1
|
Otero-Coronel S, Preuss T, Medan V. Multisensory integration enhances audiovisual responses in the Mauthner cell. eLife 2024; 13:RP99424. [PMID: 39636208 PMCID: PMC11620741 DOI: 10.7554/elife.99424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Multisensory integration (MSI) combines information from multiple sensory modalities to create a coherent perception of the world. In contexts where sensory information is limited or equivocal, it also allows animals to integrate individually ambiguous stimuli into a clearer or more accurate percept and, thus, react with a more adaptive behavioral response. Although responses to multisensory stimuli have been described at the neuronal and behavioral levels, a causal or direct link between these two is still missing. In this study, we studied the integration of audiovisual inputs in the Mauthner cell, a command neuron necessary and sufficient to trigger a stereotypical escape response in fish. We performed intracellular recordings in adult goldfish while presenting a diverse range of stimuli to determine which stimulus properties affect their integration. Our results show that stimulus modality, intensity, temporal structure, and interstimulus delay affect input summation. Mechanistically, we found that the distinct decay dynamics of FFI triggered by auditory and visual stimuli can account for certain aspects of input integration. Altogether, this is a rare example of the characterization of MSI in a cell with clear behavioral relevance, providing both phenomenological and mechanistic insights into how MSI depends on stimulus properties.
Collapse
Affiliation(s)
- Santiago Otero-Coronel
- Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina
| | - Thomas Preuss
- Department Psychology, Hunter College, City University of New YorkNew YorkUnited States
| | - Violeta Medan
- Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Thompson AC, Aizenman CD. Characterization of Na + currents regulating intrinsic excitability of optic tectal neurons. Life Sci Alliance 2024; 7:e202302232. [PMID: 37918964 PMCID: PMC10622587 DOI: 10.26508/lsa.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Developing neurons adapt their intrinsic excitability to maintain stable output despite changing synaptic input. The mechanisms behind this process remain unclear. In this study, we examined Xenopus optic tectal neurons and found that the expressions of Nav1.1 and Nav1.6 voltage-gated Na+ channels are regulated during changes in intrinsic excitability, both during development and becsuse of changes in visual experience. Using whole-cell electrophysiology, we demonstrate the existence of distinct, fast, persistent, and resurgent Na+ currents in the tectum, and show that these Na+ currents are co-regulated with changes in Nav channel expression. Using antisense RNA to suppress the expression of specific Nav subunits, we found that up-regulation of Nav1.6 expression, but not Nav1.1, was necessary for experience-dependent increases in Na+ currents and intrinsic excitability. Furthermore, this regulation was also necessary for normal development of sensory guided behaviors. These data suggest that the regulation of Na+ currents through the modulation of Nav1.6 expression, and to a lesser extent Nav1.1, plays a crucial role in controlling the intrinsic excitability of tectal neurons and guiding normal development of the tectal circuitry.
Collapse
|
3
|
Keum D, Pultorak K, Meredith MA, Medina AE. Effects of developmental alcohol exposure on cortical multisensory integration. Eur J Neurosci 2023; 57:784-795. [PMID: 36610022 PMCID: PMC9991967 DOI: 10.1111/ejn.15907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) is one of the most common causes of mental disabilities in the world with a prevalence of 1%-6% of all births. Sensory processing deficits and cognitive problems are a major feature in this condition. Because developmental alcohol exposure can impair neuronal plasticity, and neuronal plasticity is crucial for the establishment of neuronal circuits in sensory areas, we predicted that exposure to alcohol during the third trimester equivalent of human gestation would disrupt the development of multisensory integration (MSI) in the rostral portion of the posterior parietal cortex (PPr), an integrative visual-tactile area. We conducted in vivo electrophysiology in 17 ferrets from four groups (saline/alcohol; infancy/adolescence). A total of 1157 neurons were recorded after visual, tactile and combined visual-tactile stimulation. A multisensory (MS) enhancement or suppression is characterized by a significantly increased or decreased number of elicited spikes after combined visual-tactile stimulation compared to the strongest unimodal (visual or tactile) response. At the neuronal level, those in infant animals were more prone to show MS suppression whereas adolescents were more prone to show MS enhancement. Although alcohol-treated animals showed similar developmental changes between infancy and adolescence, they always 'lagged behind' controls showing more MS suppression and less enhancement. Our findings suggest that alcohol exposure during the last months of human gestation would stunt the development of MSI, which could underlie sensory problems seen in FASD.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Pediatrics, University of Maryland, School of Medicine. Baltimore, MD
| | - Katie Pultorak
- Department of Pediatrics, University of Maryland, School of Medicine. Baltimore, MD
| | - M. Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University. Richmond VA
| | - Alexandre E. Medina
- Department of Pediatrics, University of Maryland, School of Medicine. Baltimore, MD
| |
Collapse
|
4
|
Matsuzaki J, Kagitani-Shimono K, Aoki S, Hanaie R, Kato Y, Nakanishi M, Tatsumi A, Tominaga K, Yamamoto T, Nagai Y, Mohri I, Taniike M. Abnormal cortical responses elicited by audiovisual movies in patients with autism spectrum disorder with atypical sensory behavior: A magnetoencephalographic study. Brain Dev 2022; 44:81-94. [PMID: 34563417 DOI: 10.1016/j.braindev.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atypical sensory behavior disrupts behavioral adaptation in children with autism spectrum disorder (ASD); however, neural correlates of sensory dysfunction using magnetoencephalography (MEG) remain unclear. METHOD We used MEG to measure the cortical activation elicited by visual (uni)/audiovisual (multisensory) movies in 46 children (7-14 years) were included in final analysis: 13 boys with atypical audiovisual behavior in ASD (AAV+), 10 without this condition, and 23 age-matched typically developing boys. RESULTS The AAV+ group demonstrated an increase in the cortical activation in the bilateral insula in response to unisensory movies and in the left occipital, right superior temporal sulcus (rSTS), and temporal regions to multisensory movies. These increased responses were correlated with severity of the sensory impairment. Increased theta-low gamma oscillations were observed in the rSTS in AAV+. CONCLUSION The findings suggest that AAV is attributed to atypical neural networks centered on the rSTS.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Sho Aoki
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Mariko Nakanishi
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aika Tatsumi
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Ikuko Mohri
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Sensational developments in somatosensory development? Curr Opin Neurobiol 2021; 66:212-223. [PMID: 33454646 DOI: 10.1016/j.conb.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022]
Abstract
This is an overview of the most recent advances pertaining to the development of the cardinal components of the somatosensory system: the peripheral sensory neurons that perceive somatosensory stimuli, the first line central nervous system circuits that modulate them, and the higher structures such as the somatosensory cortex that eventually compute a motor response to them. Here, I also review the most recent findings concerning the role of neuronal activity in somatosensory development, formation of somatotopic maps, insights into human somatosensory development and the link between aberrant somatosensation and neurodevelopmental disorders.
Collapse
|
6
|
Stein BE, Rowland BA. Using superior colliculus principles of multisensory integration to reverse hemianopia. Neuropsychologia 2020; 141:107413. [PMID: 32113921 DOI: 10.1016/j.neuropsychologia.2020.107413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
The diversity of our senses conveys many advantages; it enables them to compensate for one another when needed, and the information they provide about a common event can be integrated to facilitate its processing and, ultimately, adaptive responses. These cooperative interactions are produced by multisensory neurons. A well-studied model in this context is the multisensory neuron in the output layers of the superior colliculus (SC). These neurons integrate and amplify their cross-modal (e.g., visual-auditory) inputs, thereby enhancing the physiological salience of the initiating event and the probability that it will elicit SC-mediated detection, localization, and orientation behavior. Repeated experience with the same visual-auditory stimulus can also increase the neuron's sensitivity to these individual inputs. This observation raised the possibility that such plasticity could be engaged to restore visual responsiveness when compromised. For example, unilateral lesions of visual cortex compromise the visual responsiveness of neurons in the multisensory output layers of the ipsilesional SC and produces profound contralesional blindness (hemianopia). The possibility that multisensory plasticity could restore the visual responses of these neurons, and reverse blindness, was tested in the cat model of hemianopia. Hemianopic subjects were repeatedly presented with spatiotemporally congruent visual-auditory stimulus pairs in the blinded hemifield on a daily or weekly basis. After several weeks of this multisensory exposure paradigm, visual responsiveness was restored in SC neurons and behavioral responses were elicited by visual stimuli in the previously blind hemifield. The constraints on the effectiveness of this procedure proved to be the same as those constraining SC multisensory plasticity: whereas repetitions of a congruent visual-auditory stimulus was highly effective, neither exposure to its individual component stimuli, nor to these stimuli in non-congruent configurations was effective. The restored visual responsiveness proved to be robust, highly competitive with that in the intact hemifield, and sufficient to support visual discrimination.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
7
|
Busch SE, Khakhalin AS. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience. J Neurophysiol 2019; 122:1084-1096. [PMID: 31291161 DOI: 10.1152/jn.00099.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a biological neural network to be functional, its neurons need to be connected with synapses of appropriate strength, and each neuron needs to appropriately respond to its synaptic inputs. This second aspect of network tuning is maintained by intrinsic plasticity; yet it is often considered secondary to changes in connectivity and mostly limited to adjustments of overall excitability of each neuron. Here we argue that even nonoscillatory neurons can be tuned to inputs of different temporal dynamics and that they can routinely adjust this tuning to match the statistics of their synaptic activation. Using the dynamic clamp technique, we show that, in the tectum of Xenopus tadpole, neurons become selective for faster inputs when animals are exposed to fast visual stimuli but remain responsive to longer inputs in animals exposed to slower, looming, or multisensory stimulation. We also report a homeostatic cotuning between synaptic and intrinsic temporal properties of individual tectal cells. These results expand our understanding of intrinsic plasticity in the brain and suggest that there may exist an additional dimension of network tuning that has been so far overlooked.NEW & NOTEWORTHY We use dynamic clamp to show that individual neurons in the tectum of Xenopus tadpoles are selectively tuned to either shorter (more synchronous) or longer (less synchronous) synaptic inputs. We also demonstrate that this intrinsic temporal tuning is strongly shaped by sensory experiences. This new phenomenon, which is likely to be mediated by changes in sodium channel inactivation, is bound to have important consequences for signal processing and the development of local recurrent connections.
Collapse
Affiliation(s)
- Silas E Busch
- Biology Program, Bard College, Annandale-on-Hudson, New York
| | | |
Collapse
|
8
|
Xu J, Bi T, Wu J, Meng F, Wang K, Hu J, Han X, Zhang J, Zhou X, Keniston L, Yu L. Spatial receptive field shift by preceding cross-modal stimulation in the cat superior colliculus. J Physiol 2018; 596:5033-5050. [PMID: 30144059 DOI: 10.1113/jp275427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS It has been known for some time that sensory information of one type can bias the spatial perception of another modality. However, there is a lack of evidence of this occurring in individual neurons. In the present study, we found that the spatial receptive field of superior colliculus multisensory neurons could be dynamically shifted by a preceding stimulus in a different modality. The extent to which the receptive field shifted was dependent on both temporal and spatial gaps between the preceding and following stimuli, as well as the salience of the preceding stimulus. This result provides a neural mechanism that could underlie the process of cross-modal spatial calibration. ABSTRACT Psychophysical studies have shown that the different senses can be spatially entrained by each other. This can be observed in certain phenomena, such as ventriloquism, in which a visual stimulus can attract the perceived location of a spatially discordant sound. However, the neural mechanism underlying this cross-modal spatial recalibration has remained unclear, as has whether it takes place dynamically. We explored these issues in multisensory neurons of the cat superior colliculus (SC), a midbrain structure that involves both cross-modal and sensorimotor integration. Sequential cross-modal stimulation showed that the preceding stimulus can shift the receptive field (RF) of the lagging response. This cross-modal spatial calibration took place in both auditory and visual RFs, although auditory RFs shifted slightly more. By contrast, if a preceding stimulus was from the same modality, it failed to induce a similarly substantial RF shift. The extent of the RF shift was dependent on both temporal and spatial gaps between the preceding and following stimuli, as well as the salience of the preceding stimulus. A narrow time gap and high stimulus salience were able to induce larger RF shifts. In addition, when both visual and auditory stimuli were presented simultaneously, a substantial RF shift toward the location-fixed stimulus was also induced. These results, taken together, reveal an online cross-modal process and reflect the details of the organization of SC inter-sensory spatial calibration.
Collapse
Affiliation(s)
- Jinghong Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Tingting Bi
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Jing Wu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Fanzhu Meng
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Kun Wang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Jiawei Hu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Xiao Han
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Les Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Gambrill AC, Faulkner RL, Cline HT. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles. J Neurophysiol 2018; 119:1947-1961. [PMID: 29442555 DOI: 10.1152/jn.00051.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circuit controlling visually guided behavior in nonmammalian vertebrates, such as Xenopus tadpoles, includes retinal projections to the contralateral optic tectum, where visual information is processed, and tectal motor outputs projecting ipsilaterally to hindbrain and spinal cord. Tadpoles have an intertectal commissure whose function is unknown, but it might transfer information between the tectal lobes. Differences in visual experience between the two eyes have profound effects on the development and function of visual circuits in animals with binocular vision, but the effects on animals with fully crossed retinal projections are not clear. We tested the effect of monocular visual experience on the visuomotor circuit in Xenopus tadpoles. We show that cutting the intertectal commissure or providing visual experience to one eye (monocular visual experience) is sufficient to disrupt tectally mediated visual avoidance behavior. Monocular visual experience induces asymmetry in tectal circuit activity across the midline. Repeated exposure to monocular visual experience drives maturation of the stimulated retinotectal synapses, seen as increased AMPA-to-NMDA ratios, induces synaptic plasticity in intertectal synaptic connections, and induces bilaterally asymmetric changes in the tectal excitation-to-inhibition ratio (E/I). We show that unilateral expression of peptides that interfere with AMPA or GABAA receptor trafficking alters E/I in the transfected tectum and is sufficient to degrade visuomotor behavior. Our study demonstrates that monocular visual experience in animals with fully crossed visual systems produces asymmetric circuit function across the midline and degrades visuomotor behavior. The data further suggest that intertectal inputs are an integral component of a bilateral visuomotor circuit critical for behavior. NEW & NOTEWORTHY The developing optic tectum of Xenopus tadpoles represents a unique circuit in which laterally positioned eyes provide sensory input to a circuit that is transiently monocular, but which will be binocular in the animal's adulthood. We challenge the idea that the two lobes of tadpole optic tectum function independently by testing the requirement of interhemispheric communication and demonstrate that unbalanced sensory input can induce structural and functional plasticity in the tectum sufficient to disrupt function.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
10
|
Bach EC, Vaughan JW, Stein BE, Rowland BA. Pulsed Stimuli Elicit More Robust Multisensory Enhancement than Expected. Front Integr Neurosci 2018; 11:40. [PMID: 29354037 PMCID: PMC5758560 DOI: 10.3389/fnint.2017.00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022] Open
Abstract
Neurons in the superior colliculus (SC) integrate cross-modal inputs to generate responses that are more robust than to either input alone, and are frequently greater than their sum (superadditive enhancement). Previously, the principles of a real-time multisensory transform were identified and used to accurately predict a neuron's responses to combinations of brief flashes and noise bursts. However, environmental stimuli frequently have more complex temporal structures that elicit very different response dynamics than previously examined. The present study tested whether such stimuli (i.e., pulsed) would be treated similarly by the multisensory transform. Pulsing visual and auditory stimuli elicited responses composed of higher discharge rates that had multiple peaks temporally aligned to the stimulus pulses. Combinations pulsed cues elicited multiple peaks of superadditive enhancement within the response window. Measured over the entire response, this resulted in larger enhancements than expected given enhancements elicited by non-pulsed (“sustained”) stimuli. However, as with sustained stimuli, the dynamics of multisensory responses to pulsed stimuli were highly related to the temporal dynamics of the unisensory inputs. This suggests that the specific characteristics of the multisensory transform are not determined by the external features of the cross-modal stimulus configuration; rather the temporal structure and alignment of the unisensory inputs is the dominant driving factor in the magnitudes of the multisensory product.
Collapse
Affiliation(s)
- Eva C Bach
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John W Vaughan
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Barry E Stein
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Benjamin A Rowland
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Noel JP, Kurela L, Baum SH, Yu H, Neimat JS, Gallagher MJ, Wallace M. Multisensory temporal function and EEG complexity in patients with epilepsy and psychogenic nonepileptic events. Epilepsy Behav 2017; 70:166-172. [PMID: 28427027 PMCID: PMC5484082 DOI: 10.1016/j.yebeh.2017.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
Cognitive and perceptual comorbidities frequently accompany epilepsy and psychogenic nonepileptic events (PNEE). However, and despite the fact that perceptual function is built upon a multisensory foundation, little knowledge exists concerning multisensory function in these populations. Here, we characterized facets of multisensory processing abilities in patients with epilepsy and PNEE, and probed the relationship between individual resting-state EEG complexity and these psychophysical measures in each patient. We prospectively studied a cohort of patients with epilepsy (N=18) and PNEE (N=20) patients who were admitted to Vanderbilt's Epilepsy Monitoring Unit (EMU) and weaned off of anticonvulsant drugs. Unaffected age-matched persons staying with the patients in the EMU (N=15) were also recruited as controls. All participants performed two tests of multisensory function: an audio-visual simultaneity judgment and an audio-visual redundant target task. Further, in the cohort of patients with epilepsy and PNEE we quantified resting state EEG gamma power and complexity. Compared with both patients with epilepsy and control subjects, patients with PNEE exhibited significantly poorer acuity in audiovisual temporal function as evidenced in significantly larger temporal binding windows (i.e., they perceived larger stimulus asynchronies as being presented simultaneously). These differences appeared to be specific for temporal function, as there was no difference among the three groups in a non-temporally based measure of multisensory function - the redundant target task. Further, patients with PNEE exhibited more complex resting state EEG patterns as compared to their patients with epilepsy, and EEG complexity correlated with multisensory temporal performance on a subject-by-subject manner. Taken together, findings seem to indicate that patients with PNEE bind information from audition and vision over larger temporal intervals when compared with control subjects as well as patients with epilepsy. This difference in multisensory function appears to be specific to the temporal domain, and may be a contributing factor to the behavioral and perceptual alterations seen in this population.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - LeAnne Kurela
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah H Baum
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Hong Yu
- Department of Neurosurgeory, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Joseph S Neimat
- Department of Neurosurgeory, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Martin J Gallagher
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
12
|
Multisensory Integration Uses a Real-Time Unisensory-Multisensory Transform. J Neurosci 2017; 37:5183-5194. [PMID: 28450539 DOI: 10.1523/jneurosci.2767-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/21/2022] Open
Abstract
The manner in which the brain integrates different sensory inputs to facilitate perception and behavior has been the subject of numerous speculations. By examining multisensory neurons in cat superior colliculus, the present study demonstrated that two operational principles are sufficient to understand how this remarkable result is achieved: (1) unisensory signals are integrated continuously and in real time as soon as they arrive at their common target neuron and (2) the resultant multisensory computation is modified in shape and timing by a delayed, calibrating inhibition. These principles were tested for descriptive sufficiency by embedding them in a neurocomputational model and using it to predict a neuron's moment-by-moment multisensory response given only knowledge of its responses to the individual modality-specific component cues. The predictions proved to be highly accurate, reliable, and unbiased and were, in most cases, not statistically distinguishable from the neuron's actual instantaneous multisensory response at any phase throughout its entire duration. The model was also able to explain why different multisensory products are often observed in different neurons at different time points, as well as the higher-order properties of multisensory integration, such as the dependency of multisensory products on the temporal alignment of crossmodal cues. These observations not only reveal this fundamental integrative operation, but also identify quantitatively the multisensory transform used by each neuron. As a result, they provide a means of comparing the integrative profiles among neurons and evaluating how they are affected by changes in intrinsic or extrinsic factors.SIGNIFICANCE STATEMENT Multisensory integration is the process by which the brain combines information from multiple sensory sources (e.g., vision and audition) to maximize an organism's ability to identify and respond to environmental stimuli. The actual transformative process by which the neural products of multisensory integration are achieved is poorly understood. By focusing on the millisecond-by-millisecond differences between a neuron's unisensory component responses and its integrated multisensory response, it was found that this multisensory transform can be described by two basic principles: unisensory information is integrated in real time and the multisensory response is shaped by calibrating inhibition. It is now possible to use these principles to predict a neuron's multisensory response accurately armed only with knowledge of its unisensory responses.
Collapse
|
13
|
Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices. eNeuro 2017; 4:eN-NWR-0037-17. [PMID: 28374008 PMCID: PMC5362936 DOI: 10.1523/eneuro.0037-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 11/21/2022] Open
Abstract
Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta–beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing.
Collapse
|
14
|
Truszkowski TLS, Carrillo OA, Bleier J, Ramirez-Vizcarrondo CM, Felch DL, McQuillan M, Truszkowski CP, Khakhalin AS, Aizenman CD. A cellular mechanism for inverse effectiveness in multisensory integration. eLife 2017; 6:e25392. [PMID: 28315524 PMCID: PMC5375642 DOI: 10.7554/elife.25392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
To build a coherent view of the external world, an organism needs to integrate multiple types of sensory information from different sources, a process known as multisensory integration (MSI). Previously, we showed that the temporal dependence of MSI in the optic tectum of Xenopus laevis tadpoles is mediated by the network dynamics of the recruitment of local inhibition by sensory input (Felch et al., 2016). This was one of the first cellular-level mechanisms described for MSI. Here, we expand this cellular level view of MSI by focusing on the principle of inverse effectiveness, another central feature of MSI stating that the amount of multisensory enhancement observed inversely depends on the size of unisensory responses. We show that non-linear summation of crossmodal synaptic responses, mediated by NMDA-type glutamate receptor (NMDARs) activation, form the cellular basis for inverse effectiveness, both at the cellular and behavioral levels.
Collapse
Affiliation(s)
| | - Oscar A Carrillo
- Department of Neuroscience, Brown University, Providence, United States
| | - Julia Bleier
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Daniel L Felch
- Department of Neuroscience, Brown University, Providence, United States
| | | | | | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
15
|
Jang EV, Ramirez-Vizcarrondo C, Aizenman CD, Khakhalin AS. Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum. Front Neural Circuits 2016; 10:95. [PMID: 27932957 PMCID: PMC5121234 DOI: 10.3389/fncir.2016.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise, and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.
Collapse
Affiliation(s)
- Eric V Jang
- Department of Neuroscience, Brown University Providence, RI, USA
| | | | | | | |
Collapse
|