1
|
Gao Y, Cai YC, Liu DY, Yu J, Wang J, Li M, Xu B, Wang T, Chen G, Northoff G, Bai R, Song XM. GABAergic inhibition in human hMT+ predicts visuo-spatial intelligence mediated through the frontal cortex. eLife 2024; 13:RP97545. [PMID: 39352734 PMCID: PMC11444681 DOI: 10.7554/elife.97545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juan Yu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bin Xu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Gang Chen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Hangzhou, China
| | - Ruiliang Bai
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Murray SO, Kolodny T, Webb SJ. Linking cortical surface area to computational properties in human visual perception. iScience 2024; 27:110490. [PMID: 39148711 PMCID: PMC11325354 DOI: 10.1016/j.isci.2024.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Cortical structure and function are closely linked, shaping the neural basis of human behavior. This study explores how cortical surface area (SA), a structural feature, influences computational properties in human visual perception. Using a combination of psychophysical, neuroimaging, and computational modeling approaches, we find that variations in SA across the parietal and frontal cortices are linked to distinct behavioral patterns in a motion perception task. These differences in behavior correspond to specific parameters within a divisive normalization model, indicating a unique contribution of SA to the spatial organization of cortical circuitry. This work highlights the importance of cortical architecture in modifying computational processes that underlie perception, enhancing our understanding of how structural differences can influence neural function and behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Tamar Kolodny
- Department of Psychology and the School of Brain Sciences and Cognition, Ben-Gurion University, Beer Sheva, Israel
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Research Institute, 1920 Terry Avenue, Building Cure-03, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Laamerad P, Liu LD, Pack CC. Decision-related activity and movement selection in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadk7214. [PMID: 38809984 PMCID: PMC11135405 DOI: 10.1126/sciadv.adk7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Liu D. Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
4
|
Laamerad P, Awada A, Pack CC, Bakhtiari S. Asymmetric stimulus representations bias visual perceptual learning. J Vis 2024; 24:10. [PMID: 38285454 PMCID: PMC10829801 DOI: 10.1167/jov.24.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
The primate visual cortex contains various regions that exhibit specialization for different stimulus properties, such as motion, shape, and color. Within each region, there is often further specialization, such that particular stimulus features, such as horizontal and vertical orientations, are over-represented. These asymmetries are associated with well-known perceptual biases, but little is known about how they influence visual learning. Most theories would predict that learning is optimal, in the sense that it is unaffected by these asymmetries. However, other approaches to learning would result in specific patterns of perceptual biases. To distinguish between these possibilities, we trained human observers to discriminate between expanding and contracting motion patterns, which have a highly asymmetrical representation in the visual cortex. Observers exhibited biased percepts of these stimuli, and these biases were affected by training in ways that were often suboptimal. We simulated different neural network models and found that a learning rule that involved only adjustments to decision criteria, rather than connection weights, could account for our data. These results suggest that cortical asymmetries influence visual perception and that human observers often rely on suboptimal strategies for learning.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Asmara Awada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Shahab Bakhtiari
- Department of Psychology, Université de Montréal, Montreal, Canada
- Mila - Quebec AI Institute, Montreal, Canada
| |
Collapse
|
5
|
Weiss O, Bounds HA, Adesnik H, Coen-Cagli R. Modeling the diverse effects of divisive normalization on noise correlations. PLoS Comput Biol 2023; 19:e1011667. [PMID: 38033166 PMCID: PMC10715670 DOI: 10.1371/journal.pcbi.1011667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Divisive normalization, a prominent descriptive model of neural activity, is employed by theories of neural coding across many different brain areas. Yet, the relationship between normalization and the statistics of neural responses beyond single neurons remains largely unexplored. Here we focus on noise correlations, a widely studied pairwise statistic, because its stimulus and state dependence plays a central role in neural coding. Existing models of covariability typically ignore normalization despite empirical evidence suggesting it affects correlation structure in neural populations. We therefore propose a pairwise stochastic divisive normalization model that accounts for the effects of normalization and other factors on covariability. We first show that normalization modulates noise correlations in qualitatively different ways depending on whether normalization is shared between neurons, and we discuss how to infer when normalization signals are shared. We then apply our model to calcium imaging data from mouse primary visual cortex (V1), and find that it accurately fits the data, often outperforming a popular alternative model of correlations. Our analysis indicates that normalization signals are often shared between V1 neurons in this dataset. Our model will enable quantifying the relation between normalization and covariability in a broad range of neural systems, which could provide new constraints on circuit mechanisms of normalization and their role in information transmission and representation.
Collapse
Affiliation(s)
- Oren Weiss
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hayley A. Bounds
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
6
|
Murray SO, Kolodny T, Webb SJ. Cortical Surface Area Relates to Distinct Computational Properties in Human Visual Perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545373. [PMID: 37398212 PMCID: PMC10312808 DOI: 10.1101/2023.06.16.545373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the relationship between cortical structure and function is essential for elucidating the neural basis of human behavior. However, the impact of cortical structural features on the computational properties of neural circuits remains poorly understood. In this study, we demonstrate that a simple structural feature - cortical surface area (SA) - relates to specific computational properties underlying human visual perception. By combining psychophysical, neuroimaging, and computational modeling approaches, we show that differences in SA in the parietal and frontal cortices are associated with distinct patterns of behavior in a motion perception task. These behavioral differences can be accounted for by specific parameters of a divisive normalization model, suggesting that SA in these regions contributes uniquely to the spatial organization of cortical circuitry. Our findings provide novel evidence linking cortical structure to distinct computational properties and offer a framework for understanding how cortical architecture can impact human behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle WA USA 98195
- Seattle Children’s Research Institute, 1920 Terry Ave, Building Cure-03, Seattle WA 98101
| |
Collapse
|
7
|
Zhang Y, Lemarchand R, Asyraff A, Hoffman P. Representation of motion concepts in occipitotemporal cortex: fMRI activation, decoding and connectivity analyses. Neuroimage 2022; 259:119450. [PMID: 35798252 DOI: 10.1016/j.neuroimage.2022.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
Embodied theories of semantic cognition predict that brain regions involved in motion perception are engaged when people comprehend motion concepts expressed in language. Left lateral occipitotemporal cortex (LOTC) is implicated in both motion perception and motion concept processing but prior studies have produced mixed findings on which parts of this region are engaged by motion language. We scanned participants performing semantic judgements about sentences describing motion events and static events. We performed univariate analyses, multivariate pattern analyses (MVPA) and psychophysiological interaction (PPI) analyses to investigate the effect of motion on activity and connectivity in different parts of LOTC. In multivariate analyses that decoded whether a sentence described motion or not, the middle and posterior parts of LOTC showed above-chance level performance, with performance exceeding that of other brain regions. Univariate ROI analyses found the middle part of LOTC was more active for motion events than static ones. Finally, PPI analyses found that when processing motion events, the middle and posterior parts of LOTC (overlapping with motion perception regions), increased their connectivity with cognitive control regions. Taken together, these results indicate that the more posterior parts of LOTC, including motion perception cortex, respond differently to motion vs. static events. These findings are consistent with embodiment accounts of semantic processing, and suggest that understanding verbal descriptions of motion engages areas of the occipitotemporal cortex involved in perceiving motion.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Rafael Lemarchand
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Aliff Asyraff
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| |
Collapse
|
8
|
Makowski LM, Rammsayer TH, Tadin D, Thomas P, Troche SJ. On the interplay of temporal resolution power and spatial suppression in their prediction of psychometric intelligence. PLoS One 2022; 17:e0274809. [PMID: 36121867 PMCID: PMC9484675 DOI: 10.1371/journal.pone.0274809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
As a measure of the brain’s temporal fine-tuning capacity, temporal resolution power (TRP) explained repeatedly a substantial amount of variance in psychometric intelligence. Recently, spatial suppression, referred to as the increasing difficulty in quickly perceiving motion direction as the size of the moving stimulus increases, has attracted particular attention, when it was found to be positively related to psychometric intelligence. Due to the conceptual similarities of TRP and spatial suppression, the present study investigated their mutual interplay in the relation to psychometric intelligence in 273 young adults to better understand the reasons for these relationships. As in previous studies, psychometric intelligence was positively related to a latent variable representing TRP but, in contrast to previous reports, negatively to latent and manifest measures of spatial suppression. In a combined structural equation model, TRP still explained a substantial amount of variance in psychometric intelligence while the negative relation between spatial suppression and intelligence was completely explained by TRP. Thus, our findings confirmed TRP to be a robust predictor of psychometric intelligence but challenged the assumption of spatial suppression as a representation of general information processing efficiency as reflected in psychometric intelligence. Possible reasons for the contradictory findings on the relation between spatial suppression and psychometric intelligence are discussed.
Collapse
Affiliation(s)
| | | | - Duje Tadin
- Department of Brain and Cognitive Sciences, Neuroscience, Ophthalmology and Center for Visual Science, University of Rochester, Rochester, NY, United States of America
| | - Philipp Thomas
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Stefan J. Troche
- Institute of Psychology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Barthélemy FV, Fleuriet J, Perrinet LU, Masson GS. A behavioral receptive field for ocular following in monkeys: Spatial summation and its spatial frequency tuning. eNeuro 2022; 9:ENEURO.0374-21.2022. [PMID: 35760525 PMCID: PMC9275147 DOI: 10.1523/eneuro.0374-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
In human and non-human primates, reflexive tracking eye movements can be initiated at very short latency in response to a rapid shift of the image. Previous studies in humans have shown that only a part of the central visual field is optimal for driving ocular following responses. Herein, we have investigated spatial summation of motion information across a wide range of spatial frequencies and speeds of drifting gratings by recording short-latency ocular following responses in macaque monkeys. We show that optimal stimulus size for driving ocular responses cover a small (<20° diameter), central part of the visual field that shrinks with higher spatial frequency. This signature of linear motion integration remains invariant with speed and temporal frequency. For low and medium spatial frequencies, we found a strong suppressive influence from surround motion, evidenced by a decrease of response amplitude for stimulus sizes larger than optimal. Such suppression disappears with gratings at high frequencies. The contribution of peripheral motion was investigated by presenting grating annuli of increasing eccentricity. We observed an exponential decay of response amplitude with grating eccentricity, the decrease being faster for higher spatial frequencies. Weaker surround suppression can thus be explained by sparser eccentric inputs at high frequencies. A Difference-of-Gaussians model best renders the antagonistic contributions of peripheral and central motions. Its best-fit parameters coincide with several, well-known spatial properties of area MT neuronal populations. These results describe the mechanism by which central motion information is automatically integrated in a context-dependent manner to drive ocular responses.Significance statementOcular following is driven by visual motion at ultra-short latency in both humans and monkeys. Its dynamics reflect the properties of low-level motion integration. Here, we show that a strong center-surround suppression mechanism modulates initial eye velocity. Its spatial properties are dependent upon visual inputs' spatial frequency but are insensitive to either its temporal frequency or speed. These properties are best described with a Difference-of-Gaussian model of spatial integration. The model parameters reflect many spatial characteristics of motion sensitive neuronal populations in monkey area MT. Our results further outline the computational properties of the behavioral receptive field underpinning automatic, context-dependent motion integration.
Collapse
Affiliation(s)
- Frédéric V Barthélemy
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
| | - Jérome Fleuriet
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
- Assistance Publique-Hôpitaux de Paris, Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
| |
Collapse
|
10
|
Kınıklıoğlu M, Boyaci H. Increasing the spatial extent of attention strengthens surround suppression. Vision Res 2022; 199:108074. [PMID: 35717748 DOI: 10.1016/j.visres.2022.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Here we investigate how the extent of spatial attention affects center-surround interaction in visual motion processing. To do so, we measured motion direction discrimination thresholds in humans using drifting gratings and two attention conditions. Participants were instructed to limit their attention to the central part of the stimulus under the narrow attention condition, and to both central and surround parts under the wide attention condition. We found stronger surround suppression under the wide attention condition. The magnitude of the attention effect increased with the size of the surround when the stimulus had low contrast, but did not change when it had high contrast. Results also showed that attention had a weaker effect when the center and surround gratings drifted in opposite directions. Next, to establish a link between the behavioral results and the neuronal response characteristics, we performed computer simulations using the divisive normalization model. Our simulations showed that using smaller versus larger multiplicative attentional gain and parameters derived from the medial temporal (MT) area of the cortex, the model can successfully predict the observed behavioral results. These findings reveal the critical role of spatial attention on surround suppression and establish a link between neuronal activity and behavior. Further, these results also suggest that the reduced surround suppression found in certain clinical disorders (e.g., schizophrenia and autism spectrum disorder) may be caused by abnormal attention mechanisms.
Collapse
Affiliation(s)
- Merve Kınıklıoğlu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
| | - Huseyin Boyaci
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Department of Psychology, Bilkent University, Ankara 06800, Turkey; Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
11
|
Krause MR, Vieira PG, Thivierge JP, Pack CC. Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain. PLoS Biol 2022; 20:e3001650. [PMID: 35613140 PMCID: PMC9132296 DOI: 10.1371/journal.pbio.3001650] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Egger SW, Lisberger SG. Neural structure of a sensory decoder for motor control. Nat Commun 2022; 13:1829. [PMID: 35383170 PMCID: PMC8983777 DOI: 10.1038/s41467-022-29457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
The transformation of sensory input to motor output is often conceived as a decoder operating on neural representations. We seek a mechanistic understanding of sensory decoding by mimicking neural circuitry in the decoder's design. The results of a simple experiment shape our approach. Changing the size of a target for smooth pursuit eye movements changes the relationship between the variance and mean of the evoked behavior in a way that contradicts the regime of "signal-dependent noise" and defies traditional decoding approaches. A theoretical analysis leads us to propose a circuit for pursuit that includes multiple parallel pathways and multiple sources of variation. Behavioral and neural responses with biomimetic statistics emerge from a biologically-motivated circuit model with noise in the pathway that is dedicated to flexibly adjusting the strength of visual-motor transmission. Our results demonstrate the power of re-imagining decoding as processing through the parallel pathways of neural systems.
Collapse
Affiliation(s)
- Seth W Egger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Pasternak T, Tadin D. Linking Neuronal Direction Selectivity to Perceptual Decisions About Visual Motion. Annu Rev Vis Sci 2021; 6:335-362. [PMID: 32936737 DOI: 10.1146/annurev-vision-121219-081816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psychophysical and neurophysiological studies of responses to visual motion have converged on a consistent set of general principles that characterize visual processing of motion information. Both types of approaches have shown that the direction and speed of target motion are among the most important encoded stimulus properties, revealing many parallels between psychophysical and physiological responses to motion. Motivated by these parallels, this review focuses largely on more direct links between the key feature of the neuronal response to motion, direction selectivity, and its utilization in memory-guided perceptual decisions. These links were established during neuronal recordings in monkeys performing direction discriminations, but also by examining perceptual effects of widespread elimination of cortical direction selectivity produced by motion deprivation during development. Other approaches, such as microstimulation and lesions, have documented the importance of direction-selective activity in the areas that are active during memory-guided direction comparisons, area MT and the prefrontal cortex, revealing their likely interactions during behavioral tasks.
Collapse
Affiliation(s)
- Tatiana Pasternak
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA; , .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.,Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Duje Tadin
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA; , .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.,Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14642, USA.,Department of Ophthalmology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
14
|
Park ASY, Schütz AC. Selective postsaccadic enhancement of motion perception. Vision Res 2021; 188:42-50. [PMID: 34280816 PMCID: PMC7611369 DOI: 10.1016/j.visres.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022]
Abstract
Saccadic eye movements can drastically affect motion perception: during saccades, the stationary surround is swept rapidly across the retina and contrast sensitivity is suppressed. However, after saccades, contrast sensitivity is enhanced for color and high-spatial frequency stimuli and reflexive tracking movements known as ocular following responses (OFR) are enhanced in response to large field motion. Additionally, OFR and postsaccadic enhancement of neural activity in primate motion processing areas are well correlated. It is not yet known how this postsaccadic enhancement arises. Therefore, we tested if the enhancement can be explained by changes in the balance of centre-surround antagonism in motion processing, where spatial summation is favoured at low contrasts and surround suppression is favoured at high contrasts. We found motion perception was selectively enhanced immediately after saccades for high spatial frequency stimuli, consistent with previously reported selective postsaccadic enhancement of contrast sensitivity for flashed high spatial frequency stimuli. The observed enhancement was also associated with changes in spatial summation and suppression, as well as contrast facilitation and inhibition, suggesting that motion processing is augmented to maximise visual perception immediately after saccades. The results highlight that spatial and contrast properties of underlying neural mechanisms for motion processing can be affected by an antecedent saccade for highly detailed stimuli and are in line with studies that show behavioural and neuronal enhancement of motion processing in non-human primates.
Collapse
Affiliation(s)
- Adela S Y Park
- Experimental and Biological Psychology, University of Marburg, Marburg, Germany.
| | - Alexander C Schütz
- Experimental and Biological Psychology, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
15
|
Wild B, Treue S. Comparing the influence of stimulus size and contrast on the perception of moving gratings and random dot patterns-A registered report protocol. PLoS One 2021; 16:e0253067. [PMID: 34153081 PMCID: PMC8216547 DOI: 10.1371/journal.pone.0253067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
Modern accounts of visual motion processing in the primate brain emphasize a hierarchy of different regions within the dorsal visual pathway, especially primary visual cortex (V1) and the middle temporal area (MT). However, recent studies have called the idea of a processing pipeline with fixed contributions to motion perception from each area into doubt. Instead, the role that each area plays appears to depend on properties of the stimulus as well as perceptual history. We propose to test this hypothesis in human subjects by comparing motion perception of two commonly used stimulus types: drifting sinusoidal gratings (DSGs) and random dot patterns (RDPs). To avoid potential biases in our approach we are pre-registering our study. We will compare the effects of size and contrast levels on the perception of the direction of motion for DSGs and RDPs. In addition, based on intriguing results in a pilot study, we will also explore the effects of a post-stimulus mask. Our approach will offer valuable insights into how motion is processed by the visual system and guide further behavioral and neurophysiological research.
Collapse
Affiliation(s)
- Benedict Wild
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz-Institute for Primate Research, Goettingen, Germany
- Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Goettingen, Goettingen, Germany
- * E-mail:
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz-Institute for Primate Research, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| |
Collapse
|
16
|
Smith JET, Parker AJ. Correlated structure of neuronal firing in macaque visual cortex limits information for binocular depth discrimination. J Neurophysiol 2021; 126:275-303. [PMID: 33978495 PMCID: PMC8325604 DOI: 10.1152/jn.00667.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variability in cortical neural activity potentially limits sensory discriminations. Theoretical work shows that information required to discriminate two similar stimuli is limited by the correlation structure of cortical variability. We investigated these information-limiting correlations by recording simultaneously from visual cortical areas primary visual cortex (V1) and extrastriate area V4 in macaque monkeys performing a binocular, stereo depth discrimination task. Within both areas, noise correlations on a rapid temporal scale (20–30 ms) were stronger for neuron pairs with similar selectivity for binocular depth, meaning that these correlations potentially limit information for making the discrimination. Between-area correlations (V1 to V4) were different, being weaker for neuron pairs with similar tuning and having a slower temporal scale (100+ ms). Fluctuations in these information-limiting correlations just prior to the detection event were associated with changes in behavioral accuracy. Although these correlations limit the recovery of information about sensory targets, their impact may be curtailed by integrative processing of signals across multiple brain areas. NEW & NOTEWORTHY Correlated noise reduces the stimulus information in visual cortical neurons during experimental performance of binocular depth discriminations. The temporal scale of these correlations is important. Rapid (20–30 ms) correlations reduce information within and between areas V1 and V4, whereas slow (>100 ms) correlations between areas do not. Separate cortical areas appear to act together to maintain signal fidelity. Rapid correlations reduce the neuronal signal difference between stimuli and adversely affect perceptual discrimination.
Collapse
Affiliation(s)
- Jackson E T Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J Parker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Chicharro D, Panzeri S, Haefner RM. Stimulus-dependent relationships between behavioral choice and sensory neural responses. eLife 2021; 10:e54858. [PMID: 33825683 PMCID: PMC8184215 DOI: 10.7554/elife.54858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding perceptual decision-making requires linking sensory neural responses to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified with a single measure of choice probability (CP), without characterizing their changes across stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice covariations. Assuming a general decision-threshold model, which comprises both feedforward and feedback processing and allows for a stimulus-modulated neural population covariance, we analytically predict a very general and previously unreported stimulus dependence of CPs. We develop new tools, including refined analyses of CPs and generalized linear models with stimulus-choice interactions, which accurately assess the stimulus- or choice-driven signals of each neuron, characterizing stimulus-dependent patterns of choice-related signals. With these tools, we analyze CPs of macaque MT neurons during a motion discrimination task. Our analysis provides preliminary empirical evidence for the promise of studying stimulus dependencies of choice-related signals, encouraging further assessment in wider data sets.
Collapse
Affiliation(s)
- Daniel Chicharro
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Ralf M Haefner
- Brain and Cognitive Sciences, Center for Visual Science, University of RochesterRochesterUnited States
| |
Collapse
|
18
|
Arranz-Paraíso S, Read JCA, Serrano-Pedraza I. Reduced surround suppression in monocular motion perception. J Vis 2021; 21:10. [PMID: 33450007 PMCID: PMC7814361 DOI: 10.1167/jov.21.1.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Motion discrimination of large stimuli is impaired at high contrast and short durations. This psychophysical result has been linked with the center-surround suppression found in neurons of area MT. Recent physiology results have shown that most frontoparallel MT cells respond more strongly to binocular than to monocular stimulation. Here we measured the surround suppression strength under binocular and monocular viewing. Thirty-nine participants took part in two experiments: (a) where the nonstimulated eye viewed a blank field of the same luminance (n = 8) and (b) where it was occluded with a patch (n = 31). In both experiments, we measured duration thresholds for small (1 deg diameter) and large (7 deg) drifting gratings of 1 cpd with 85% contrast. For each subject, a Motion Suppression Index (MSI) was computed by subtracting the duration thresholds in logarithmic units of the large minus the small stimulus. Results were similar in both experiments. Combining the MSI of both experiments, we found that the strength of suppression for binocular condition (MSIbinocular = 0.249 ± 0.126 log10 (ms)) is 1.79 times higher than under monocular viewing (MSImonocular = 0.139 ± 0.137 log10 (ms)). This increase is too high to be explained by the higher perceived contrast of binocular stimuli and offers a new way of testing whether MT neurons account for surround suppression. Potentially, differences in surround suppression reported in clinical populations may reflect altered binocular processing.
Collapse
Affiliation(s)
| | - Jenny C A Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- https://www.jennyreadresearch.com/
| | - Ignacio Serrano-Pedraza
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- https://www.ucm.es/serranopedrazalab/
| |
Collapse
|
19
|
Peñaloza B, Herzog MH, Öğmen H. Non-retinotopic adaptive center-surround modulation in motion processing. Vision Res 2020; 174:10-21. [DOI: 10.1016/j.visres.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/15/2022]
|
20
|
Abstract
Abnormal sensory processing has been observed in autism, including superior visual motion discrimination, but the neural basis for these sensory changes remains unknown. Leveraging well-characterized suppressive neural circuits in the visual system, we used behavioral and fMRI tasks to demonstrate a significant reduction in neural suppression in young adults with autism spectrum disorder (ASD) compared to neurotypical controls. MR spectroscopy measurements revealed no group differences in neurotransmitter signals. We show how a computational model that incorporates divisive normalization, as well as narrower top-down gain (that could result, for example, from a narrower window of attention), can explain our observations and divergent previous findings. Thus, weaker neural suppression is reflected in visual task performance and fMRI measures in ASD, and may be attributable to differences in top-down processing. Sensory hypersensitivity is common in autism spectrum disorders. Using functional MRI, psychophysics, and computational modeling, Schallmo et al. show that differences in visual motion perception in ASD are accompanied by weaker neural suppression in visual cortex.
Collapse
|
21
|
Orekhova EV, Rostovtseva EN, Manyukhina VO, Prokofiev AO, Obukhova TS, Nikolaeva AY, Schneiderman JF, Stroganova TA. Spatial suppression in visual motion perception is driven by inhibition: Evidence from MEG gamma oscillations. Neuroimage 2020; 213:116753. [PMID: 32194278 DOI: 10.1016/j.neuroimage.2020.116753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Spatial suppression (SS) is a visual perceptual phenomenon that is manifest in a reduction of directional sensitivity for drifting high-contrast gratings whose size exceeds the center of the visual field. Gratings moving at faster velocities induce stronger SS. The neural processes that give rise to such size- and velocity-dependent reductions in directional sensitivity are currently unknown, and the role of surround inhibition is unclear. In magnetoencephalogram (MEG), large high-contrast drifting gratings induce a strong gamma response (GR), which also attenuates with an increase in the gratings' velocity. It has been suggested that the slope of this GR attenuation is mediated by inhibitory interactions in the primary visual cortex. Herein, we investigate whether SS is related to this inhibitory-based MEG measure. We evaluated SS and GR in two independent samples of participants: school-age boys and adult women. The slope of GR attenuation predicted inter-individual differences in SS in both samples. Test-retest reliability of the neuro-behavioral correlation was assessed in the adults, and was high between two sessions separated by several days or weeks. Neither frequencies nor absolute amplitudes of the GRs correlated with SS, which highlights the functional relevance of velocity-related changes in GR magnitude caused by augmentation of incoming input. Our findings provide evidence that links the psychophysical phenomenon of SS to inhibitory-based neural responses in the human primary visual cortex. This supports the role of inhibitory interactions as an important underlying mechanism for spatial suppression.
Collapse
Affiliation(s)
- Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden.
| | - Ekaterina N Rostovtseva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; National Research University Higher School of Economics, Moscow, Russian Federation, Moscow, Russian Federation
| | - Andrey O Prokofiev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Anastasia Yu Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
22
|
Park S, Nguyen BN, McKendrick AM. Ageing elevates peripheral spatial suppression of motion regardless of divided attention. Ophthalmic Physiol Opt 2020; 40:117-127. [DOI: 10.1111/opo.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/16/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Soa Park
- Department of Optometry and Vision Sciences The University of Melbourne Parkville Victoria Australia
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences The University of Melbourne Parkville Victoria Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
23
|
Linares D, Amoretti S, Marin-Campos R, Sousa A, Prades L, Dalmau J, Bernardo M, Compte A. Spatial Suppression and Sensitivity for Motion in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2020; 1. [DOI: 10.1093/schizbullopen/sgaa045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Abstract
Perceptual spatial suppression is a phenomenon in which the perceived strength of a stimulus in some region of the space is reduced when the stimulus is surrounded by other stimuli. For contrast perception, several studies suggest that spatial suppression is reduced in patients with schizophrenia. For motion perception, only one study has been conducted in a cohort of 16 patients, suggesting that spatial suppression is reduced. It is unknown, however, whether this reduction is related to the lower intelligence quotient (IQ) that schizophrenic patients usually show; as there is evidence that spatial suppression for motion increases with IQ in healthy individuals. Here, we sought to determine the spatial suppression for motion in a larger cohort of 33 patients with schizophrenia, controlling for IQ. We found a weakened spatial suppression in patients with schizophrenia, consistent with the previous study (g = 0.47, CI = [0.055, 0.88], combining the previous and our study). For comparison, we performed a meta-analysis on spatial suppression for contrast and found a similar effect size. We found that patients had a lower IQ than controls, but this difference did not explain their weaker spatial suppression. Further, we found that spatial suppression of patients, but not controls, increased with their IQ and, it decreased with age in both groups. Finally, as we estimated lapses of attention, we could estimate motion sensitivity and found that it was decreased in patients. We speculate about possible alterations in neurotransmission that might explain the reduced spatial suppression and sensitivity that we found.
Collapse
Affiliation(s)
- Daniel Linares
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | | - Rafael Marin-Campos
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - André Sousa
- Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Laia Prades
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Dalmau
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Hospital Clínic, University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Miquel Bernardo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic, University of Barcelona, Barcelona, Spain
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Albert Compte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
24
|
Integrated open-source software for multiscale electrophysiology. Sci Data 2019; 6:231. [PMID: 31653867 PMCID: PMC6814804 DOI: 10.1038/s41597-019-0242-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023] Open
Abstract
The methods for electrophysiology in neuroscience have evolved tremendously over the recent years with a growing emphasis on dense-array signal recordings. Such increased complexity and augmented wealth in the volume of data recorded, have not been accompanied by efforts to streamline and facilitate access to processing methods, which too are susceptible to grow in sophistication. Moreover, unsuccessful attempts to reproduce peer-reviewed publications indicate a problem of transparency in science. This growing problem could be tackled by unrestricted access to methods that promote research transparency and data sharing, ensuring the reproducibility of published results. Here, we provide a free, extensive, open-source software that provides data-analysis, data-management and multi-modality integration solutions for invasive neurophysiology. Users can perform their entire analysis through a user-friendly environment without the need of programming skills, in a tractable (logged) way. This work contributes to open-science, analysis standardization, transparency and reproducibility in invasive neurophysiology.
Collapse
|
25
|
|
26
|
Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nat Commun 2019; 10:2732. [PMID: 31266956 PMCID: PMC6606582 DOI: 10.1038/s41467-019-10653-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Segregation of objects from their backgrounds is a fundamental visual function and one that is particularly effective when objects are in motion. Theoretically, suppressive center-surround mechanisms are well suited for accomplishing motion segregation. This longstanding hypothesis, however, has received limited empirical support. We report converging correlational and causal evidence that spatial suppression of background motion signals is critical for rapid segmentation of moving objects. Motion segregation ability is strongly predicted by both individual and stimulus-driven variations in spatial suppression strength. Moreover, aging-related superiority in perceiving background motion is associated with profound impairments in motion segregation. This segregation deficit is alleviated via perceptual learning, but only when motion segregation training also causes decreased sensitivity to background motion. We argue that perceptual insensitivity to large moving stimuli effectively implements background subtraction, which, in turn, enhances the visibility of moving objects and accounts for the observed link between spatial suppression and motion segregation. The visual system excels at segregating moving objects from their backgrounds, a key visual function hypothesized to be driven by suppressive centre-surround mechanisms. Here, the authors show that spatial suppression of background motion signals is critical for rapid segmentation of moving objects.
Collapse
|
27
|
Pavan A, Contillo A, Ghin F, Foxwell MJ, Mather G. Limited Attention Diminishes Spatial Suppression From Large Field Glass Patterns. Perception 2019; 48:286-315. [PMID: 30885042 DOI: 10.1177/0301006619835457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We investigated the role of visuospatial attention in the processing of global form from GPs by measuring the effect of distraction on adaptation to GPs. In the nondistracted condition, observers were adapted to coherent GPs. After the adaptation period, they were presented with a test GP divided in two halves along the vertical and were required to judge which side of the test GP was more coherent. In the attention-distracted condition, a high-load rapid serial visual presentation task was performed during the adapting period. The magnitude of the form after-effect was measured using a technique that measures the coherence level at which the test GP appears random. The rationale was that if attention has a modulatory effect on the spatial summation of dipoles, in the attention-distracted condition, we should expect a weaker form after-effect. However, the results showed stronger form after-effect in the attention-distracted condition than in the nondistracted condition, suggesting that distraction during adaptation increases the strength of form adaptation. Additional experiments suggested that distraction may reduce the spatial suppression from large-scale textures, strengthening the spatial summation of local-oriented signals.
Collapse
Affiliation(s)
- Andrea Pavan
- School of Psychology, University of Lincoln, Lincoln, UK
| | - Adriano Contillo
- Department of Physics and Earth Sciences, University of Ferrara, Ferrara, Italy
| | - Filippo Ghin
- School of Psychology, University of Lincoln, Lincoln, UK
| | | | - George Mather
- School of Psychology, University of Lincoln, Lincoln, UK
| |
Collapse
|
28
|
Disentangling locus of perceptual learning in the visual hierarchy of motion processing. Sci Rep 2019; 9:1557. [PMID: 30733535 PMCID: PMC6367332 DOI: 10.1038/s41598-018-37892-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/17/2018] [Indexed: 12/03/2022] Open
Abstract
Visual perceptual learning (VPL) can lead to long-lasting perceptual improvements. One of the central topics in VPL studies is the locus of plasticity in the visual processing hierarchy. Here, we tackled this question in the context of motion processing. We took advantage of an established transition from component-dependent representations at the earliest level to pattern-dependent representations at the middle-level of cortical motion processing. Two groups of participants were trained on the same motion direction identification task using either grating or plaid stimuli. A set of pre- and post-training tests was used to determine the degree of learning specificity and generalizability. This approach allowed us to disentangle contributions from different levels of processing stages to behavioral improvements. We observed a complete bi-directional transfer of learning between component and pattern stimuli that moved to the same directions, indicating learning-induced plasticity associated with intermediate levels of motion processing. Moreover, we found that motion VPL is specific to the trained stimulus direction, speed, size, and contrast, diminishing the possibility of non-sensory decision-level enhancements. Taken together, these results indicate that, at least for the type of stimuli and the task used here, motion VPL most likely alters visual computation associated with signals at the middle stage of motion processing.
Collapse
|
29
|
Schallmo MP, Millin R, Kale AM, Kolodny T, Edden RAE, Bernier RA, Murray SO. Glutamatergic facilitation of neural responses in MT enhances motion perception in humans. Neuroimage 2019; 184:925-931. [PMID: 30312807 PMCID: PMC6230494 DOI: 10.1016/j.neuroimage.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
There is large individual variability in human neural responses and perceptual abilities. The factors that give rise to these individual differences, however, remain largely unknown. To examine these factors, we measured fMRI responses to moving gratings in the motion-selective region MT, and perceptual duration thresholds for motion direction discrimination. Further, we acquired MR spectroscopy data, which allowed us to quantify an index of neurotransmitter levels in the region of area MT. These three measurements were conducted in separate experimental sessions within the same group of male and female subjects. We show that stronger Glx (glutamate + glutamine) signals in the MT region are associated with both higher fMRI responses and superior psychophysical task performance. Our results suggest that greater baseline levels of glutamate within MT facilitate motion perception by increasing neural responses in this region.
Collapse
Affiliation(s)
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Alex M Kale
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Murray SO, Schallmo MP, Kolodny T, Millin R, Kale A, Thomas P, Rammsayer TH, Troche SJ, Bernier RA, Tadin D. Sex Differences in Visual Motion Processing. Curr Biol 2018; 28:2794-2799.e3. [PMID: 30122530 PMCID: PMC6133755 DOI: 10.1016/j.cub.2018.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
The importance of sex as a biological variable has recently been emphasized by major funding organizations [1] and within the neuroscience community [2]. Critical sex-based neural differences are indicated by, for example, conditions such as autism spectrum disorder (ASD) that have a strong sex bias with a higher prevalence among males [51, 3]. Motivated by this broader context, we report a marked sex difference in a visual motion perception task among neurotypical adults. Motion duration thresholds [4, 5]-the minimum duration needed to accurately perceive motion direction-were considerably shorter for males than females. We replicated this result across three laboratories and 263 total participants. This type of enhanced performance has previously been observed only in special populations including ASD, depression, and senescence [6-8]. The observed sex difference cannot be explained by general differences in speed of visual processing, overall visual discrimination abilities, or potential motor-related differences. We also show that while individual differences in motion duration thresholds are associated with differences in fMRI responsiveness of human MT+, surprisingly, MT+ response magnitudes did not differ between males and females. Thus, we reason that sex differences in motion perception are not captured by an MT+ fMRI measure that predicts within-sex individual differences in perception. Overall, these results show how sex differences can manifest unexpectedly, highlighting the importance of sex as a factor in the design and analysis of perceptual and cognitive studies.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle WA 98195, USA.
| | | | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Alex Kale
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Philipp Thomas
- Department of Psychology, University of Bern, Bern, Switzerland
| | | | - Stefan J Troche
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, U.S.A
| | - Duje Tadin
- Departments of Brain and Cognitive Sciences, Ophthalmology, and Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
31
|
Troche SJ, Thomas P, Tadin D, Rammsayer TH. On the relationship between spatial suppression, speed of information processing, and psychometric intelligence. INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Schallmo MP, Kale AM, Millin R, Flevaris AV, Brkanac Z, Edden RA, Bernier RA, Murray SO. Suppression and facilitation of human neural responses. eLife 2018; 7:30334. [PMID: 29376822 PMCID: PMC5812713 DOI: 10.7554/elife.30334] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Efficient neural processing depends on regulating responses through suppression and facilitation of neural activity. Utilizing a well-known visual motion paradigm that evokes behavioral suppression and facilitation, and combining five different methodologies (behavioral psychophysics, computational modeling, functional MRI, pharmacology, and magnetic resonance spectroscopy), we provide evidence that challenges commonly held assumptions about the neural processes underlying suppression and facilitation. We show that: (1) both suppression and facilitation can emerge from a single, computational principle – divisive normalization; there is no need to invoke separate neural mechanisms, (2) neural suppression and facilitation in the motion-selective area MT mirror perception, but strong suppression also occurs in earlier visual areas, and (3) suppression is not primarily driven by GABA-mediated inhibition. Thus, while commonly used spatial suppression paradigms may provide insight into neural response magnitudes in visual areas, they should not be used to infer neural inhibition.
Collapse
Affiliation(s)
| | - Alexander M Kale
- Department of Psychology, University of Washington, Seattle, United States
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle, United States
| | | | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
| | - Richard Ae Edden
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, United States
| |
Collapse
|
33
|
Mismatched summation mechanisms in older adults for the perception of small moving stimuli. Vision Res 2018; 142:52-57. [DOI: 10.1016/j.visres.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
34
|
A Unifying Motif for Spatial and Directional Surround Suppression. J Neurosci 2017; 38:989-999. [PMID: 29229704 DOI: 10.1523/jneurosci.2386-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/13/2017] [Accepted: 12/02/2017] [Indexed: 11/21/2022] Open
Abstract
In the visual system, the response to a stimulus in a neuron's receptive field can be modulated by stimulus context, and the strength of these contextual influences vary with stimulus intensity. Recent work has shown how a theoretical model, the stabilized supralinear network (SSN), can account for such modulatory influences, using a small set of computational mechanisms. Although the predictions of the SSN have been confirmed in primary visual cortex (V1), its computational principles apply with equal validity to any cortical structure. We have therefore tested the generality of the SSN by examining modulatory influences in the middle temporal area (MT) of the macaque visual cortex, using electrophysiological recordings and pharmacological manipulations. We developed a novel stimulus that can be adjusted parametrically to be larger or smaller in the space of all possible motion directions. We found, as predicted by the SSN, that MT neurons integrate across motion directions for low-contrast stimuli, but that they exhibit suppression by the same stimuli when they are high in contrast. These results are analogous to those found in visual cortex when stimulus size is varied in the space domain. We further tested the mechanisms of inhibition using pharmacological manipulations of inhibitory efficacy. As predicted by the SSN, local manipulation of inhibitory strength altered firing rates, but did not change the strength of surround suppression. These results are consistent with the idea that the SSN can account for modulatory influences along different stimulus dimensions and in different cortical areas.SIGNIFICANCE STATEMENT Visual neurons are selective for specific stimulus features in a region of visual space known as the receptive field, but can be modulated by stimuli outside of the receptive field. The SSN model has been proposed to account for these and other modulatory influences, and tested in V1. As this model is not specific to any particular stimulus feature or brain region, we wondered whether similar modulatory influences might be observed for other stimulus dimensions and other regions. We tested for specific patterns of modulatory influences in the domain of motion direction, using electrophysiological recordings from MT. Our data confirm the predictions of the SSN in MT, suggesting that the SSN computations might be a generic feature of sensory cortex.
Collapse
|
35
|
Pitchaimuthu K, Wu QZ, Carter O, Nguyen BN, Ahn S, Egan GF, McKendrick AM. Occipital GABA levels in older adults and their relationship to visual perceptual suppression. Sci Rep 2017; 7:14231. [PMID: 29079815 PMCID: PMC5660206 DOI: 10.1038/s41598-017-14577-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Several studies have attributed certain visual perceptual alterations in older adults to a likely decrease in GABA (Gamma Aminobutyric Acid) concentration in visual cortex, an assumption based on findings in aged non-human primates. However, to our knowledge, there is no direct evidence for an age-related decrease in GABA concentration in human visual cortex. Here, we estimated visual cortical GABA levels and Glx (combined estimate of glutamate and glutamine) levels using magnetic resonance spectroscopy. We also measured performance for two visual tasks that are hypothesised to be mediated, at least in part, by GABAergic inhibition: spatial suppression of motion and binocular rivalry. Our results show increased visual cortical GABA levels, and reduced Glx levels, in older adults. Perceptual performance differed between younger and older groups for both tasks. When subjects of all ages were combined, visual cortical GABA levels but not Glx levels correlated with perceptual performance. No relationship was found between perception and GABA levels in dorsolateral prefrontal cortex. Perceptual measures and GABA were not correlated when either age group was considered separately. Our results challenge current assumptions regarding neurobiological changes that occur within the aging human visual cortex and their association with certain age-related changes in visual perception.
Collapse
Affiliation(s)
- Kabilan Pitchaimuthu
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qi-Zhu Wu
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Olivia Carter
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sinyeob Ahn
- Magnetic Resonance, Siemens Medical Solutions USA Inc, San Francisco, CA, 94116, USA
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
36
|
Liu LD, Pack CC. The Contribution of Area MT to Visual Motion Perception Depends on Training. Neuron 2017; 95:436-446.e3. [PMID: 28689980 DOI: 10.1016/j.neuron.2017.06.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Perceptual decisions require the transformation of raw sensory inputs into cortical representations suitable for stimulus discrimination. One of the best-known examples of this transformation involves the middle temporal area (MT) of the primate visual cortex. Area MT provides a robust representation of stimulus motion, and previous work has shown that it contributes causally to performance on motion discrimination tasks. Here we report that the strength of this contribution can be highly plastic: depending on the recent training history, pharmacological inactivation of MT can severely impair motion discrimination, or it can have little detectable influence. Further analysis of neural and behavioral data suggests that training moves the readout of motion information between MT and lower-level cortical areas. These results show that the contribution of individual brain regions to conscious perception can shift flexibly depending on sensory experience.
Collapse
Affiliation(s)
- Liu D Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
37
|
Cook E, Hammett ST, Larsson J. GABA predicts visual intelligence. Neurosci Lett 2016; 632:50-4. [PMID: 27495012 PMCID: PMC5054983 DOI: 10.1016/j.neulet.2016.07.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 10/25/2022]
Abstract
Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence.
Collapse
Affiliation(s)
- Emily Cook
- Department of Psychology and CUBIC, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Stephen T Hammett
- Department of Psychology and CUBIC, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Jonas Larsson
- Department of Psychology and CUBIC, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| |
Collapse
|