1
|
Ahmed YM, Brown LM, Varga K, Bowman GR. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in Caulobacter crescentus. Nat Commun 2024; 15:9282. [PMID: 39468040 PMCID: PMC11519897 DOI: 10.1038/s41467-024-53395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Asymmetric cell division in bacteria is achieved through cell polarization, where regulatory proteins are directed to specific cell poles. In Caulobacter crescentus, both poles contain a membraneless microdomain, established by the polar assembly hub PopZ, through most of the cell cycle, yet many PopZ clients are unipolar and transiently localized. We find that PopZ's interaction with the response regulator CpdR is controlled by phosphorylation, via the histidine kinase CckA. Phosphorylated CpdR does not interact with PopZ and is not localized to cell poles. At poles where CckA acts as a phosphatase, dephosphorylated CpdR binds directly with PopZ and subsequently recruits ClpX, substrates, and other members of a protease complex to the cell pole. We also find that co-recruitment of protease components and substrates to polar microdomains enhances their coordinated activity. This study connects phospho-signaling with polar assembly and the activity of a protease that triggers cell cycle progression and cell differentiation.
Collapse
Affiliation(s)
- Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Logan M Brown
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
2
|
Attia B, My L, Castaing JP, Dinet C, Le Guenno H, Schmidt V, Espinosa L, Anantharaman V, Aravind L, Sebban-Kreuzer C, Nouailler M, Bornet O, Viollier P, Elantak L, Mignot T. A molecular switch controls assembly of bacterial focal adhesions. SCIENCE ADVANCES 2024; 10:eadn2789. [PMID: 38809974 PMCID: PMC11135422 DOI: 10.1126/sciadv.adn2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole. In addition, MglA-GTP binding triggers a conformational shift in an adjacent GltJ zinc-finger domain, facilitating MglB recruitment near the lagging pole. This prompts GTP hydrolysis by MglA, leading to complex disassembly. The GltJ switch thus serves as a sensor for the MglA-GTP gradient, controlling FA activity spatially.
Collapse
Affiliation(s)
- Bouchra Attia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Laetitia My
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Jean Philippe Castaing
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Céline Dinet
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Hugo Le Guenno
- Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Corinne Sebban-Kreuzer
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Matthieu Nouailler
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Olivier Bornet
- Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, 1211 Genève 4, Switzerland
| | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| |
Collapse
|
3
|
Kint N, Viollier PH. Extracellular transfer of a conserved polymerization factor for multi-flagellin filament assembly in Caulobacter. Cell Rep 2023; 42:112890. [PMID: 37515768 DOI: 10.1016/j.celrep.2023.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Unidirectional growth of filamentous protein assemblies including the bacterial flagellum relies on dedicated polymerization factors (PFs). The molecular determinants and structural transitions imposed by PFs on multi-subunit assembly are poorly understood. Here, we unveil FlaY from the polarized α-proteobacterium Caulobacter crescentus as a defining member of an alternative class of specialized flagellin PFs. Unlike the paradigmatic FliD capping protein, FlaY relies on a funnel-like β-propeller fold for flagellin polymerization. FlaY binds flagellin and is secreted by the flagellar secretion apparatus, yet it can also promote flagellin polymerization exogenously when donated from flagellin-deficient cells, serving as a transferable, extracellular public good. While the surge in FlaY abundance precedes bulk flagellin synthesis, FlaY-independent filament assembly is enhanced by mutation of a conserved region in multiple flagellin paralogs. We suggest that FlaYs are (multi-)flagellin PFs that evolved convergently to FliDs yet appropriated the versatile β-propeller fold implicated in human diseases for chaperone-assisted filament assembly.
Collapse
Affiliation(s)
- Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211 Genève, Switzerland.
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211 Genève, Switzerland.
| |
Collapse
|
4
|
Ahmed YM, Bowman GR. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in C. crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553945. [PMID: 37645878 PMCID: PMC10462113 DOI: 10.1101/2023.08.19.553945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Asymmetric cell division in bacteria is achieved through cell polarization, where regulatory proteins are directed to specific cell poles. Curiously, both poles contain a membraneless microdomain, established by the polar assembly hub PopZ, through most of the cell cycle, yet many PopZ clients are unipolar and transiently localized. We find that PopZ's interaction with the response regulator CpdR is controlled by phosphorylation, via the histidine kinase CckA. Phosphorylated CpdR does not interact with PopZ and is not localized to cell poles. At poles where CckA acts as a phosphatase, de-phosphorylated CpdR binds directly with PopZ and subsequently recruits ClpX, substrates, and other members of a protease complex to the cell pole. We also find that co-recruitment of protease components and substrates to polar microdomains enhances their coordinated activity. This study connects phosphosignaling with polar assembly and the activity of a protease that triggers cell cycle progression and cell differentiation.
Collapse
Affiliation(s)
- Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie Wyoming 82071
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie Wyoming 82071
| |
Collapse
|
5
|
Lu N, Duvall SW, Zhao G, Kowallis KA, Zhang C, Tan W, Sun J, Petitjean HN, Tomares DT, Zhao GP, Childers WS, Zhao W. Scaffold-Scaffold Interaction Facilitates Cell Polarity Development in Caulobacter crescentus. mBio 2023; 14:e0321822. [PMID: 36971555 PMCID: PMC10127582 DOI: 10.1128/mbio.03218-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Caulobacter crescentus
is a well-established bacterial model to study asymmetric cell division for decades. During cell development, the polarization of scaffold protein PopZ from monopolar to bipolar plays a central role in
C. crescentus
asymmetric cell division.
Collapse
|
6
|
Goodsell DS, Lasker K. Integrative visualization of the molecular structure of a cellular microdomain. Protein Sci 2023; 32:e4577. [PMID: 36700303 PMCID: PMC9926476 DOI: 10.1002/pro.4577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
An integrative approach to visualization is used to create a visual snapshot of the structural biology of the polar microdomain of Caulobacter crescentus. The visualization is based on the current state of molecular and cellular knowledge of the microdomain and its cellular context. The collaborative process of researching and executing the visualization has identified aspects that are well determined and areas that require further study. The visualization is useful for dissemination, education, and outreach, and the study lays the groundwork for future 3D modeling and simulation of this well-studied example of a cellular condensate.
Collapse
Affiliation(s)
- David S. Goodsell
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Keren Lasker
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
7
|
Attia B, Serrano B, Bornet O, Guerlesquin F, My L, Castaing JP, Mignot T, Elantak L. 1H, 13C and 15N chemical shift assignments of the ZnR and GYF cytoplasmic domains of the GltJ protein from Myxococcus xanthus. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:219-223. [PMID: 35445965 DOI: 10.1007/s12104-022-10083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Bacterial cell motility is essential for a range of physiological phenomena such as nutrient sensing, predation, biofilm formation and pathogenesis. One of the most intriguing motilities is bacterial gliding, which is defined as the ability of some bacteria to move across surfaces without an external appendage. In Myxococcus xanthus, gliding motility depends on the assembly of focal adhesion complexes (FAC) which include the Glt mutiprotein complex and allow directional movement of individual cells (A-motility). Within the Glt multiprotein complex, GltJ is one of the key proteins involved in FAC assembly. In this work we report complete backbone and side chain 1H, 13C and 15N chemical shifts of the two cytoplasmic domains of GltJ, GltJ-ZnR (BMRB No. 51104) and GltJ-GYF (BMRB No. 51096). These data provide the first step toward the first high resolution structures of protein domains from the Glt machinery and the atomic level characterization of GltJ cytoplasmic activity during FAC assembly.
Collapse
Affiliation(s)
- Bouchra Attia
- Laboratoire d'Ingénierie Des Systèmes Macromoléculaires, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7255, 13009, Marseille, France
| | - Bastien Serrano
- Laboratoire d'Ingénierie Des Systèmes Macromoléculaires, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7255, 13009, Marseille, France
| | - Olivier Bornet
- Centre National de La Recherche Scientifique (CNRS), Institut de Microbiologie de La Méditerranée, FR3479, 13009, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d'Ingénierie Des Systèmes Macromoléculaires, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7255, 13009, Marseille, France
| | - Laetitia My
- Laboratoire de Chimie Bactérienne, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7283, 13009, Marseille, France
| | - Jean-Philippe Castaing
- Laboratoire de Chimie Bactérienne, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7283, 13009, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7283, 13009, Marseille, France
| | - Latifa Elantak
- Laboratoire d'Ingénierie Des Systèmes Macromoléculaires, Centre National de La Recherche Scientifique (CNRS), Aix-Marseille Université, UMR7255, 13009, Marseille, France.
| |
Collapse
|
8
|
Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators. PLoS Genet 2022; 18:e1009991. [PMID: 35020734 PMCID: PMC8789113 DOI: 10.1371/journal.pgen.1009991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation. Cell polarity is the result of controlled asymmetric distribution of protein macrocomplexes, genetic material, membrane lipids and cellular metabolites, and can play crucial physiological roles not only in multicellular organisms but also in unicellular bacteria. In the opportunistic cholera pathogen Vibrio cholerae, the polar landmark protein HubP tethers key actors in chromosome segregation, chemotaxis and flagellar biosynthesis and thus converts the cell pole into an important functional microdomain for cell proliferation, environmental sensing and adaptation between free-living and pathogenic life-styles. Using a comparative proteomics approach, we here-in present a comprehensive analysis of HubP-dependent cell pole protein sorting and identify novel HubP partners including ones likely involved in cell wall remodeling (DacB), chemotaxis (HlyB) and motility regulation (MotV and MotW). Unlike previous studies which have identified early roles for HubP in flagellar assembly, functional, genetic and phylogenetic analyses of its MotV and MotW partners suggest a direct role in flagellar rotary mechanics and provide new insights into the coevolution and functional interdependence of chemotactic signaling, bacterial motility and biofilm formation.
Collapse
|
9
|
A localized adaptor protein performs distinct functions at the Caulobacter cell poles. Proc Natl Acad Sci U S A 2021; 118:2024705118. [PMID: 33753507 PMCID: PMC8020655 DOI: 10.1073/pnas.2024705118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asymmetric cell division yields two distinct daughter cells by mechanisms that underlie stem cell behavior and cellular diversity in all organisms. The bacterium Caulobacter crescentus is able to orchestrate this complex process with less than 4,000 genes. This article describes a strategy deployed by Caulobacter where a regulatory protein, PopA, is programed to perform distinct roles based on its subcellular address. We demonstrate that, depending on the availability of a second messenger molecule, PopA adopts either a monomer or dimer form. The two oligomeric forms interact with different partners at the two cell poles, playing a critical role in the degradation of a master transcription factor at one pole and flagellar assembly at the other pole. Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.
Collapse
|
10
|
Nordyke CT, Ahmed YM, Puterbaugh RZ, Bowman GR, Varga K. Intrinsically Disordered Bacterial Polar Organizing Protein Z, PopZ, Interacts with Protein Binding Partners Through an N-terminal Molecular Recognition Feature. J Mol Biol 2020; 432:6092-6107. [PMID: 33058876 DOI: 10.1016/j.jmb.2020.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/15/2022]
Abstract
The polar organizing protein Z (PopZ) is necessary for the formation of three-dimensional microdomains at the cell poles in Caulobacter crescentus, where it functions as a hub protein that recruits multiple regulatory proteins from the cytoplasm. Although a large portion of the protein is predicted to be natively unstructured, in reconstituted systems PopZ can self-assemble into a macromolecular scaffold that directly binds to at least ten different proteins. Here we report the solution NMR structure of PopZΔ134-177, a truncated form of PopZ that does not self-assemble but retains the ability to interact with heterologous proteins. We show that the unbound form of PopZΔ134-177 is unstructured in solution, with the exception of a small amphipathic α-helix in residues M10-I17, which is included within a highly conserved region near the N-terminal. In applying NMR techniques to map the interactions between PopZΔ134-177 and one of its binding partners, RcdA, we find evidence that the α-helix and adjoining amino acids extending to position E23 serve as the core of the binding motif. Consistent with this, a point mutation at position I17 severely compromises binding. Our results show that a partially structured Molecular Recognition Feature (MoRF) within an intrinsically disordered domain of PopZ contributes to the assembly of polar microdomains, revealing a structural basis for complex network assembly in Alphaproteobacteria that is analogous to those formed by intrinsically disordered hub proteins in other kingdoms.
Collapse
Affiliation(s)
- Christopher T Nordyke
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, United States
| | - Ryan Z Puterbaugh
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, United States.
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States.
| |
Collapse
|
11
|
Tran NT, Stevenson CE, Som NF, Thanapipatsiri A, Jalal ASB, Le TBK. Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome. Nucleic Acids Res 2019; 46:1196-1209. [PMID: 29186514 PMCID: PMC5815017 DOI: 10.1093/nar/gkx1192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA–ParB–parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleoprotein complex to each daughter cell. Here, we investigated the genome-wide distribution of ParB on the Caulobacter chromosome using a combination of in vivo chromatin immunoprecipitation (ChIP-seq) and in vitro DNA affinity purification with deep sequencing (IDAP-seq). We confirmed two previously identified parS sites and discovered at least three more sites that cluster ∼8 kb from the origin of replication. We showed that Caulobacter ParB nucleates at parS sites and associates non-specifically with ∼10 kb flanking DNA to form a high-order nucleoprotein complex on the left chromosomal arm. Lastly, using transposon mutagenesis coupled with deep sequencing (Tn-seq), we identified a ∼500 kb region surrounding the native parS cluster that is tolerable to the insertion of a second parS cluster without severely affecting cell viability. Our results demonstrate that the genomic distribution of parS sites is highly restricted and is crucial for chromosome segregation in Caulobacter.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Clare E Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Nicolle F Som
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
12
|
Absolute Measurements of mRNA Translation in Caulobacter crescentus Reveal Important Fitness Costs of Vitamin B 12 Scavenging. mSystems 2019; 4:4/4/e00170-19. [PMID: 31138672 PMCID: PMC6538847 DOI: 10.1128/msystems.00170-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Caulobacter crescentus is a model system of the bacterial cell cycle culminating in asymmetric cell division, with each daughter cell inheriting a distinct set of proteins. While a genetic network of master transcription factors coordinates the cell cycle timing of transcription for nearly 20% of Caulobacter genes, we lack knowledge of how many of each protein “part” encoded in the genome are synthesized. Therefore, to determine the absolute production rates across the genome, we performed ribosome profiling, providing, for the first time, a quantitative resource with measurements of each protein “part” needed to generate daughter cells. This resource furthers the goal of a systems-level understanding of the genetic network controlling asymmetric cell division. To highlight the utility of this data set, we probe the protein synthesis cost of a B12 utilization pathway and provide new insights into Caulobacter’s adaptation to its natural environments. Caulobacter crescentus is a model for the bacterial cell cycle which culminates in asymmetric cell division, yet little is known about the absolute levels of protein synthesis of the cellular parts needed to complete the cell cycle. Here we utilize ribosome profiling to provide absolute measurements of mRNA translation in C. crescentus, providing an important resource with quantitative genome-wide measurements of protein output across individual genes. Analysis of protein synthesis rates revealed ∼4.5% of cellular protein synthesis is for genes related to vitamin B12 import (btuB) and B12-independent methionine biosynthesis (metE) when grown in common growth media lacking B12. While its facultative B12 lifestyle provides a fitness advantage in the absence of B12, we find that it provides a fitness disadvantage of the cells in the presence of B12, potentially explaining why many Caulobacter species have lost the metE gene and become obligates for B12. IMPORTANCECaulobacter crescentus is a model system of the bacterial cell cycle culminating in asymmetric cell division, with each daughter cell inheriting a distinct set of proteins. While a genetic network of master transcription factors coordinates the cell cycle timing of transcription for nearly 20% of Caulobacter genes, we lack knowledge of how many of each protein “part” encoded in the genome are synthesized. Therefore, to determine the absolute production rates across the genome, we performed ribosome profiling, providing, for the first time, a quantitative resource with measurements of each protein “part” needed to generate daughter cells. This resource furthers the goal of a systems-level understanding of the genetic network controlling asymmetric cell division. To highlight the utility of this data set, we probe the protein synthesis cost of a B12 utilization pathway and provide new insights into Caulobacter’s adaptation to its natural environments. Author Video: An author video summary of this article is available.
Collapse
|
13
|
Altinoglu I, Merrifield CJ, Yamaichi Y. Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline. Sci Rep 2019; 9:6680. [PMID: 31040310 PMCID: PMC6491441 DOI: 10.1038/s41598-019-43051-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria show sophisticated control of their cellular organization, and many bacteria deploy different polar landmark proteins to organize the cell pole. Super-resolution microscopy, such as Photo-Activated Localization Microscopy (PALM), provides the nanoscale localization of molecules and is crucial for better understanding of organization and dynamics in single-molecule. However, analytical tools are not fully available yet, in particular for bacterial cell biology. For example, quantitative and statistical analyses of subcellular localization with multiple cells from multiple fields of view are lacking. Furthermore, brightfield images are not sufficient to get accurate contours of small and low contrast bacterial cells, compared to subpixel presentation of target molecules. Here we describe a novel analytic tool for PALM which integrates precisely drawn cell outlines, of either inner membrane or periplasm, labelled by PALM-compatible fluorescent protein fusions, with molecule data for >10,000 molecules from >100 cells by fitting each cell into an oval arc. In the vibrioid bacterium Vibrio cholerae, the polar anchor HubP constitutes a big polar complex which includes multiple proteins involved in chemotaxis and the flagellum. With this pipeline, HubP is shown to be slightly skewed towards the inner curvature side of the cell, while its interaction partners showed rather loose polar localization.
Collapse
Affiliation(s)
- Ipek Altinoglu
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.,Graduate School of Structure and Dynamics of Living Systems, Univ. Paris-Sud, Orsay, France
| | - Christien J Merrifield
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France
| | - Yoshiharu Yamaichi
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.
| |
Collapse
|
14
|
Wang H, Bowman GR. SpbR overproduction reveals the importance of proteolytic degradation for cell pole development and chromosome segregation in Caulobacter crescentus. Mol Microbiol 2019; 111:1700-1714. [PMID: 30891828 DOI: 10.1111/mmi.14247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
In most rod-shaped bacteria, DNA replication is quickly followed by chromosome segregation, when one of the newly duplicated centromeres moves across the cell to the opposite (or 'new') pole. Two proteins in Caulobacter crescentus, PopZ and TipN, provide directional cues at the new pole that guide the translocating chromosome to its destination. We show that centromere translocation can be inhibited by an evolutionarily conserved pole-localized protein that we have named SpbR. When overproduced, SpbR exhibits aberrant accumulation at the old pole, where it physically interacts with PopZ. This prevents the relocation of PopZ to the new pole, thereby eliminating a positional cue for centromere translocation. Consistent with this, the centromere translocation phenotype of SpbR overproducing cells is strongly enhanced in a ∆tipN mutant background. We find that pole-localized SpbR is normally cleared by ClpXP-mediated proteolysis before the time of chromosome segregation, indicating that SpbR turnover is part of the cell cycle-dependent program of polar development. This work demonstrates the importance of proteolysis as a housekeeping activity that removes outgoing factors from the developing cell pole, and provides an example of a substrate that can inhibit polar functions if it is insufficiently cleared.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82072, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82072, USA
| |
Collapse
|
15
|
The Polar Organizing Protein PopZ Is Fundamental for Proper Cell Division and Segregation of Cellular Content in Magnetospirillum gryphiswaldense. mBio 2019; 10:mBio.02716-18. [PMID: 30862753 PMCID: PMC6414705 DOI: 10.1128/mbio.02716-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Magnetotactic bacteria (MTB) share the unique capability of magnetic navigation, one of the most complex behavioral responses found in prokaryotes, by means of magnetosomes, which act as an internal compass. Due to formation of these unique nanoparticles, MTB have emerged as a model to study prokaryotic organelle formation and cytoskeletal organization in conjunction with complex motility systems. Despite the high degree of subcellular organization required in MTB, less is known about cell-cycle-related factors or proteins responsible for spatiotemporal polarity control. Here, we investigate the function of the polar organizer PopZ in the magnetotactic alphaproteobacterium Magnetospirillum gryphiswaldense. Although PopZ is widely distributed among the alphaproteobacteria, its function in MTB belonging to this class has remained unexplored. Our results suggest that in M. gryphiswaldense, PopZ has a key role during cell division and subcellular organization. Furthermore, we show that PopZ localization and function differ from other nonmagnetotactic alphaproteobacterial model organisms. Magnetotactic bacteria (MTB) are of special scientific interest due to the formation of magnetosomes, intracellular membrane-enveloped magnetite crystals arranged into a linear chain by a dedicated cytoskeleton. Magnetotaxis relies on the formation and proper inheritance of these unique magnetic organelles, both of which need to be coordinated with the segregation of other cellular content such as chromosomes or motility and chemotaxis related structures. Thus, elaborated mechanisms are required in MTB to coordinate and maintain a high level of spatial and temporal subcellular organization during cytokinesis. However, thus far, underlying mechanisms and polarity determinants such as landmark proteins remained obscure in MTB. Here, we analyzed an ortholog of the polar organizing protein Z in the alphaproteobacterium Magnetospirillum gryphiswaldense termed PopZMgr. We show that deletion of the popZMgr gene causes abnormal cell elongation, minicell formation, DNA missegregation, and impairs motility. Overproduction of PopZMgr results in PopZ-rich regions near the poles, which are devoid of larger macromolecules, such as ribosomes, chromosomal DNA, and polyhydroxybutyrate (PHB) granules. Using superresolution microscopy, we show that PopZMgr exhibits a bipolar localization pattern throughout the cell cycle, indicating that the definition of new poles in M. gryphiswaldense occurs immediately upon completion of cytokinesis. Moreover, substitution of PopZ orthologs between M. gryphiswaldense and the related alphaproteobacterium Caulobacter crescentus indicated that PopZ localization depends on host-specific cues and that both orthologs have diverged to an extent that allows only partial reciprocal functional complementation. Altogether, our results indicate that in M. gryphiswaldense, PopZ plays a critical role during cell division and segregation of cellular content.
Collapse
|
16
|
Marczynski GT, Petit K, Patel P. Crosstalk Regulation Between Bacterial Chromosome Replication and Chromosome Partitioning. Front Microbiol 2019; 10:279. [PMID: 30863373 PMCID: PMC6399470 DOI: 10.3389/fmicb.2019.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Despite much effort, the bacterial cell cycle has proved difficult to study and understand. Bacteria do not conform to the standard eukaryotic model of sequential cell-cycle phases. Instead, for example, bacteria overlap their phases of chromosome replication and chromosome partitioning. In “eukaryotic terms,” bacteria simultaneously perform “S-phase” and “mitosis” whose coordination is absolutely required for rapid growth and survival. In this review, we focus on the signaling “crosstalk,” meaning the signaling mechanisms that advantageously commit bacteria to start both chromosome replication and chromosome partitioning. After briefly reviewing the molecular mechanisms of replication and partitioning, we highlight the crosstalk research from Bacillus subtilis, Vibrio cholerae, and Caulobacter crescentus. As the initiator of chromosome replication, DnaA also mediates crosstalk in each of these model bacteria but not always in the same way. We next focus on the C. crescentus cell cycle and describe how it is revealing novel crosstalk mechanisms. Recent experiments show that the novel nucleoid associated protein GapR has a special role(s) in starting and separating the replicating chromosomes, so that upon asymmetric cell division, the new chromosomes acquire different fates in C. crescentus’s distinct replicating and non-replicating cell types. The C. crescentus PopZ protein forms a special cell-pole organizing matrix that anchors the chromosomes through their centromere-like DNA sequences near the origin of replication. We also describe how PopZ anchors and interacts with several key cell-cycle regulators, thereby providing an organized subcellular environment for more novel crosstalk mechanisms.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Kenny Petit
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Priya Patel
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
18
|
Bergé M, Viollier PH. End-in-Sight: Cell Polarization by the Polygamic Organizer PopZ. Trends Microbiol 2017; 26:363-375. [PMID: 29198650 DOI: 10.1016/j.tim.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022]
Abstract
Understanding how asymmetries in cellular constituents are achieved and how such positional information directs the construction of structures in a nonrandom fashion is a fundamental problem in cell biology. The recent identification of determinants that self-assemble into macromolecular complexes at the bacterial cell pole provides new insight into the underlying organizational principles in bacterial cells. Specifically, polarity studies in host-associated or free-living α-proteobacteria, a lineage of Gram-negative (diderm) bacteria, reveals that functional and cytological mono- and bipolarity is often conferred by the multivalent polar organizer PopZ, originally identified as a component of a polar chromosome anchor in the cell cycle model system Caulobacter crescentus. PopZ-dependent polarization appears to be widespread and also functional in obligate intracellular pathogens. Here, we discuss how PopZ polarization and the establishment of polar complexes occurs, and we detail the physiological roles of these complexes.
Collapse
Affiliation(s)
- Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
19
|
More than a Tad: spatiotemporal control of Caulobacter pili. Curr Opin Microbiol 2017; 42:79-86. [PMID: 29161615 DOI: 10.1016/j.mib.2017.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 01/09/2023]
Abstract
The Type IV pilus (T4P) is a powerful and sophisticated bacterial nanomachine involved in numerous cellular processes, including adhesion, DNA uptake and motility. Aside from the well-described subtype T4aP of the Gram-negative genera, including Myxococcus, Pseudomonas and Neisseria, the Tad (tight adherence) pilus secretion system re-shuffles homologous parts from other secretion systems along with uncharacterized components into a new type of protein translocation apparatus. A representative of the Tad apparatus, the Caulobacter crescentus pilus assembly (Cpa) machine is built exclusively at the newborn cell pole once per cell cycle. Recent comprehensive genetic analyses unearthed a myriad of spatiotemporal determinants acting on the Tad/Cpa system, many of which are conserved in other α-proteobacteria, including obligate intracellular pathogens and symbionts.
Collapse
|
20
|
Abstract
Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment.IMPORTANCE Lacking internal membrane-bound compartments, bacteria achieve subcellular organization by establishing self-assembling protein-based microdomains. The asymmetrically dividing bacterium Caulobacter crescentus uses one such microdomain to link cell cycle progression to morphogenesis, but the mechanism for the generation of this microdomain has remained unclear. Here, we demonstrate that the ordered assembly of this microdomain occurs via the polymeric network protein PopZ directly recruiting the polarity factor SpmX, which then recruits the histidine kinase DivJ to the developing cell pole. Further, we find that overexpression of the bridge protein SpmX in Caulobacter disrupts this ordered assembly, generating ectopic cell poles containing both PopZ and DivJ. Together, PopZ and SpmX assemble into a cooligomeric network that forms the basis for a polar microdomain that coordinates bacterial cell polarity.
Collapse
|
21
|
Mignolet J, Holden S, Bergé M, Panis G, Eroglu E, Théraulaz L, Manley S, Viollier PH. Functional dichotomy and distinct nanoscale assemblies of a cell cycle-controlled bipolar zinc-finger regulator. eLife 2016; 5. [PMID: 28008851 PMCID: PMC5182063 DOI: 10.7554/elife.18647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Protein polarization underlies differentiation in metazoans and in bacteria. How symmetric polarization can instate functional asymmetry remains elusive. Here, we show by super-resolution photo-activated localization microscopy and edgetic mutations that the bitopic zinc-finger protein ZitP implements specialized developmental functions – pilus biogenesis and multifactorial swarming motility – while shaping distinct nanoscale (bi)polar architectures in the asymmetric model bacterium Caulobacter crescentus. Polar assemblage and accumulation of ZitP and its effector protein CpaM are orchestrated in time and space by conserved components of the cell cycle circuitry that coordinate polar morphogenesis with cell cycle progression, and also act on the master cell cycle regulator CtrA. Thus, this novel class of potentially widespread multifunctional polarity regulators is deeply embedded in the cell cycle circuitry. DOI:http://dx.doi.org/10.7554/eLife.18647.001 Living cells become asymmetric for many different reasons and how they do so has been a long-standing question in biology. In some cells, the asymmetry arises because a given protein accumulates at one side of the cell. In particular, this process happens before some cells divide to produce two non-identical daughter cells that then go on to develop in very different ways – which is vital for the development of almost all multicellular organisms. The single-celled bacterium Caulobacter crescentus also undergoes this type of asymmetric division. The polarized Caulobacter cell produces two very different offsprings – a stationary cell and a nomadic cell that swims using a propeller-like structure, called a flagellum, and has projections called pili on its surface. Before it divides asymmetrically, the Caulobacter cell must accumulate specific proteins at its extremities, or poles. Two such proteins are ZitP and CpaM, which appear to have multiple roles and are thought to interact with other factors that regulate cell division. However, little is known about how ZitP and CpaM become organized at the poles at the right time and how they interact with these regulators of cell division. Mignolet et al. explored how ZitP becomes polarized in Caulobacter crescentus using a combination of approaches including biochemical and genetic analyses and very high-resolution microscopy. This revealed that ZitP accumulated via different pathways at the two poles and that it formed distinct structures at each pole. These structures were associated with different roles for ZitP. While ZitP recruited proteins, including CpaM, required for assembly of pili to one of the poles, it acted differently at the opposite pole. By mutating regions of ZitP, Mignolet et al. went on to show that different regions of the protein carry out these roles. Further experiments demonstrated that regulators of the cell division cycle influenced how ZitP and CpaM accumulated and behaved in cells, ensuring that the proteins carry out their roles at the correct time during division. These findings provide more evidence that proteins can have different roles at distinct sites within a cell, in this case at opposite poles of a cell. Future studies will be needed to determine whether this is seen in cells other than Caulobacter including more complex, non-bacterial cells. DOI:http://dx.doi.org/10.7554/eLife.18647.002
Collapse
Affiliation(s)
- Johann Mignolet
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Seamus Holden
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Matthieu Bergé
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaël Panis
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ezgi Eroglu
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurence Théraulaz
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick H Viollier
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|