1
|
Tenger-Trolander A, Amiri E, Gantz V, Kwan CW, Sanders SA, Schmidt-Ott U. Genomic Resources for the Scuttle Fly Megaselia abdita: A Model Organism for Comparative Developmental Studies in Flies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.631075. [PMID: 39868096 PMCID: PMC11761607 DOI: 10.1101/2025.01.13.631075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, Drosophila melanogaster, and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly Megaselia abdita (Phoridae) has been used in evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a de novo chromosome-level assembly and annotation of M. abdita and transcriptomes of 9 embryonic and 4 postembryonic stages. We also compare 9 stage-matched embryonic transcriptomes between M. abdita and D. melanogaster. Our analysis of these resources reveals extensive chromosomal synteny with D. melanogaster, 28 orphan genes with embryo-specific expression including a novel F-box LRR gene in M. abdita, and conserved and diverged features of gene expression dynamics between M. abdita and D. melanogaster. Collectively, our results provide a new reference for studying the diversification of developmental processes in flies.
Collapse
Affiliation(s)
- Ayse Tenger-Trolander
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ezra Amiri
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Valentino Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
- Pattern Biosciences, Inc. 681 Gateway Blvd, South San Francisco, CA 94080
| | - Chun Wai Kwan
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Sheri A Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Mann KE, Panfilio KA. Tissue-Level Integration Overrides Gradations of Differentiating Cell Identity in Beetle Extraembryonic Tissue. Cells 2024; 13:1211. [PMID: 39056793 PMCID: PMC11274815 DOI: 10.3390/cells13141211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
During animal embryogenesis, one of the earliest specification events distinguishes extraembryonic (EE) from embryonic tissue fates: the serosa in the case of the insects. While it is well established that the homeodomain transcription factor Zen1 is the critical determinant of the serosa, the subsequent realization of this tissue's identity has not been investigated. Here, we examine serosal differentiation in the beetle Tribolium castaneum based on the quantification of morphological and morphogenetic features, comparing embryos from a Tc-zen1 RNAi dilution series, where complete knockdown results in amnion-only EE tissue identity. We assess features including cell density, tissue boundary morphology, and nuclear size as dynamic readouts for progressive tissue maturation. While some features exhibit an all-or-nothing outcome, other key features show dose-dependent phenotypic responses with trait-specific thresholds. Collectively, these findings provide nuance beyond the known status of Tc-Zen1 as a selector gene for serosal tissue patterning. Overall, our approach illustrates how the analysis of tissue maturation dynamics from live imaging extends but also challenges interpretations based on gene expression data, refining our understanding of tissue identity and when it is achieved.
Collapse
Affiliation(s)
- Katie E. Mann
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Kristen A. Panfilio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Niu X, Xu Z, Di M, Huang D, Li X. Bioreactor strategies for tissue-engineered osteochondral constructs: Advantages, present situations and future trends. COMPOSITES PART B: ENGINEERING 2023; 259:110736. [DOI: 10.1016/j.compositesb.2023.110736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
5
|
Li T, Ma Z, Zhang Y, Yang Z, Li W, Lu D, Liu Y, Qiang L, Wang T, Ren Y, Wang W, He H, Zhou X, Mao Y, Zhu J, Wang J, Chen X, Dai K. Regeneration of Humeral Head Using a 3D Bioprinted Anisotropic Scaffold with Dual Modulation of Endochondral Ossification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205059. [PMID: 36755334 PMCID: PMC10131811 DOI: 10.1002/advs.202205059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Indexed: 06/18/2023]
Abstract
Tissue engineering is theoretically thought to be a promising method for the reconstruction of biological joints, and thus, offers a potential treatment alternative for advanced osteoarthritis. However, to date, no significant progress is made in the regeneration of large biological joints. In the current study, a biomimetic scaffold for rabbit humeral head regeneration consisting of heterogeneous porous architecture, various bioinks, and different hard supporting materials in the cartilage and bone regions is designed and fabricated in one step using 3D bioprinting technology. Furthermore, orchestrated dynamic mechanical stimulus combined with different biochemical cues (parathyroid hormone [PTH] and chemical component hydroxyapatite [HA] in the outer and inner region, respectively) are used for dual regulation of endochondral ossification. Specifically, dynamic mechanical stimulus combined with growth factor PTH in the outer region inhibits endochondral ossification and results in cartilage regeneration, whereas dynamic mechanical stimulus combined with HA in the inner region promotes endochondral ossification and results in efficient subchondral bone regeneration. The strategy established in this study with the dual modulation of endochondral ossification for 3D bioprinted anisotropic scaffolds represents a versatile and scalable approach for repairing large joints.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Zhengjiang Ma
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Yuxin Zhang
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Zezheng Yang
- Department of OrthopedicsThe Fifth People's Hospital of ShanghaiFudan UniversityMinhang DistrictShanghai200240P. R. China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Dezhi Lu
- School of MedicineShanghai UniversityJing An DistrictShanghai200444China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Lei Qiang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Ya Ren
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Wenhao Wang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Hongtao He
- The Third Ward of Department of OrthopedicsThe Second Hospital of Dalian Medical UniversityNo. 467, Zhongshan Road, Shahekou DistrictDalianLiaoning Province116000P. R. China
| | - Xiaojun Zhou
- College of Biological Science and Medical EngineeringState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620P. R. China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Junfeng Zhu
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Xiaodong Chen
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| |
Collapse
|
6
|
Prpic NM, Pechmann M. Extraembryonic tissue in chelicerates: a review and outlook. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210269. [PMID: 36252223 PMCID: PMC9574639 DOI: 10.1098/rstb.2021.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 01/03/2023] Open
Abstract
The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Matthias Pechmann
- Institute for Zoology, University of Cologne, Biocenter, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
7
|
Schmidt-Ott U, Kwan CW. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210265. [PMID: 36252222 PMCID: PMC9574642 DOI: 10.1098/rstb.2021.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The conservation of gene networks that specify and differentiate distinct tissues has long been a subject of great interest to evolutionary developmental biologists, but the question of how pre-existing tissue-specific developmental trajectories merge is rarely asked. During the radiation of flies, two extraembryonic epithelia, known as serosa and amnion, evolved into one, called amnioserosa. This unique extraembryonic epithelium is found in fly species of the group Schizophora, including the genetic model organism Drosophila melanogaster, and has been studied in depth. Close relatives of this group develop a serosa and a rudimentary amnion. The scuttle fly Megaselia abdita has emerged as an excellent model organism to study this extraembryonic tissue organization. In this review, development and functions of the extraembryonic tissue complements of Drosophila and Megaselia are compared. It is concluded that the amnioserosa combines cells, genetic pathway components and functions that were previously associated either with serosa development or amnion development. The composite developmental trajectory of the amnioserosa raises the question of whether merging tissue-specific gene networks is a common evolutionary process. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Yan Y, Wang Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front Cell Dev Biol 2022; 9:799772. [PMID: 35036406 PMCID: PMC8753366 DOI: 10.3389/fcell.2021.799772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.
Collapse
Affiliation(s)
- Yifang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Madamanchi A, Mullins MC, Umulis DM. Diversity and robustness of bone morphogenetic protein pattern formation. Development 2021; 148:dev192344. [PMID: 33795238 PMCID: PMC8034876 DOI: 10.1242/dev.192344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pattern formation by bone morphogenetic proteins (BMPs) demonstrates remarkable plasticity and utility in several contexts, such as early embryonic development, tissue patterning and the maintenance of stem cell niches. BMPs pattern tissues over many temporal and spatial scales: BMP gradients as short as 1-2 cell diameters maintain the stem cell niche of the Drosophila germarium over a 24-h cycle, and BMP gradients of several hundred microns establish dorsal-ventral tissue specification in Drosophila, zebrafish and Xenopus embryos in timescales between 30 min and several hours. The mechanisms that shape BMP signaling gradients are also incredibly diverse. Although ligand diffusion plays a dominant role in forming the gradient, a cast of diffusible and non-diffusible regulators modulate gradient formation and confer robustness, including scale invariance and adaptability to perturbations in gene expression and growth. In this Review, we document the diverse ways that BMP gradients are formed and refined, and we identify the core principles that they share to achieve reliable performance.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Umulis
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Affiliation(s)
- Phillip James Dorsey
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Dominic Scalise
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Department of Computer Science Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
11
|
Dorsey PJ, Scalise D, Schulman R. DNA Reaction–Diffusion Attractor Patterns. Angew Chem Int Ed Engl 2020; 60:338-344. [DOI: 10.1002/anie.202009756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Phillip James Dorsey
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Dominic Scalise
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Department of Computer Science Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
12
|
Horner CB, Maldonado M, Tai Y, Rony RMIK, Nam J. Spatially Regulated Multiphenotypic Differentiation of Stem Cells in 3D via Engineered Mechanical Gradient. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45479-45488. [PMID: 31714732 DOI: 10.1021/acsami.9b17266] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Within the osteochondral interface, cellular and extracellular matrix gradients provide a biomechanical and biochemical niche for homeostatic tissue functions. Postnatal joint loading is critical for the development of such tissue gradients, leading to the formation of functional osteochondral tissues composed of superficial, middle, and deep zones of cartilage, and underlying subchondral bone, in a depth-dependent manner. In this regard, a novel, variable core-shell electrospinning strategy was employed to generate spatially controlled strain gradients within three-dimensional scaffolds under dynamic compressive loading, enabling the local strain-magnitude dependent, multiphenotypic stem cell differentiation. Human mesenchymal stem cells (hMSCs) were cultured in electrospun scaffolds with a linear or biphasic mechanical gradient, which was computationally engineered and experimentally validated. The cell/scaffold constructs were subjected to various magnitudes of dynamic compressive strains in a scaffold depth-dependent manner at a frequency of 1 Hz for 2 h daily for up to 42 days in osteogenic media. Spatially upregulated gene expression of chondrogenic markers (ACAN, COL2A1, PRG4) and glycosaminoglycan deposition was observed in the areas of greater compressive strains. In contrast, osteogenic markers (COL1A1, SPARC, RUNX2) and calcium deposition were downregulated in response to high local compressive strains. Dynamic mechanical analysis showed the maintenance of the engineered mechanical gradients only under dynamic culture conditions, confirming the potent role of biomechanical gradients in developing and maintaining a tissue gradient. These results demonstrate that multiphenotypic differentiation of hMSCs can be controlled by regulating local mechanical microenvironments, providing a novel strategy to recapitulate the gradient structure in osteochondral tissues for successful regeneration of damaged joints in vivo and facile development of interfacial tissue models in vitro.
Collapse
Affiliation(s)
- Christopher B Horner
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - Maricela Maldonado
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - Youyi Tai
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - R M Imtiaz Karim Rony
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - Jin Nam
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| |
Collapse
|
13
|
Caroti F, González Avalos E, Noeske V, González Avalos P, Kromm D, Wosch M, Schütz L, Hufnagel L, Lemke S. Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita. eLife 2018; 7:34616. [PMID: 30375972 PMCID: PMC6231767 DOI: 10.7554/elife.34616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Extraembryonic tissues contribute to animal development, which often entails spreading over embryo or yolk. Apart from changes in cell shape, the requirements for this tissue spreading are not well understood. Here, we analyze spreading of the extraembryonic serosa in the scuttle fly Megaselia abdita. The serosa forms from a columnar blastoderm anlage, becomes a squamous epithelium, and eventually spreads over the embryo proper. We describe the dynamics of this process in long-term, whole-embryo time-lapse recordings, demonstrating that free serosa spreading is preceded by a prolonged pause in tissue expansion. Closer examination of this pause reveals mechanical coupling to the underlying yolk sac, which is later released. We find mechanical coupling prolonged and serosa spreading impaired after knockdown of M. abdita Matrix metalloprotease 1. We conclude that tissue–tissue interactions provide a critical functional element to constrain spreading epithelia.
Collapse
Affiliation(s)
| | | | - Viola Noeske
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | | | - Dimitri Kromm
- European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maike Wosch
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Lucas Schütz
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Benton MA. A revised understanding of Tribolium morphogenesis further reconciles short and long germ development. PLoS Biol 2018; 16:e2005093. [PMID: 29969459 PMCID: PMC6047830 DOI: 10.1371/journal.pbio.2005093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/16/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster, the germband forms directly on the egg surface and solely consists of embryonic tissue. In contrast, most insect embryos undergo a complicated set of tissue rearrangements to generate a condensed, multilayered germband. The ventral side of the germband is embryonic, while the dorsal side is thought to be an extraembryonic tissue called the amnion. While this tissue organisation has been accepted for decades and has been widely reported in insects, its accuracy has not been directly tested in any species. Using live cell tracking and differential cell labelling in the short germ beetle Tribolium castaneum, I show that most of the cells previously thought to be amnion actually give rise to large parts of the embryo. This process occurs via the dorsal-to-ventral flow of cells and contributes to germband extension (GBE). In addition, I show that true 'amnion' cells in Tribolium originate from a small region of the blastoderm. Together, my findings show that development in the short germ embryos of Tribolium and the long germ embryos of Drosophila is more similar than previously proposed. Dorsal-to-ventral cell flow also occurs in Drosophila during GBE, and I argue that the flow is driven by a conserved set of underlying morphogenetic events in both species. Furthermore, the revised Tribolium fate map that I present is far more similar to that of Drosophila than the classic Tribolium fate map. Lastly, my findings show that there is no qualitative difference between the tissue structure of the cellularised blastoderm and the short/intermediate germ germband. As such, the same tissue patterning mechanisms could function continuously throughout the cellularised blastoderm and germband stages, and easily shift between them over evolutionary time.
Collapse
|
15
|
The dorsoventral patterning of Musca domestica embryos: insights into BMP/Dpp evolution from the base of the lower cyclorraphan flies. EvoDevo 2018; 9:13. [PMID: 29796243 PMCID: PMC5956798 DOI: 10.1186/s13227-018-0102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/06/2018] [Indexed: 01/09/2023] Open
Abstract
Background In the last few years, accumulated information has indicated that the evolution of an extra-embryonic membrane in dipterans was accompanied by changes in the gene regulatory network controlled by the BMP/Dpp pathway, which is responsible for dorsal patterning in these insects. However, only comparative analysis of gene expression levels between distant species with two extra-embryonic membranes, like A. gambiae or C. albipunctata, and D. melanogaster, has been conducted. Analysis of gene expression in ancestral species, which evolved closer to the amnioserosa origin, could provide new insights into the evolution of dorsoventral patterning in dipterans. Results Here we describe the spatial expression of several key and downstream elements of the Dpp pathway and show the compared patterns of expression between Musca and Drosophila embryos, both dipterans with amnioserosa. Most of the analyzed gene showed a high degree of expression conservation, however, we found several differences in the gene expression pattern of M. domestica orthologs for sog and tolloid. Bioinformatics analysis of the promoter of both genes indicated that the variations could be related to the gain of several binding sites for the transcriptional factor Dorsal in the Md.tld promoter and Snail in the Md.sog enhancer. These altered expressions could explain the unclear formation of the pMad gradient in the M. domestica embryo, compared to the formation of the gradient in D. melanogaster. Conclusion Gene expression changes during the dorsal–ventral patterning in insects contribute to the differentiation of extra-embryonic tissues as a consequence of changes in the gene regulatory network controlled by BMP/Dpp. In this work, in early M. domestica embryos, we identified the expression pattern of several genes members involved in the dorsoventral specification of the embryo. We believe that these data can contribute to understanding the evolution of the BMP/Dpp pathway, the regulation of BMP ligands, and the formation of a Dpp gradient in higher cyclorraphan flies. Electronic supplementary material The online version of this article (10.1186/s13227-018-0102-5) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Wotton KR, Alcaine-Colet A, Jaeger J, Jiménez-Guri E. Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata. EvoDevo 2017; 8:20. [PMID: 29158889 PMCID: PMC5683363 DOI: 10.1186/s13227-017-0083-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 11/20/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) are of central importance for dorsal–ventral (DV) axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP) and its antagonist short gastrulation (SOG) in Drosophila melanogaster. These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes. Despite such strong conservation, recent comparative work in insects has revealed interesting differences in the way the patterning function of the DV system is achieved in different species. Results In this paper, we characterise the expression patterns of the principal components of the BMP DV patterning system, as well as its signalling outputs and downstream targets, in the non-cyclorrhaphan moth midge Clogmia albipunctata (Diptera: Psychodidae). We previously reported ventral expression patterns of dpp in the pole regions of C. albipunctata blastoderm embryos. Strikingly, we also find ventral sog and posteriorly restricted tkv expression, as well as expanded polar activity of pMad. We use our results from gene knock-down by embryonic RNA interference to propose a mechanism of polar morphogen shuttling in C. albipunctata. We compare these results to available data from other species and discuss scenarios for the evolution of DV signalling in the holometabolan insects. Conclusions A comparison of gene expression patterns across hemipteran and holometabolan insects reveals that expression of upstream signalling factors in the DV system is very variable, while signalling output is highly conserved. This has two major implications: first, as long as ligand shuttling and other upstream regulatory mechanisms lead to an appropriately localised activation of BMP signalling at the dorsal midline, it is of less importance exactly where the upstream components of the DV system are expressed. This, in turn, explains why the early-acting components of the DV patterning system in insects exhibit extensive amounts of developmental systems drift constrained by highly conserved downstream signalling output.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ UK
| | - Anna Alcaine-Colet
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ UK
| |
Collapse
|
17
|
Andrews MG, Del Castillo LM, Ochoa-Bolton E, Yamauchi K, Smogorzewski J, Butler SJ. BMPs direct sensory interneuron identity in the developing spinal cord using signal-specific not morphogenic activities. eLife 2017; 6. [PMID: 28925352 PMCID: PMC5605194 DOI: 10.7554/elife.30647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
The Bone Morphogenetic Protein (BMP) family reiteratively signals to direct disparate cellular fates throughout embryogenesis. In the developing dorsal spinal cord, multiple BMPs are required to specify sensory interneurons (INs). Previous studies suggested that the BMPs act as concentration-dependent morphogens to direct IN identity, analogous to the manner in which sonic hedgehog patterns the ventral spinal cord. However, it remains unresolved how multiple BMPs would cooperate to establish a unified morphogen gradient. Our studies support an alternative model: BMPs have signal-specific activities directing particular IN fates. Using chicken and mouse models, we show that the identity, not concentration, of the BMP ligand directs distinct dorsal identities. Individual BMPs promote progenitor patterning or neuronal differentiation by their activation of different type I BMP receptors and distinct modulations of the cell cycle. Together, this study shows that a 'mix and match' code of BMP signaling results in distinct classes of sensory INs.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, United States.,Neuroscience Graduate Program, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| | - Lorenzo M Del Castillo
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States.,CIRM Bridges to Research Program, California State University, Northridge, United States
| | - Eliana Ochoa-Bolton
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States.,CIRM Bridges to Research Program, California State University, Northridge, United States
| | - Ken Yamauchi
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| | - Jan Smogorzewski
- Department of Dermatology, University of Southern California, California, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| |
Collapse
|