1
|
Zhou X, Weng SY, Bell SP, Amon A. A noncanonical GTPase signaling mechanism controls exit from mitosis in budding yeast. Proc Natl Acad Sci U S A 2024; 121:e2413873121. [PMID: 39475649 PMCID: PMC11551315 DOI: 10.1073/pnas.2413873121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, exit from mitosis is coupled to spindle position to ensure successful genome partitioning between mother and daughter cells. This coupling occurs through a GTPase signaling cascade known as the mitotic exit network (MEN). The MEN senses spindle position via a Ras-like GTPase Tem1 which localizes to the spindle pole bodies (SPBs, yeast equivalent of centrosomes) during anaphase and signals to its effector protein kinase Cdc15. How Tem1 couples the status of spindle position to MEN activation is not fully understood. Here, we show that Cdc15 has a relatively weak preference for Tem1GTP and Tem1's nucleotide state does not change upon MEN activation. Instead, we find that Tem1's nucleotide cycle establishes a localization-based concentration difference in the cell where only Tem1GTP is recruited to the SPB, and spindle position regulates the MEN by controlling Tem1 localization to the SPB. SPB localization of Tem1 primarily functions to promote Tem1-Cdc15 interaction for MEN activation by increasing the effective concentration of Tem1. Consistent with this model, we demonstrate that artificially tethering Tem1 to the SPB or concentrating Tem1 in the cytoplasm with genetically encoded multimeric nanoparticles could bypass the requirement of Tem1GTP and correct spindle position for MEN activation. This localization/concentration-based GTPase signaling mechanism for Tem1 differs from the canonical Ras-like GTPase signaling paradigm and is likely relevant to other localization-based signaling scenarios.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
- Department of Biology, New York University, New York, NY 10003
| | - Shannon Y Weng
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Stephen P Bell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Angelika Amon
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
2
|
Ekal L, Alqahtani AMS, Ayscough KR, Hettema EH. Spatiotemporal regulation of organelle transport by spindle position checkpoint kinase Kin4. J Cell Sci 2024; 137:jcs261948. [PMID: 39318281 PMCID: PMC11586526 DOI: 10.1242/jcs.261948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Asymmetric cell division in Saccharomyces cerevisiae involves class V myosin-dependent transport of organelles along the polarised actin cytoskeleton to the emerging bud. Vac17 is the vacuole/lysosome-specific myosin receptor. Its timely breakdown terminates transport and results in the proper positioning of vacuoles in the bud. Vac17 breakdown is controlled by the bud-concentrated p21-activated kinase Cla4, and the E3-ubiquitin ligase Dma1. We found that the spindle position checkpoint kinase Kin4 and, to a lesser extent, its paralog Frk1 contribute to successful vacuole transport by preventing the premature breakdown of Vac17 by Cla4 and Dma1. Furthermore, Kin4 and Cla4 contribute to the regulation of peroxisome transport. We conclude that Kin4 antagonises the Cla4/Dma1 pathway to coordinate spatiotemporal regulation of organelle transport.
Collapse
Affiliation(s)
- Lakhan Ekal
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Abdulaziz M. S. Alqahtani
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | | | - Ewald H. Hettema
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Zhou X, Weng SY, Bell SP, Amon A. A noncanonical GTPase signaling mechanism controls exit from mitosis in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594582. [PMID: 38798491 PMCID: PMC11118470 DOI: 10.1101/2024.05.16.594582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In the budding yeast Saccharomyces cerevisiae, exit from mitosis is coupled to spindle position to ensure successful genome partitioning between mother and daughter cell. This coupling occurs through a GTPase signaling cascade known as the mitotic exit network (MEN). The MEN senses spindle position via a Ras-like GTPase Tem1 which localizes to the spindle pole bodies (SPBs, yeast equivalent of centrosomes) during anaphase and signals to its effector protein kinase Cdc15. How Tem1 couples the status of spindle position to MEN activation is not fully understood. Here, we show that Cdc15 has a relatively weak preference for Tem 1 GTP and Tem1's nucleotide state does not change upon MEN activation. Instead, we find that Tem1's nucleotide cycle establishes a localization-based concentration difference in the cell where only Tem 1 GTP is recruited to the SPB, and spindle position regulates the MEN by controlling Tem1 localization. SPB localization of Tem1 primarily functions to promote Tem1-Cdc15 interaction for MEN activation by increasing the effective concentration of Tem1. Consistent with this model, we demonstrate that artificially tethering Tem1 to the SPB or concentrating Tem1 in the cytoplasm with genetically encoded multimeric nanoparticles could bypass the requirement of Tem 1 GTP and correct spindle position for MEN activation. This localization/concentration-based GTPase signaling mechanism for Tem1 differs from the canonical Ras-like GTPase signaling paradigm and is likely relevant to other localization-based signaling scenarios.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shannon Y. Weng
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P. Bell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angelika Amon
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Seitz BC, Mucelli X, Majano M, Wallis Z, Dodge AC, Carmona C, Durant M, Maynard S, Huang LS. Meiosis II spindle disassembly requires two distinct pathways. Mol Biol Cell 2023; 34:ar98. [PMID: 37436806 PMCID: PMC10551701 DOI: 10.1091/mbc.e23-03-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
During exit from meiosis II, cells undergo several structural rearrangements, including disassembly of the meiosis II spindles and cytokinesis. Each of these changes is regulated to ensure that they occur at the proper time. Previous studies have demonstrated that both SPS1, which encodes a STE20-family GCKIII kinase, and AMA1, which encodes a meiosis-specific activator of the Anaphase Promoting Complex, are required for both meiosis II spindle disassembly and cytokinesis in the budding yeast Saccharomyces cerevisiae. We examine the relationship between meiosis II spindle disassembly and cytokinesis and find that the meiosis II spindle disassembly failure in sps1Δ and ama1∆ cells is not the cause of the cytokinesis defect. We also see that the spindle disassembly defects in sps1Δ and ama1∆ cells are phenotypically distinct. We examined known microtubule-associated proteins Ase1, Cin8, and Bim1, and found that AMA1 is required for the proper loss of Ase1 and Cin8 on meiosis II spindles while SPS1 is required for Bim1 loss in meiosis II. Taken together, these data indicate that SPS1 and AMA1 promote distinct aspects of meiosis II spindle disassembly, and that both pathways are required for the successful completion of meiosis.
Collapse
Affiliation(s)
- Brian C. Seitz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Xheni Mucelli
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Maira Majano
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Zoey Wallis
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Ashley C. Dodge
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Catherine Carmona
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Matthew Durant
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Sharra Maynard
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
5
|
Zucca F, Visintin C, Li J, Gygi SP, Visintin R. APC/CCdc20-mediated degradation of Clb4 prompts astral microtubule stabilization at anaphase onset. J Cell Biol 2022; 222:213563. [PMID: 36269172 PMCID: PMC9595209 DOI: 10.1083/jcb.202203089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Key for accurate chromosome partitioning to the offspring is the ability of mitotic spindle microtubules to respond to different molecular signals and remodel their dynamics accordingly. Spindle microtubules are conventionally divided into three classes: kinetochore, interpolar, and astral microtubules (kMTs, iMTs, and aMTs, respectively). Among all, aMT regulation remains elusive. Here, we show that aMT dynamics are tightly regulated. aMTs remain unstable up to metaphase and are stabilized at anaphase onset. This switch in aMT dynamics, important for proper spindle orientation, specifically requires the degradation of the mitotic cyclin Clb4 by the Anaphase Promoting Complex bound to its activator subunit Cdc20 (APC/CCdc20). These data highlight a unique role for mitotic cyclin Clb4 in controlling aMT regulating factors, of which Kip2 is a prime candidate, provide a framework to understand aMT regulation in vertebrates, and uncover mechanistic principles of how the APC/CCdc20 choreographs the timing of late mitotic events by sequentially impacting on the three classes of spindle microtubules.
Collapse
Affiliation(s)
- Federico Zucca
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy,Correspondence to Rosella Visintin:
| |
Collapse
|
6
|
SIN-like Pathway Kinases Regulate the End of Mitosis in the Methylotrophic Yeast Ogataea polymorpha. Cells 2022; 11:cells11091519. [PMID: 35563825 PMCID: PMC9105162 DOI: 10.3390/cells11091519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.
Collapse
|
7
|
Vannini M, Mingione VR, Meyer A, Sniffen C, Whalen J, Seshan A. A Novel Hyperactive Nud1 Mitotic Exit Network Scaffold Causes Spindle Position Checkpoint Bypass in Budding Yeast. Cells 2021; 11:46. [PMID: 35011608 PMCID: PMC8750578 DOI: 10.3390/cells11010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.
Collapse
Affiliation(s)
- Michael Vannini
- Boston University School of Medicine, Boston, MA 02118, USA;
| | - Victoria R. Mingione
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA;
| | | | - Courtney Sniffen
- Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Jenna Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| |
Collapse
|
8
|
Kocakaplan D, Karabürk H, Dilege C, Kirdök I, Bektas SN, Caydasi AK. Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. eLife 2021; 10:72833. [PMID: 34633288 PMCID: PMC8577847 DOI: 10.7554/elife.72833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5, and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.
Collapse
Affiliation(s)
- Dilara Kocakaplan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Hüseyin Karabürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Cansu Dilege
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Idil Kirdök
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
9
|
Howell RSM, Klemm C, Thorpe PH, Csikász-Nagy A. Unifying the mechanism of mitotic exit control in a spatiotemporal logical model. PLoS Biol 2020; 18:e3000917. [PMID: 33180788 PMCID: PMC7685450 DOI: 10.1371/journal.pbio.3000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/24/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Collapse
Affiliation(s)
- Rowan S M Howell
- The Francis Crick Institute, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
10
|
Campbell IW, Zhou X, Amon A. Spindle pole bodies function as signal amplifiers in the Mitotic Exit Network. Mol Biol Cell 2020; 31:906-916. [PMID: 32074005 PMCID: PMC7185974 DOI: 10.1091/mbc.e19-10-0584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Mitotic Exit Network (MEN), a budding yeast Ras-like signal transduction cascade, translates nuclear position into a signal to exit from mitosis. Here we describe how scaffolding the MEN onto spindle pole bodies (SPB—centrosome equivalent) allows the MEN to couple the final stages of mitosis to spindle position. Through the quantitative analysis of the localization of MEN components, we determined the relative importance of MEN signaling from the SPB that is delivered into the daughter cell (dSPB) during anaphase and the SPB that remains in the mother cell. Movement of half of the nucleus into the bud during anaphase causes the active form of the MEN GTPase Tem1 to accumulate at the dSPB. In response to Tem1’s activity at the dSPB, the MEN kinase cascade, which functions downstream of Tem1, accumulates at both SPBs. This localization to both SPBs serves an important role in promoting efficient exit from mitosis. Cells that harbor only one SPB delay exit from mitosis. We propose that MEN signaling is initiated by Tem1 at the dSPB and that association of the downstream MEN kinases with both SPBs serves to amplify MEN signaling, enabling the timely exit from mitosis.
Collapse
Affiliation(s)
- Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
11
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
12
|
Heasley LR, DeLuca JG, Markus SM. Effectors of the spindle assembly checkpoint are confined within the nucleus of Saccharomyces cerevisiae. Biol Open 2019; 8:bio.037424. [PMID: 31182632 PMCID: PMC6602339 DOI: 10.1242/bio.037424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The spindle assembly checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by mitotic checkpoint complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the anaphase promoting complex/cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed an approach using binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast, MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis. Summary: The effectors of the spindle assembly checkpoint are confined with the nuclear compartment of budding yeast, and cannot exchange between nuclei in a binucleate zygote.
Collapse
Affiliation(s)
- Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
13
|
Ballew O, Lacefield S. The DNA damage checkpoint and the spindle position checkpoint: guardians of meiotic commitment. Curr Genet 2019; 65:1135-1140. [PMID: 31028453 DOI: 10.1007/s00294-019-00981-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Exogenous signals induce cells to enter the specialized cell division process of meiosis, which produces haploid gametes from diploid progenitor cells. Once cells initiate the meiotic divisions, it is imperative that they complete meiosis. Inappropriate exit from meiosis and entrance into mitosis can create polyploid cells and can lead to germline tumors. Saccharomyces cerevisiae cells enter meiosis when starved of nutrients but can return to mitosis if provided nutrient-rich medium before a defined commitment point. Once past the meiotic commitment point in prometaphase I, cells stay committed to meiosis even in the presence of a mitosis-inducing signal. Recent research investigated the maintenance of meiotic commitment in budding yeast and found that two checkpoints that do not normally function in meiosis I, the DNA damage checkpoint and the spindle position checkpoint, have crucial functions in maintaining meiotic commitment. Here, we review these findings and discuss how the mitosis-inducing signal of nutrient-rich medium could activate these two checkpoints in meiosis to prevent inappropriate meiotic exit.
Collapse
Affiliation(s)
- Olivia Ballew
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
The DNA Damage Checkpoint and the Spindle Position Checkpoint Maintain Meiotic Commitment in Saccharomyces cerevisiae. Curr Biol 2019; 29:449-460.e2. [PMID: 30686741 DOI: 10.1016/j.cub.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 01/17/2023]
Abstract
During meiosis, diploid progenitor cells undergo one round of DNA replication followed by two rounds of chromosome segregation to form haploid gametes. Once cells initiate the meiotic divisions, it is imperative that they finish meiosis. A failure to maintain meiosis can result in highly aberrant polyploid cells, which could lead to oncogenesis in the germline. How cells stay committed to finishing meiosis, even in the presence of a mitosis-inducing signal, is poorly understood. We addressed this question in budding yeast, in which cells enter meiosis when starved. If nutrient-rich medium is added before a defined commitment point in mid-prometaphase I, they can return to mitosis. Cells in stages beyond the commitment point will finish meiosis, even with nutrient addition. Because checkpoints are signaling pathways known to couple cell-cycle processes with one another, we asked if checkpoints could ensure meiotic commitment. We find that two checkpoints with well-defined functions in mitosis, the DNA damage checkpoint and the spindle position checkpoint, have crucial roles in meiotic commitment. With nutrient-rich medium addition at stages beyond the commitment point, cells that are deficient in both checkpoints because they lack Rad53 and either Bub2, Bfa1, or Kin4 can return to mitotic growth and go on to form polyploid cells. The results demonstrate that the two checkpoints prevent cells from exiting meiosis in the presence of a mitosis-inducing signal. This study reveals a previously unknown function for the DNA damage checkpoint and the spindle position checkpoint in maintaining meiotic commitment.
Collapse
|
15
|
Campbell IW, Zhou X, Amon A. The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. eLife 2019; 8:41139. [PMID: 30672733 PMCID: PMC6363386 DOI: 10.7554/elife.41139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
GTPase signal transduction pathways control cellular decision making by integrating multiple cellular events into a single signal. The Mitotic Exit Network (MEN), a Ras-like GTPase signaling pathway, integrates spatial and temporal cues to ensure that cytokinesis only occurs after the genome has partitioned between mother and daughter cells during anaphase. Here we show that signal integration does not occur at a single step of the pathway. Rather, sequential components of the pathway are controlled in series by different signals. The spatial signal, nuclear position, regulates the MEN GTPase Tem1. The temporal signal, commencement of anaphase, is mediated by mitotic cyclin-dependent kinase (CDK) phosphorylation of the GTPase's downstream kinases. We propose that integrating multiple signals through sequential steps in the GTPase pathway represents a generalizable principle in GTPase signaling and explains why intracellular signal transmission is a multi-step process. Serial signal integration rather than signal amplification makes multi-step signal transduction necessary.
Collapse
Affiliation(s)
- Ian Winsten Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | | |
Collapse
|
16
|
Budding Yeast BFA1 Has Multiple Positive Roles in Directing Late Mitotic Events. G3-GENES GENOMES GENETICS 2018; 8:3397-3410. [PMID: 30166350 PMCID: PMC6222586 DOI: 10.1534/g3.118.200672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In Saccharomyces cerevisiae, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2 The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1 We conclude that Bfa1 functions to both inhibit and activate late mitotic events.
Collapse
|
17
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
18
|
Geymonat M, Segal M. Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results Probl Cell Differ 2017; 61:49-82. [PMID: 28409300 DOI: 10.1007/978-3-319-53150-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother-bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles-one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
19
|
The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of Saccharomyces cerevisiae. Genetics 2017; 206:919-937. [PMID: 28450458 DOI: 10.1534/genetics.116.194522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Age-based inheritance of centrosomes in eukaryotic cells is associated with faithful chromosome distribution in asymmetric cell divisions. During Saccharomyces cerevisiae ascospore formation, such an inheritance mechanism targets the yeast centrosome equivalents, the spindle pole bodies (SPBs) at meiosis II onset. Decreased nutrient availability causes initiation of spore formation at only the younger SPBs and their associated genomes. This mechanism ensures encapsulation of nonsister genomes, which preserves genetic diversity and provides a fitness advantage at the population level. Here, by usage of an enhanced system for sporulation-induced protein depletion, we demonstrate that the core mitotic exit network (MEN) is involved in age-based SPB selection. Moreover, efficient genome inheritance requires Dbf2/20-Mob1 during a late step in spore maturation. We provide evidence that the meiotic functions of the MEN are more complex than previously thought. In contrast to mitosis, completion of the meiotic divisions does not strictly rely on the MEN whereas its activity is required at different time points during spore development. This is reminiscent of vegetative MEN functions in spindle polarity establishment, mitotic exit, and cytokinesis. In summary, our investigation contributes to the understanding of age-based SPB inheritance during sporulation of S. cerevisiae and provides general insights on network plasticity in the context of a specialized developmental program. Moreover, the improved system for a developmental-specific tool to induce protein depletion will be useful in other biological contexts.
Collapse
|
20
|
Caydasi AK, Khmelinskii A, Duenas-Sanchez R, Kurtulmus B, Knop M, Pereira G. Temporal and compartment-specific signals coordinate mitotic exit with spindle position. Nat Commun 2017; 8:14129. [PMID: 28117323 PMCID: PMC5286211 DOI: 10.1038/ncomms14129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment. The mitotic exit network (MEN) triggers mitotic exit and can be blocked by the spindle position checkpoint (SPOC). Here the authors show that SPOC kinase Kin4 counterbalances MEN activation by the Cdc fourteen early anaphase release (FEAR) network in the mother cell and that in the absence of FEAR mitotic exit requires daughter cell-confined factors.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Anton Khmelinskii
- DKFZ-ZMBH Alliance, Centre for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Rafael Duenas-Sanchez
- DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Bahtiyar Kurtulmus
- DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Michael Knop
- DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,DKFZ-ZMBH Alliance, Centre for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Gislene Pereira
- DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Abstract
In budding yeast, alignment of the anaphase spindle along the mother-bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell-restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway's GTPase activity.
Collapse
Affiliation(s)
- Jill E Falk
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelsey Joyce
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Jenna Whalen
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
22
|
Perez AM, Finnigan GC, Roelants FM, Thorner J. Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae. Front Cell Dev Biol 2016; 4:119. [PMID: 27847804 PMCID: PMC5088441 DOI: 10.3389/fcell.2016.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023] Open
Abstract
Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments, and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop.
Collapse
Affiliation(s)
- Adam M Perez
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Françoise M Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
23
|
Falk JE, Campbell IW, Joyce K, Whalen J, Seshan A, Amon A. LTE1 promotes exit from mitosis by multiple mechanisms. Mol Biol Cell 2016; 27:3991-4001. [PMID: 27798238 PMCID: PMC5156540 DOI: 10.1091/mbc.e16-08-0563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
In budding yeast, the spindle position checkpoint ensures that cells exit from mitosis only when their spindle is properly aligned along the mother–bud axis. Exit from mitosis is controlled by both negative signals in the mother cell compartment and positive signals in the bud. In budding yeast, alignment of the anaphase spindle along the mother–bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell–restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway’s GTPase activity.
Collapse
Affiliation(s)
- Jill E Falk
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelsey Joyce
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Jenna Whalen
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
24
|
Gryaznova Y, Caydasi AK, Malengo G, Sourjik V, Pereira G. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes. eLife 2016; 5:e14029. [PMID: 27159239 PMCID: PMC4878874 DOI: 10.7554/elife.14029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/08/2016] [Indexed: 12/19/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control.
Collapse
Affiliation(s)
- Yuliya Gryaznova
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
| | - Ayse Koca Caydasi
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Malengo
- DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg, Germany
| | - Victor Sourjik
- DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg, Germany
| | - Gislene Pereira
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|