated emission depletion (STED) microscopy we show that levels of chromosomally-bound cohesin were significantly reduced in dpy-28 mutants, which lack a subunit of condensin I. SYP-1, a component of the synaptonemal complex central region, was also diminished, but no decrease in the axial element protein HTP-3 was observed. Surprisingly, the two key meiotic cohesin complexes of C. elegans were both depleted from meiotic chromosomes following the loss of condensin I, and disrupting condensin I in cohesin mutants increased the frequency of detached sister chromatids. During mitosis and meiosis in many organisms, establishment of cohesion is antagonized by cohesin removal by Wapl, and we found that condensin I binds to C. elegans WAPL-1 and counteracts WAPL-1-dependent cohesin removal. Our data suggest that condensin I opposes WAPL-1 to promote stable binding of cohesin to meiotic chromosomes, thereby ensuring linkages between sister chromatids in early meiosis.
Collapse
Affiliation(s)
- Margarita R. Hernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael B. Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jianhao Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Elizabeth A. Brouhard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Aaron F. Severson
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
45
|
Ferrandiz N, Barroso C, Telecan O, Shao N, Kim HM, Testori S, Faull P, Cutillas P, Snijders AP, Colaiácovo MP, Martinez-Perez E. Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. elegans oocyte meiosis. Nat Commun 2018; 9:834. [PMID: 29483514 PMCID: PMC5827026 DOI: 10.1038/s41467-018-03229-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
The formation of haploid gametes from diploid germ cells requires the regulated two-step release of sister chromatid cohesion (SCC) during the meiotic divisions. Here, we show that phosphorylation of cohesin subunit REC-8 by Aurora B promotes SCC release at anaphase I onset in C. elegans oocytes. Aurora B loading to chromatin displaying Haspin-mediated H3 T3 phosphorylation induces spatially restricted REC-8 phosphorylation, preventing full SCC release during anaphase I. H3 T3 phosphorylation is locally antagonized by protein phosphatase 1, which is recruited to chromosomes by HTP-1/2 and LAB-1. Mutating the N terminus of HTP-1 causes ectopic H3 T3 phosphorylation, triggering precocious SCC release without impairing earlier HTP-1 roles in homolog pairing and recombination. CDK-1 exerts temporal regulation of Aurora B recruitment, coupling REC-8 phosphorylation to oocyte maturation. Our findings elucidate a complex regulatory network that uses chromosome axis components, H3 T3 phosphorylation, and cell cycle regulators to ensure accurate chromosome segregation during oogenesis.
Collapse
Affiliation(s)
- Nuria Ferrandiz
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
| | - Oana Telecan
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
| | - Nan Shao
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
| | - Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- SPST, Tianjin University, Tianjin, 300072, China
| | - Sarah Testori
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
| | - Peter Faull
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
| | - Pedro Cutillas
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Barts Cancer Institute, London, EC1M 6BQ, UK
| | - Ambrosius P Snijders
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | | | | |
Collapse
|
46
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
47
|
Brieño-Enríquez MA, Moak SL, Toledo M, Filter JJ, Gray S, Barbero JL, Cohen PE, Holloway JK. Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1γ-WAPL Axis in the Mouse. Cell Rep 2016; 17:977-986. [PMID: 27760328 PMCID: PMC5123770 DOI: 10.1016/j.celrep.2016.09.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022] Open
Abstract
Mammalian NIMA-like kinase-1 (NEK1) is a dual-specificity kinase highly expressed in mouse germ cells during prophase I of meiosis. Loss of NEK1 induces retention of cohesin on chromosomes at meiotic prophase I. Timely deposition and removal of cohesin is essential for accurate chromosome segregation. Two processes regulate cohesin removal: a non-proteolytic mechanism involving WAPL, sororin, and PDS5B and direct cleavage by separase. Here, we demonstrate a role for NEK1 in the regulation of WAPL loading during meiotic prophase I, via an interaction between NEK1 and PDS5B. This regulation of WAPL by NEK1-PDS5B is mediated by protein phosphatase 1 gamma (PP1γ), which both interacts with and is a phosphotarget of NEK1. Taken together, our results reveal that NEK1 phosphorylates PP1γ, leading to the dephosphorylation of WAPL, which, in turn, results in its retention on chromosome cores to promote loss of cohesion at the end of prophase I in mammals.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Stefannie L Moak
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Melissa Toledo
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - José L Barbero
- Department of Cellular and Molecular Biology, Laboratory of Chromosomal Dynamics in Meiosis, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| | - J Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|