1
|
Saraswathy VM, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. Nat Commun 2024; 15:6808. [PMID: 39147780 PMCID: PMC11327264 DOI: 10.1038/s41467-024-50628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, a transient population of injury-responsive neurons (iNeurons) show elevated plasticity 1 week post-injury. We found iNeurons are injury-surviving neurons that acquire a neuroblast-like gene expression signature after injury. CRISPR/Cas9 mutagenesis showed iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
Affiliation(s)
- Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Gowda SBM, Banu A, Hussain S, Mohammad F. Neuronal mechanisms regulating locomotion in adult Drosophila. J Neurosci Res 2024; 102:e25332. [PMID: 38646942 DOI: 10.1002/jnr.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.
Collapse
Affiliation(s)
- Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
3
|
Qu S, Zhou X, Wang Z, Wei Y, Zhou H, Zhang X, Zhu Q, Wang Y, Yang Q, Jiang L, Ma Y, Gao Y, Kong L, Zhang L. The effects of methylphenidate and atomoxetine on Drosophila brain at single-cell resolution and potential drug repurposing for ADHD treatment. Mol Psychiatry 2024; 29:165-185. [PMID: 37957291 PMCID: PMC11078728 DOI: 10.1038/s41380-023-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.
Collapse
Affiliation(s)
- Susu Qu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiangyu Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Zhicheng Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Wei
- Chinese Institute for Brain Research, Beijing, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing, China
| | | | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Likun Jiang
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Yuan Ma
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of Semaphorins and Plexins is essential for motor neuron survival. Sci Rep 2023; 13:5894. [PMID: 37041188 PMCID: PMC10090137 DOI: 10.1038/s41598-023-32943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Axon guidance cues direct the growth and steering of neuronal growth cones, thus guiding the axons to their targets during development. Nonetheless, after axons have reached their targets and established functional circuits, many mature neurons continue to express these developmental cues. The role of axon guidance cues in the adult nervous system has not been fully elucidated. Using the expression pattern data available on FlyBase, we found that more than 96% of the guidance genes that are expressed in the Drosophila melanogaster embryo continue to be expressed in adults. We utilized the GeneSwitch and TARGET systems to spatiotemporally knockdown the expression of these guidance genes selectively in the adult neurons, once the development was completed. We performed an RNA interference (RNAi) screen against 44 guidance genes in the adult Drosophila nervous system and identified 14 genes that are required for adult survival and normal motility. Additionally, we show that adult expression of Semaphorins and Plexins in motor neurons is necessary for neuronal survival, indicating that guidance genes have critical functions in the mature nervous system.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
5
|
Kinold JC, Brenner M, Aberle H. Misregulation of Drosophila Sidestep Leads to Uncontrolled Wiring of the Adult Neuromuscular System and Severe Locomotion Defects. Front Neural Circuits 2021; 15:658791. [PMID: 34149366 PMCID: PMC8209334 DOI: 10.3389/fncir.2021.658791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Holometabolic organisms undergo extensive remodelling of their neuromuscular system during metamorphosis. Relatively, little is known whether or not the embryonic guidance of molecules and axonal growth mechanisms are re-activated for the innervation of a very different set of adult muscles. Here, we show that the axonal attractant Sidestep (Side) is re-expressed during Drosophila metamorphosis and is indispensable for neuromuscular wiring. Mutations in side cause severe innervation defects in all legs. Neuromuscular junctions (NMJs) show a reduced density or are completely absent at multi-fibre muscles. Misinnervation strongly impedes, but does not completely abolish motor behaviours, including walking, flying, or grooming. Overexpression of Side in developing muscles induces similar innervation defects; for example, at indirect flight muscles, it causes flightlessness. Since muscle-specific overexpression of Side is unlikely to affect the central circuits, the resulting phenotypes seem to correlate with faulty muscle wiring. We further show that mutations in beaten path Ia (beat), a receptor for Side, results in similar weaker adult innervation and locomotion phenotypes, indicating that embryonic guidance pathways seem to be reactivated during metamorphosis.
Collapse
Affiliation(s)
- Jaqueline C Kinold
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Brenner
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hermann Aberle
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Sharma A, Hasan G. Modulation of flight and feeding behaviours requires presynaptic IP 3Rs in dopaminergic neurons. eLife 2020; 9:e62297. [PMID: 33155978 PMCID: PMC7647402 DOI: 10.7554/elife.62297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.
Collapse
Affiliation(s)
- Anamika Sharma
- National Centre for Biological Sciences, TIFRBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
7
|
Horch HW, Spicer SB, Low IIC, Joncas CT, Quenzer ED, Okoya H, Ledwidge LM, Fisher HP. Characterization of plexinA and two distinct semaphorin1a transcripts in the developing and adult cricket Gryllus bimaculatus. J Comp Neurol 2019; 528:687-702. [PMID: 31621906 DOI: 10.1002/cne.24790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 11/06/2022]
Abstract
Guidance cues act during development to guide growth cones to their proper targets in both the central and peripheral nervous systems. Experiments in many species indicate that guidance molecules also play important roles after development, though less is understood about their functions in the adult. The Semaphorin family of guidance cues, signaling through Plexin receptors, influences the development of both axons and dendrites in invertebrates. Semaphorin functions have been extensively explored in Drosophila melanogaster and some other Dipteran species, but little is known about their function in hemimetabolous insects. Here, we characterize sema1a and plexA in the cricket Gryllus bimaculatus. In fact, we found two distinct predicted Sema1a proteins in this species, Sema1a.1 and Sema1a.2, which shared only 48% identity at the amino acid level. We include a phylogenetic analysis that predicted that many other insect species, both holometabolous and hemimetabolous, express two Sema1a proteins as well. Finally, we used in situ hybridization to show that sema1a.1 and sema1a.2 expression patterns were spatially distinct in the embryo, and both roughly overlap with plexA. All three transcripts were also expressed in the adult brain, mainly in the mushroom bodies, though sema1a.2 was expressed most robustly. sema1a.2 was also expressed strongly in the adult thoracic ganglia while sema1a.1 was only weakly expressed and plexA was undetectable.
Collapse
Affiliation(s)
- Hadley W Horch
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Sara B Spicer
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Isabel I C Low
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Colby T Joncas
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Eleanor D Quenzer
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Hikmah Okoya
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Lisa M Ledwidge
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Harrison P Fisher
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| |
Collapse
|
8
|
Wu S, Tan KJ, Govindarajan LN, Stewart JC, Gu L, Ho JWH, Katarya M, Wong BH, Tan EK, Li D, Claridge-Chang A, Libedinsky C, Cheng L, Aw SS. Fully automated leg tracking of Drosophila neurodegeneration models reveals distinct conserved movement signatures. PLoS Biol 2019; 17:e3000346. [PMID: 31246996 PMCID: PMC6619818 DOI: 10.1371/journal.pbio.3000346] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 07/10/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Some neurodegenerative diseases, like Parkinsons Disease (PD) and Spinocerebellar ataxia 3 (SCA3), are associated with distinct, altered gait and tremor movements that are reflective of the underlying disease etiology. Drosophila melanogaster models of neurodegeneration have illuminated our understanding of the molecular mechanisms of disease. However, it is unknown whether specific gait and tremor dysfunctions also occur in fly disease mutants. To answer this question, we developed a machine-learning image-analysis program, Feature Learning-based LImb segmentation and Tracking (FLLIT), that automatically tracks leg claw positions of freely moving flies recorded on high-speed video, producing a series of gait measurements. Notably, unlike other machine-learning methods, FLLIT generates its own training sets and does not require user-annotated images for learning. Using FLLIT, we carried out high-throughput and high-resolution analysis of gait and tremor features in Drosophila neurodegeneration mutants for the first time. We found that fly models of PD and SCA3 exhibited markedly different walking gait and tremor signatures, which recapitulated characteristics of the respective human diseases. Selective expression of mutant SCA3 in dopaminergic neurons led to a gait signature that more closely resembled those of PD flies. This suggests that the behavioral phenotype depends on the neurons affected rather than the specific nature of the mutation. Different mutations produced tremors in distinct leg pairs, indicating that different motor circuits were affected. Using this approach, fly models can be used to dissect the neurogenetic mechanisms that underlie movement disorders. This study uses automated leg tracking to characterise gait and tremor features in fruit fly models of Parkinson’s disease and spinocerebellar ataxia 3, finding movement features that resemble characteristics of the respective human diseases.
Collapse
Affiliation(s)
- Shuang Wu
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Kah Junn Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | - James Charles Stewart
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Duke-NUS Graduate Medical School, Neuroscience and Behavioural Disorders, Singapore
| | - Lin Gu
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Joses Wei Hao Ho
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Duke-NUS Graduate Medical School, Neuroscience and Behavioural Disorders, Singapore
| | - Malvika Katarya
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Boon Hui Wong
- National University of Singapore, Department of Biological Sciences, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Daiqin Li
- National University of Singapore, Department of Biological Sciences, Singapore
| | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Duke-NUS Graduate Medical School, Neuroscience and Behavioural Disorders, Singapore
| | - Camilo Libedinsky
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), Singapore
- National University of Singapore, Department of Psychology, Singapore
| | - Li Cheng
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (SA); (CL)
| | - Sherry Shiying Aw
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- * E-mail: (SA); (CL)
| |
Collapse
|
9
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Venkatasubramanian L, Mann RS. The development and assembly of the Drosophila adult ventral nerve cord. Curr Opin Neurobiol 2019; 56:135-143. [PMID: 30826502 DOI: 10.1016/j.conb.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023]
Abstract
In order to generate complex motor outputs, the nervous system integrates multiple sources of sensory information that ultimately controls motor neurons to generate coordinated movements. The neural circuits that integrate higher order commands from the brain and generate motor outputs are located in the nerve cord of the central nervous system. Recently, genetic access to distinct functional subtypes that make up the Drosophila adult ventral nerve cord has significantly begun to advance our understanding of the structural organization and functions of the neural circuits coordinating motor outputs. Moreover, lineage-tracing and genetic intersection tools have been instrumental in deciphering the developmental mechanisms that generate and assemble the functional units of the adult nerve cord. Together, the Drosophila adult ventral nerve cord is emerging as a powerful system to understand the development and function of neural circuits that are responsible for coordinating complex motor outputs.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
11
|
Venkatasubramanian L, Guo Z, Xu S, Tan L, Xiao Q, Nagarkar-Jaiswal S, Mann RS. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 2019; 8:e42692. [PMID: 30714901 PMCID: PMC6391070 DOI: 10.7554/elife.42692] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
For animals to perform coordinated movements requires the precise organization of neural circuits controlling motor function. Motor neurons (MNs), key components of these circuits, project their axons from the central nervous system and form precise terminal branching patterns at specific muscles. Focusing on the Drosophila leg neuromuscular system, we show that the stereotyped terminal branching of a subset of MNs is mediated by interacting transmembrane Ig superfamily proteins DIP-α and Dpr10, present in MNs and target muscles, respectively. The DIP-α/Dpr10 interaction is needed only after MN axons reach the vicinity of their muscle targets. Live imaging suggests that precise terminal branching patterns are gradually established by DIP-α/Dpr10-dependent interactions between fine axon filopodia and developing muscles. Further, different leg MNs depend on the DIP-α and Dpr10 interaction to varying degrees that correlate with the morphological complexity of the MNs and their muscle targets.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
| | - Zhenhao Guo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Shuwa Xu
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Liming Tan
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Qi Xiao
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Richard S Mann
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
12
|
Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci 2018; 38:10202-10219. [PMID: 30301757 PMCID: PMC6246885 DOI: 10.1523/jneurosci.1163-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Organisms need to coordinate growth with development, particularly in the context of nutrient availability. Thus, multiple ways have evolved to survive extrinsic nutrient deprivation during development. In Drosophila, growth occurs during larval development. Larvae are thus critically dependent on nutritional inputs; but after critical weight, they pupariate even when starved. How nutrient availability is coupled to the internal metabolic state for the decision to pupariate needs better understanding. We had earlier identified glutamatergic interneurons in the ventral ganglion that regulate pupariation on a protein-deficient diet. Here we report that Drosophila third instar larvae (either sex) sense arginine to evaluate their nutrient environment using an amino acid transporter Slimfast. The glutamatergic interneurons integrate external protein availability with internal metabolic state through neuropeptide signals. IP3-mediated calcium release and store-operated calcium entry are essential in these glutamatergic neurons for such integration and alter neuronal function by reducing the expression of multiple ion channels.SIGNIFICANCE STATEMENT Coordinating growth with development, in the context of nutrient availability is a challenge for all organisms in nature. After attainment of "critical weight," insect larvae can pupariate, even in the absence of nutrition. Mechanism(s) that stimulate appropriate cellular responses and allow normal development on a nutritionally deficient diet remain to be understood. Here, we demonstrate that nutritional deprivation, in postcritical weight larvae, is sensed by special sensory neurons through an amino acid transporter that detects loss of environmental arginine. This information is integrated by glutamatergic interneurons with the internal metabolic state through neuropeptide signals. These glutamatergic interneurons require calcium-signaling-regulated expression of a host of neuronal channels to generate complex calcium signals essential for pupariation on a protein-deficient diet.
Collapse
Affiliation(s)
| | | | - Bipan Kumar Deb
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| |
Collapse
|
13
|
Rich SK, Terman JR. Axon formation, extension, and navigation: only a neuroscience phenomenon? Curr Opin Neurobiol 2018; 53:174-182. [PMID: 30248549 DOI: 10.1016/j.conb.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Understanding how neurons form, extend, and navigate their finger-like axonal and dendritic processes is crucial for developing therapeutics for the diseased and damaged brain. Although less well appreciated, many other types of cells also send out similar finger-like projections. Indeed, unlike neuronal specific phenomena such as synapse formation or synaptic transmission, an important issue for thought is that this critical long-standing question of how a cellular process like an axon or dendrite forms and extends is not primarily a neuroscience problem but a cell biological problem. In that case, the use of simple cellular processes - such as the bristle cell process of Drosophila - can aid in the fight to answer these critical questions. Specifically, determining how a model cellular process is generated can provide a framework for manipulations of all types of membranous process-containing cells, including different types of neurons.
Collapse
Affiliation(s)
- Shannon K Rich
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity. PLoS One 2018; 13:e0199070. [PMID: 29995882 PMCID: PMC6040699 DOI: 10.1371/journal.pone.0199070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
The auditory system of the cricket, Gryllus bimaculatus, demonstrates an unusual amount of anatomical plasticity in response to injury, even in adults. Unilateral removal of the ear causes deafferented auditory neurons in the prothoracic ganglion to sprout dendrites across the midline, a boundary they typically respect, and become synaptically connected to the auditory afferents of the contralateral ear. The molecular basis of this sprouting and novel synaptogenesis in the adult is not understood. We hypothesize that well-conserved developmental guidance cues may recapitulate their guidance functions in the adult in order to facilitate this compensatory growth. As a first step in testing this hypothesis, we have generated a de novo assembly of a prothoracic ganglion transcriptome derived from control and deafferented adult individuals. We have mined this transcriptome for orthologues of guidance molecules from four well-conserved signaling families: Slit, Netrin, Ephrin, and Semaphorin. Here we report that transcripts encoding putative orthologues of most of the candidate developmental ligands and receptors from these signaling families were present in the assembly, indicating expression in the adult G. bimaculatus prothoracic ganglion.
Collapse
|
15
|
Identification of a Single Pair of Interneurons for Bitter Taste Processing in the Drosophila Brain. Curr Biol 2018; 28:847-858.e3. [PMID: 29502953 DOI: 10.1016/j.cub.2018.01.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/20/2017] [Accepted: 01/30/2018] [Indexed: 11/23/2022]
Abstract
Drosophila has become an excellent model system for investigating the organization and function of the gustatory system due to the relatively simple neuroanatomical organization of its brain and the availability of powerful genetic and transgenic technology. Thus, at the molecular and cellular levels, a great deal of insight into the peripheral detection and coding of gustatory information has already been attained. In contrast, much less is known about the central neural circuits that process this information and induce behaviorally appropriate motor output. Here, we combine functional behavioral tests with targeted transgene expression through specific driver lines to identify a single bilaterally homologous pair of bitter-sensitive interneurons that are located in the subesophageal zone of the brain. Anatomical and functional data indicate that these interneurons receive specific synaptic input from bitter-sensitive gustatory receptor neurons. Targeted transgenic activation and inactivation experiments show that these bitter-sensitive interneurons can largely suppress the proboscis extension reflex to appetitive stimuli, such as sugar and water. These functional experiments, together with calcium-imaging studies and calcium-modulated photoactivatable ratiometric integrator (CaMPARI) labeling, indicate that these first-order local interneurons play an important role in the inhibition of the proboscis extension reflex that occurs in response to bitter tastants. Taken together, our studies present a cellular identification and functional characterization of a key gustatory interneuron in the bitter-sensitive gustatory circuitry of the adult fly.
Collapse
|
16
|
Grice SJ, Sleigh JN, Zameel Cader M. Plexin-Semaphorin Signaling Modifies Neuromuscular Defects in a Drosophila Model of Peripheral Neuropathy. Front Mol Neurosci 2018. [PMID: 29520219 PMCID: PMC5827687 DOI: 10.3389/fnmol.2018.00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dominant mutations in GARS, encoding the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and Charcot-Marie-Tooth disease type 2D (CMT2D). This genetic disorder exemplifies a recurring paradigm in neurodegeneration, in which mutations in essential genes cause selective degeneration of the nervous system. Recent evidence suggests that the mechanism underlying CMT2D involves extracellular neomorphic binding of mutant GlyRS to neuronally-expressed proteins. Consistent with this, our previous studies indicate a non-cell autonomous mechanism, whereby mutant GlyRS is secreted and interacts with the neuromuscular junction (NMJ). In this Drosophila model for CMT2D, we have previously shown that mutant gars expression decreases viability and larval motor function, and causes a concurrent build-up of mutant GlyRS at the larval neuromuscular presynapse. Here, we report additional phenotypes that closely mimic the axonal branching defects of Drosophila plexin transmembrane receptor mutants, implying interference of plexin signaling in gars mutants. Individual dosage reduction of two Drosophila Plexins, plexin A (plexA) and B (plexB) enhances and represses the viability and larval motor defects caused by mutant GlyRS, respectively. However, we find plexB levels, but not plexA levels, modify mutant GlyRS association with the presynaptic membrane. Furthermore, increasing availability of the plexB ligand, Semaphorin-2a (Sema2a), alleviates the pathology and the build-up of mutant GlyRS, suggesting competition for plexB binding may be occurring between these two ligands. This toxic gain-of-function and subversion of neurodevelopmental processes indicate that signaling pathways governing axonal guidance could be integral to neuropathology and may underlie the non-cell autonomous CMT2D mechanism.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - M Zameel Cader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc Natl Acad Sci U S A 2018; 115:E2115-E2124. [PMID: 29440493 PMCID: PMC5834679 DOI: 10.1073/pnas.1713869115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inhibition is an important feature of the neuronal circuit, and in walking, it aids in controlling coordinated movement of legs, leg segments, and joints. Recent studies in Drosophila report the role of premotor inhibitory interneurons in regulation of larval locomotion. However, in adult walking, the identity and function of premotor interneurons are poorly understood. Here, we use genetic methods for targeted knockdown of inhibitory neurotransmitter receptors in leg motoneurons, combined with automated video recording methods we have developed for quantitative analysis of fly leg movements and walking parameters, to reveal the resulting slower walking speed and defects in walking parameters. Our results indicate that GABAergic premotor inhibition to leg motoneurons is required to control the normal walking behavior in adult Drosophila. Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.
Collapse
|
18
|
Pons M, Soulard C, Soustelle L, Parmentier ML, Grau Y, Layalle S. A New Behavioral Test and Associated Genetic Tools Highlight the Function of Ventral Abdominal Muscles in Adult Drosophila. Front Cell Neurosci 2017; 11:371. [PMID: 29209177 PMCID: PMC5702315 DOI: 10.3389/fncel.2017.00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022] Open
Abstract
The function of the nervous system in complex animals is reflected by the achievement of specific behaviors. For years in Drosophila, both simple and complex behaviors have been studied and their genetic bases have emerged. The neuromuscular junction is maybe one of the prototypal simplest examples. A motor neuron establishes synaptic connections on its muscle cell target and elicits behavior: the muscle contraction. Different muscles in adult fly are related to specific behaviors. For example, the thoracic muscles are associated with flight and the leg muscles are associated with locomotion. However, specific tools are still lacking for the study of cellular physiology in distinct motor neuron subpopulations. Here we decided to use the abdominal muscles and in particular the ventral abdominal muscles (VAMs) in adult Drosophila as new model to link a precise behavior to specific motor neurons. Hence, we developed a new behavioral test based on the folding movement of the adult abdomen. Further, we performed a genetic screen and identify two specific Gal4 lines with restricted expression patterns to the adult motor neurons innervating the VAMs or their precursor cells. Using these genetic tools, we showed that the lack of the VAMs or the loss of the synaptic transmission in their innervating motor neurons lead to a significant impairment of the abdomen folding behavior. Altogether, our results allow establishing a direct link between specific motor neurons and muscles for the realization of particular behavior: the folding behavior of the abdomen in Drosophila.
Collapse
Affiliation(s)
- Marine Pons
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Claire Soulard
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Laurent Soustelle
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Marie-Laure Parmentier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yves Grau
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Sophie Layalle
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Santiago C, Bashaw GJ. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor. Cell Rep 2017; 18:1646-1659. [PMID: 28199838 DOI: 10.1016/j.celrep.2017.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/30/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl) controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra)/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Orr BO, Fetter RD, Davis GW. Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity. Nature 2017; 550:109-113. [PMID: 28953869 PMCID: PMC5907800 DOI: 10.1038/nature24017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/17/2017] [Indexed: 11/16/2022]
Abstract
Homeostatic signaling systems ensure stable, yet flexible neural activity and animal behavior1–4. Defining the underlying molecular mechanisms of neuronal homeostatic signaling will be essential in order to establish clear connections to the causes and progression of neurological disease. Presynaptic homeostatic plasticity (PHP) is a conserved form of neuronal homeostatic signaling, observed in organisms ranging from Drosophila to human1,5. Here, we demonstrate that Semaphorin2b (Sema2b) is target-derived signal that acts upon presynaptic PlexinB (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the Drosophila neuromuscular junction. Sema2b-PlexB signaling regulates the expression of PHP via the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin6,7. During neural development, Semaphorin-Plexin signaling instructs axon guidance and neuronal morphogenesis8–10. Yet, Semaphorins and Plexins are also expressed in the adult brain11–16. Here we demonstrate that Semaphorin-Plexin signaling controls presynaptic neurotransmitter release. We propose that Sema2b-PlexB signaling is an essential platform for the stabilization of synaptic transmission throughout life.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
21
|
Jayakumar S, Richhariya S, Reddy OV, Texada MJ, Hasan G. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons. eLife 2016; 5:e17495. [PMID: 27494275 PMCID: PMC4993588 DOI: 10.7554/elife.17495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development.
Collapse
Affiliation(s)
- Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|