1
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker PB. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2025; 53:gkaf202. [PMID: 40164442 DOI: 10.1093/nar/gkaf202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard chromatin fiber integrity. In Drosophila, the chromodomain protein MSL3 binds H3K36me3 at X-chromosomal genes to implement dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Because depletion of K36me3 had variable, locus-specific effects on the interactions of those readers, we systematically studied K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2, and K36me3 each contribute to distinct chromatin states. Monitoring the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD, and Ash1 revealed local, context-specific methylation signatures. Each methyltransferase governs K36 methylation in dedicated genomic regions, with minor overlaps. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at putative enhancers. The mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| |
Collapse
|
2
|
Anyetei-Anum CS, Leatham-Jensen MP, Fox GC, Smith BR, Chirasani VR, Krajewski K, Strahl BD, Dowen JM, Matera AG, Duronio RJ, McKay DJ. Evidence for dual roles of histone H3 lysine 4 in antagonizing Polycomb group function and promoting target gene expression. Genes Dev 2024; 38:1033-1046. [PMID: 39562140 PMCID: PMC11610931 DOI: 10.1101/gad.352181.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Tight control over cell identity gene expression is necessary for proper adult form and function. The opposing activities of Polycomb and trithorax complexes determine the on/off state of cell identity genes such as the Hox factors. Polycomb group complexes repress target genes, whereas trithorax group complexes are required for their expression. Although trithorax and its orthologs function as methyltransferases specific to histone H3 lysine 4 (H3K4), there is no direct evidence that H3K4 regulates Polycomb group target genes in vivo. Using histone gene replacement in Drosophila, we provide evidence of two key roles for replication-dependent histone H3.2K4 in Polycomb target gene control. First, we found that H3.2K4 mutants mimic H3.2K4me3 in antagonizing methyltransferase activity of the PRC2 Polycomb group complex. Second, we found that H3.2K4 is also required for proper activation of Polycomb targets. We conclude that H3.2K4 directly regulates Polycomb target gene expression.
Collapse
Affiliation(s)
- Cyril S Anyetei-Anum
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary P Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Geoffrey C Fox
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - B Rutledge Smith
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Venkat R Chirasani
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
3
|
Salzler HR, Vandadi V, Sallean JR, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. Genetics 2024; 228:iyae168. [PMID: 39417694 PMCID: PMC11631440 DOI: 10.1093/genetics/iyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions betwen MSL3 (male-specific lethal 3) and Set2-dependent histone marks like trimethylated H3 lysine-36 (H3K36me3). However, Set2 could affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Furthermore, it is important to parse male-specific effects from those that are X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 'residue' and Set2 'writer' mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global, male-specific reduction of X-genes in Set2 or H3K36 mutants, we observe heterogeneous effects. Interestingly, we identified groups of differentially expressed genes (DEGs) whose changes were in opposite directions following loss of H3K36 or Set2, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, differential expression analysis of combined H3.2K36R/H3.3K36R mutants showed neither consistent reduction in X-gene expression, nor correlation with MSL3 binding. Motif analysis of the DEGs implicated BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 is essential for spreading the MSL complex to genes along the male X. Rather, we propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia R Sallean
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Crain AT, Nevil M, Leatham-Jensen MP, Reeves KB, Matera AG, McKay DJ, Duronio RJ. Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function. Genetics 2024; 228:iyae117. [PMID: 39039029 PMCID: PMC11373521 DOI: 10.1093/genetics/iyae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Markus Nevil
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Seeding Postdoctoral Innovators in Research & Education, University of North Carolina, Chapel Hill, NC 27599USA
| | - Mary P Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Katherine B Reeves
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599USA
| |
Collapse
|
5
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker P. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2024; 52:7627-7649. [PMID: 38813825 PMCID: PMC11260483 DOI: 10.1093/nar/gkae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Catherine Regnard
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
6
|
Jia J, Fan H, Wan X, Fang Y, Li Z, Tang Y, Zhang Y, Huang J, Fang D. FUS reads histone H3K36me3 to regulate alternative polyadenylation. Nucleic Acids Res 2024; 52:5549-5571. [PMID: 38499486 PMCID: PMC11162772 DOI: 10.1093/nar/gkae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Complex organisms generate differential gene expression through the same set of DNA sequences in distinct cells. The communication between chromatin and RNA regulates cellular behavior in tissues. However, little is known about how chromatin, especially histone modifications, regulates RNA polyadenylation. In this study, we found that FUS was recruited to chromatin by H3K36me3 at gene bodies. The H3K36me3 recognition of FUS was mediated by the proline residues in the ZNF domain. After these proline residues were mutated or H3K36me3 was abolished, FUS dissociated from chromatin and bound more to RNA, resulting in an increase in polyadenylation sites far from stop codons genome-wide. A proline mutation corresponding to a mutation in amyotrophic lateral sclerosis contributed to the hyperactivation of mitochondria and hyperdifferentiation in mouse embryonic stem cells. These findings reveal that FUS is an H3K36me3 reader protein that links chromatin-mediated alternative polyadenylation to human disease.
Collapse
Affiliation(s)
- Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haonan Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyi Wan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhuoning Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Salzler HR, Vandadi V, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592390. [PMID: 38766267 PMCID: PMC11100620 DOI: 10.1101/2024.05.03.592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Crain AT, Nevil M, Leatham-Jensen MP, Reeves KB, Matera AG, McKay DJ, Duronio RJ. Redesigning the Drosophila histone gene cluster: An improved genetic platform for spatiotemporal manipulation of histone function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591202. [PMID: 38712307 PMCID: PMC11071459 DOI: 10.1101/2024.04.25.591202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoan models is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such RD histone gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms have been developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array ( HisC ), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.
Collapse
|
9
|
Brown JC, McMichael BD, Vandadi V, Mukherjee A, Salzler HR, Matera AG. Lysine-36 of Drosophila histone H3.3 supports adult longevity. G3 (BETHESDA, MD.) 2024; 14:jkae030. [PMID: 38366796 PMCID: PMC10989886 DOI: 10.1093/g3journal/jkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/16/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several post-translational histone modifications have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine-to-arginine mutant that blocks the activity of its cognate-modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in nondividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.
Collapse
Affiliation(s)
- John C Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin D McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aadit Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Mazzetto M, Gonzalez LE, Sanchez N, Reinke V. Characterization of the distribution and dynamics of chromatin states in the C. elegans germline reveals substantial H3K4me3 remodeling during oogenesis. Genome Res 2024; 34:57-69. [PMID: 38164610 PMCID: PMC10903938 DOI: 10.1101/gr.278247.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.
Collapse
Affiliation(s)
| | - Lauren E Gonzalez
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Nancy Sanchez
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
11
|
Brown JC, McMichael BD, Vandadi V, Mukherjee A, Salzler HR, Matera AG. Lysine-36 of Drosophila histone H3.3 supports adult longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559962. [PMID: 38196611 PMCID: PMC10775331 DOI: 10.1101/2023.09.28.559962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several posttranslational histone modifications (PTMs) have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine to arginine mutant that blocks the activity of its cognate modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in non-dividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.
Collapse
Affiliation(s)
- John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Aadit Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Lindehell H, Schwartz YB, Larsson J. Methylation of lysine 36 on histone H3 is required to control transposon activities in somatic cells. Life Sci Alliance 2023; 6:e202201832. [PMID: 37169594 PMCID: PMC10176111 DOI: 10.26508/lsa.202201832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Transposable elements constitute a substantial portion of most eukaryotic genomes and their activity can lead to developmental and neuronal defects. In the germline, transposon activity is antagonized by the PIWI-interacting RNA pathway tasked with repression of transposon transcription and degrading transcripts that have already been produced. However, most of the genes required for transposon control are not expressed outside the germline, prompting the question: what causes deleterious transposons activity in the soma and how is it managed? Here, we show that disruptions of the Histone 3 lysine 36 methylation machinery led to increased transposon transcription in Drosophila melanogaster brains and that there is division of labour for the repression of transposable elements between the different methyltransferases Set2, NSD, and Ash1. Furthermore, we show that disruption of methylation leads to somatic activation of key genes in the PIWI-interacting RNA pathway and the preferential production of RNA from dual-strand piRNA clusters.
Collapse
Affiliation(s)
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Jauregui-Lozano J, McGovern SE, Bakhle KM, Hagins AC, Weake VM. Establishing the contribution of active histone methylation marks to the aging transcriptional landscape of Drosophila photoreceptors. Sci Rep 2023; 13:5105. [PMID: 36991154 PMCID: PMC10060402 DOI: 10.1038/s41598-023-32273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Studies in multiple organisms have shown that aging is accompanied by several molecular phenotypes that include dysregulation of chromatin. Since chromatin regulates DNA-based processes such as transcription, alterations in chromatin modifications could impact the transcriptome and function of aging cells. In flies, as in mammals, the aging eye undergoes changes in gene expression that correlate with declining visual function and increased risk of retinal degeneration. However, the causes of these transcriptome changes are poorly understood. Here, we profiled chromatin marks associated with active transcription in the aging Drosophila eye to understand how chromatin modulates transcriptional outputs. We found that both H3K4me3 and H3K36me3 globally decrease across all actively expressed genes with age. However, we found no correlation with changes in differential gene expression. Downregulation of the H3K36me3 methyltransferase Set2 in young photoreceptors revealed significant changes in splicing events that overlapped significantly with those observed in aging photoreceptors. These overlapping splicing events impacted multiple genes involved in phototransduction and neuronal function. Since proper splicing is essential for visual behavior, and because aging Drosophila undergo a decrease in visual function, our data suggest that H3K36me3 could play a role in maintaining visual function in the aging eye through regulating alternative splicing.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
- University of California San Diego, San Diego, CA, 92093, USA
| | - Sarah E McGovern
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Kimaya M Bakhle
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Arrianna C Hagins
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf W, Weng Z. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster. Nucleic Acids Res 2023; 51:2066-2086. [PMID: 36762470 PMCID: PMC10018349 DOI: 10.1093/nar/gkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.
Collapse
Affiliation(s)
- Jichuan Cao
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo Xu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongren Hu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-ou Zhang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
Salzler HR, Vandadi V, McMichael BD, Brown JC, Boerma SA, Leatham-Jensen MP, Adams KM, Meers MP, Simon JM, Duronio RJ, McKay DJ, Matera AG. Distinct roles for canonical and variant histone H3 lysine-36 in Polycomb silencing. SCIENCE ADVANCES 2023; 9:eadf2451. [PMID: 36857457 PMCID: PMC9977188 DOI: 10.1126/sciadv.adf2451] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 05/26/2023]
Abstract
Polycomb complexes regulate cell type-specific gene expression programs through heritable silencing of target genes. Trimethylation of histone H3 lysine 27 (H3K27me3) is essential for this process. Perturbation of H3K36 is thought to interfere with H3K27me3. We show that mutants of Drosophila replication-dependent (H3.2K36R) or replication-independent (H3.3K36R) histone H3 genes generally maintain Polycomb silencing and reach later stages of development. In contrast, combined (H3.3K36RH3.2K36R) mutants display widespread Hox gene misexpression and fail to develop past the first larval stage. Chromatin profiling revealed that the H3.2K36R mutation disrupts H3K27me3 levels broadly throughout silenced domains, whereas these regions are mostly unaffected in H3.3K36R animals. Analysis of H3.3 distributions showed that this histone is enriched at presumptive Polycomb response elements located outside of silenced domains but relatively depleted from those inside. We conclude that H3.2 and H3.3 K36 residues collaborate to repress Hox genes using different mechanisms.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Sally A. Boerma
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Mary P. Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten M. Adams
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P. Meers
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J. McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Molenaar TM, Malik M, Silva J, Liu NQ, Haarhuis JHI, Ambrosi C, Kwesi-Maliepaard EM, van Welsem T, Baubec T, Faller WJ, van Leeuwen F. The histone methyltransferase SETD2 negatively regulates cell size. J Cell Sci 2022; 135:jcs259856. [PMID: 36052643 PMCID: PMC9659392 DOI: 10.1242/jcs.259856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Cell size varies between cell types but is tightly regulated by cell intrinsic and extrinsic mechanisms. Cell size control is important for cell function, and changes in cell size are frequently observed in cancer. Here, we uncover a role for SETD2 in regulating cell size. SETD2 is a lysine methyltransferase and a tumor suppressor protein involved in transcription, RNA processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 (H3K36) during transcription. Using multiple independent perturbation strategies, we identify SETD2 as a negative regulator of global protein synthesis rates and cell size. We provide evidence that overexpression of the H3K36 demethylase KDM4A or the oncohistone H3.3K36M also increase cell size. In addition, ectopic overexpression of a decoy SRI domain increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain. These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on separating the different functions of SETD2 in cancer development.
Collapse
Affiliation(s)
- Thom M. Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Muddassir Malik
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Ning Qing Liu
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Judith H. I. Haarhuis
- Division of Cell Biology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Christina Ambrosi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| | | | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - William J. Faller
- Division of Oncogenomics, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 475] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
18
|
Lemon LD, Kannan S, Mo KW, Adams M, Choi HG, Gulka AOD, Withers ES, Nurelegne HT, Gomez V, Ambrocio RE, Tumminkatti R, Lee RS, Wan M, Fasken MB, Spangle JM, Corbett AH. A Saccharomyces cerevisiae model and screen to define the functional consequences of oncogenic histone missense mutations. G3 GENES|GENOMES|GENETICS 2022; 12:6585874. [PMID: 35567477 PMCID: PMC9258546 DOI: 10.1093/g3journal/jkac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Somatic missense mutations in histone genes turn these essential proteins into oncohistones, which can drive oncogenesis. Understanding how missense mutations alter histone function is challenging in mammals as mutations occur in a single histone gene. For example, described oncohistone mutations predominantly occur in the histone H3.3 gene, despite the human genome encoding 15 H3 genes. To understand how oncogenic histone missense mutations alter histone function, we leveraged the budding yeast model, which contains only 2 H3 genes, to explore the functional consequences of oncohistones H3K36M, H3G34W, H3G34L, H3G34R, and H3G34V. Analysis of cells that express each of these variants as the sole copy of H3 reveals that H3K36 mutants show different drug sensitivities compared to H3G34 mutants. This finding suggests that changes to proximal amino acids in the H3 N-terminal tail alter distinct biological pathways. We exploited the caffeine-sensitive growth of H3K36-mutant cells to perform a high copy suppressor screen. This screen identified genes linked to histone function and transcriptional regulation, including Esa1, a histone H4/H2A acetyltransferase; Tos4, a forkhead-associated domain-containing gene expression regulator; Pho92, an N6-methyladenosine RNA-binding protein; and Sgv1/Bur1, a cyclin-dependent kinase. We show that the Esa1 lysine acetyltransferase activity is critical for suppression of the caffeine-sensitive growth of H3K36R-mutant cells while the previously characterized binding interactions of Tos4 and Pho92 are not required for suppression. This screen identifies pathways that could be altered by oncohistone mutations and highlights the value of yeast genetics to identify pathways altered by such mutations.
Collapse
Affiliation(s)
- Laramie D Lemon
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Sneha Kannan
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Kim Wai Mo
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Miranda Adams
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
- Graduate Program in Cancer Biology, Emory University , Atlanta, GA 30322, USA
| | - Haley G Choi
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
| | - Alexander O D Gulka
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University , Atlanta, GA 30322, USA
| | - Elise S Withers
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | | | - Valeria Gomez
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Reina E Ambrocio
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Rhea Tumminkatti
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Richard S Lee
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
| | - Morris Wan
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
20
|
Morgan M, Shiekhattar R, Shilatifard A, Lauberth SM. It's a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol Cell 2022; 82:1981-1991. [PMID: 35487209 PMCID: PMC9208299 DOI: 10.1016/j.molcel.2022.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The past decade has revolutionized our understanding of regulatory noncoding RNAs (ncRNAs). Among the most recently identified ncRNAs are downstream-of-gene (DoG)-containing transcripts that are produced by widespread transcriptional readthrough. The discovery of DoGs has set the stage for future studies to address many unanswered questions regarding the mechanisms that promote readthrough transcription, RNA processing, and the cellular functions of the unique transcripts. In this review, we summarize current findings regarding the biogenesis, function, and mechanisms regulating this exciting new class of RNA molecules.
Collapse
Affiliation(s)
- Marc Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Crain AT, Klusza S, Armstrong RL, Santa Rosa P, Temple BRS, Strahl BD, McKay DJ, Matera AG, Duronio RJ. Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Genetics 2022; 221:iyac054. [PMID: 35404465 PMCID: PMC9157153 DOI: 10.1093/genetics/iyac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Stephen Klusza
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | | | - Brenda R S Temple
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| |
Collapse
|
22
|
Lindehell H, Glotov A, Dorafshan E, Schwartz YB, Larsson J. The role of H3K36 methylation and associated methyltransferases in chromosome-specific gene regulation. SCIENCE ADVANCES 2021; 7:eabh4390. [PMID: 34597135 PMCID: PMC10938550 DOI: 10.1126/sciadv.abh4390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In Drosophila, two chromosomes require special mechanisms to balance their transcriptional output to the rest of the genome. These are the male-specific lethal complex targeting the male X chromosome and Painting of fourth targeting chromosome 4. Here, we explore the role of histone H3 methylated at lysine-36 (H3K36) and the associated methyltransferases—Set2, NSD, and Ash1—in these two chromosome-specific systems. We show that the loss of Set2 impairs the MSL complex–mediated dosage compensation; however, the effect is not recapitulated by H3K36 replacement and indicates an alternative target of Set2. Unexpectedly, balanced transcriptional output from the fourth chromosome requires intact H3K36 and depends on the additive functions of NSD and Ash1. We conclude that H3K36 methylation and the associated methyltransferases are important factors to balance transcriptional output of the male X chromosome and the fourth chromosome. Furthermore, our study highlights the pleiotropic effects of these enzymes.
Collapse
Affiliation(s)
- Henrik Lindehell
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
23
|
Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 2021; 109:2943-2966.e8. [PMID: 34480866 PMCID: PMC8454057 DOI: 10.1016/j.neuron.2021.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Fischer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Hamilton
- Department of Brain and Cognitive Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA 19121, USA
| | - R Christopher Pierce
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA,19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
McManus CE, Mazzetto M, Wei G, Han M, Reinke V. The zinc-finger protein OEF-1 stabilizes histone modification patterns and promotes efficient splicing in the C. elegans germ line. G3-GENES GENOMES GENETICS 2021; 11:6370151. [PMID: 34519784 PMCID: PMC8664474 DOI: 10.1093/g3journal/jkab329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022]
Abstract
To ensure stable transmission of genetic information to the next generation, germ cells frequently silence sex chromosomes, as well as autosomal loci that promote inappropriate differentiation programs. In Caenorhabditis elegans, silenced and active genomic domains are established in germ cells by the histone modification complexes MES-2/3/6 and MES-4, which promote silent and active chromatin states, respectively. These states are generally mutually exclusive and modulation of one state influences the pattern of the other. Here, we identify the zinc-finger protein OEF-1 as a novel modifier of this epigenetic balance in the C. elegans germline. Loss of oef-1 genetically enhances mes mutant phenotypes. Moreover, OEF-1 binding correlates with the active modification H3K36me3 and sustains H3K36me3 levels in the absence of MES-4 activity. OEF-1 also promotes efficient mRNA splicing activity, a process that is influenced by H3K36me3 levels. Finally, OEF-1 limits deposition of the silencing modification H3K27me3 on the X chromosome and at repressed autosomal loci. We propose that OEF-1 might act as an intermediary to mediate the downstream effects of H3K36me3 that promote transcript integrity, and indirectly affect gene silencing as a consequence.
Collapse
Affiliation(s)
- Catherine E McManus
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mariateresa Mazzetto
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mei Han
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Abstract
Nucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone-DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
26
|
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis 2021; 12:311. [PMID: 33762579 PMCID: PMC7991640 DOI: 10.1038/s41419-021-03597-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
The histone H3.3K36M mutation, identified in over 90% of chondroblastoma cases, reprograms the H3K36 methylation landscape and gene expression to promote tumorigenesis. However, it's still unclear how the H3K36M mutation preferentially occurs in the histone H3 variant H3.3 in chondroblastomas. Here, we report that H3.3K36M-, but not H3.1K36M-, mutant cells showed increased colony formation ability and differentiation defects. H3K36 methylations and enhancers were reprogrammed to different status in H3.3K36M- and H3.1K36M-mutant cells. The reprogramming of H3K36 methylation and enhancers was depended on the specific loci at which H3.3K36M and H3.1K36M were incorporated. Moreover, targeting H3K36M-mutant proteins to the chromatin inhibited the H3K36 methylation locally. Taken together, these results highlight the roles of the chromatic localization of H3.3K36M-mutant protein in the reprogramming of the epigenome and the subsequent induction of tumorigenesis, and shed light on the molecular mechanisms by which the H3K36M mutation mainly occurs in histone H3.3 in chondroblastomas.
Collapse
|
27
|
Regadas I, Dahlberg O, Vaid R, Ho O, Belikov S, Dixit G, Deindl S, Wen J, Mannervik M. A unique histone 3 lysine 14 chromatin signature underlies tissue-specific gene regulation. Mol Cell 2021; 81:1766-1780.e10. [PMID: 33631105 DOI: 10.1016/j.molcel.2021.01.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Organismal development and cell differentiation critically depend on chromatin state transitions. However, certain developmentally regulated genes lack histone 3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac, respectively) and histone 3 lysine 4 (H3K4) methylation, histone modifications common to most active genes. Here we describe a chromatin state featuring unique histone 3 lysine 14 acetylation (H3K14ac) peaks in key tissue-specific genes in Drosophila and human cells. Replacing H3K14 in Drosophila demonstrates that H3K14 is essential for expression of genes devoid of canonical histone modifications in the embryonic gut and larval wing imaginal disc, causing lethality and defective wing patterning. We find that the SWI/SNF protein Brahma (Brm) recognizes H3K14ac, that brm acts in the same genetic pathway as H3K14R, and that chromatin accessibility at H3K14ac-unique genes is decreased in H3K14R mutants. Our results show that acetylation of a single lysine is essential at genes devoid of canonical histone marks and uncover an important requirement for H3K14 in tissue-specific gene regulation.
Collapse
Affiliation(s)
- Isabel Regadas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Olle Dahlberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Roshan Vaid
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Oanh Ho
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Gunjan Dixit
- Department of Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
28
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
29
|
Finogenova K, Bonnet J, Poepsel S, Schäfer IB, Finkl K, Schmid K, Litz C, Strauss M, Benda C, Müller J. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 2020; 9:e61964. [PMID: 33211010 PMCID: PMC7725500 DOI: 10.7554/elife.61964] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Repression of genes by Polycomb requires that PRC2 modifies their chromatin by trimethylating lysine 27 on histone H3 (H3K27me3). At transcriptionally active genes, di- and tri-methylated H3K36 inhibit PRC2. Here, the cryo-EM structure of PRC2 on dinucleosomes reveals how binding of its catalytic subunit EZH2 to nucleosomal DNA orients the H3 N-terminus via an extended network of interactions to place H3K27 into the active site. Unmodified H3K36 occupies a critical position in the EZH2-DNA interface. Mutation of H3K36 to arginine or alanine inhibits H3K27 methylation by PRC2 on nucleosomes in vitro. Accordingly, Drosophila H3K36A and H3K36R mutants show reduced levels of H3K27me3 and defective Polycomb repression of HOX genes. The relay of interactions between EZH2, the nucleosomal DNA and the H3 N-terminus therefore creates the geometry that permits allosteric inhibition of PRC2 by methylated H3K36 in transcriptionally active chromatin.
Collapse
Affiliation(s)
- Ksenia Finogenova
- Max Planck Institute of Biochemistry, Laboratory of Chromatin BiologyMartinsriedGermany
| | - Jacques Bonnet
- Max Planck Institute of Biochemistry, Laboratory of Chromatin BiologyMartinsriedGermany
| | - Simon Poepsel
- California Institute for Quantitative Biology (QB3), University of California, California Institute for Quantitative Biology (QB3), Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital CologneCologneGermany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Ingmar B Schäfer
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Katja Finkl
- Max Planck Institute of Biochemistry, Laboratory of Chromatin BiologyMartinsriedGermany
| | - Katharina Schmid
- Max Planck Institute of Biochemistry, Laboratory of Chromatin BiologyMartinsriedGermany
| | - Claudia Litz
- Max Planck Institute of Biochemistry, Laboratory of Chromatin BiologyMartinsriedGermany
| | - Mike Strauss
- Max Planck Institute of Biochemistry, cryoEM FacilityMartinsriedGermany
| | - Christian Benda
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Jürg Müller
- Max Planck Institute of Biochemistry, Laboratory of Chromatin BiologyMartinsriedGermany
| |
Collapse
|
30
|
Tunable Transcriptional Interference at the Endogenous Alcohol Dehydrogenase Gene Locus in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:1575-1583. [PMID: 32213532 PMCID: PMC7202008 DOI: 10.1534/g3.119.400937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neighboring sequences of a gene can influence its expression. In the phenomenon known as transcriptional interference, transcription at one region in the genome can repress transcription at a nearby region in cis. Transcriptional interference occurs at a number of eukaryotic loci, including the alcohol dehydrogenase (Adh) gene in Drosophila melanogaster. Adh is regulated by two promoters, which are distinct in their developmental timing of activation. It has been shown using transgene insertion that when the promoter distal from the Adh start codon is deleted, transcription from the proximal promoter becomes de-regulated. As a result, the Adh proximal promoter, which is normally active only during the early larval stages, becomes abnormally activated in adults. Whether this type of regulation occurs in the endogenous Adh context, however, remains unclear. Here, we employed the CRISPR/Cas9 system to edit the endogenous Adh locus and found that removal of the distal promoter also resulted in the untimely expression of the proximal promoter-driven mRNA isoform in adults, albeit at lower levels than previously reported. Importantly, transcription from the distal promoter was sufficient to repress proximal transcription in larvae, and the degree of this repression was dependent on the degree of distal promoter activity. Finally, upregulation of the distal Adh transcript led to the enrichment of histone 3 lysine 36 trimethylation over the Adh proximal promoter. We conclude that the endogenous Adh locus is developmentally regulated by transcriptional interference in a tunable manner.
Collapse
|
31
|
Gehre M, Bunina D, Sidoli S, Lübke MJ, Diaz N, Trovato M, Garcia BA, Zaugg JB, Noh KM. Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nat Genet 2020; 52:273-282. [PMID: 32139906 DOI: 10.1038/s41588-020-0586-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Mutations in enzymes that modify histone H3 at lysine 4 (H3K4) or lysine 36 (H3K36) have been linked to human disease, yet the role of these residues in mammals is unclear. We mutated K4 or K36 to alanine in the histone variant H3.3 and showed that the K4A mutation in mouse embryonic stem cells (ESCs) impaired differentiation and induced widespread gene expression changes. K4A resulted in substantial H3.3 depletion, especially at ESC promoters; it was accompanied by reduced remodeler binding and increased RNA polymerase II (Pol II) activity. Regulatory regions depleted of H3.3K4A showed histone modification alterations and changes in enhancer activity that correlated with gene expression. In contrast, the K36A mutation did not alter H3.3 deposition and affected gene expression at the later stages of differentiation. Thus, H3K4 is required for nucleosome deposition, histone turnover and chromatin remodeler binding at regulatory regions, where tight regulation of Pol II activity is necessary for proper ESC differentiation.
Collapse
Affiliation(s)
- Maja Gehre
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Daria Bunina
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Marlena J Lübke
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Nichole Diaz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Matteo Trovato
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Kyung-Min Noh
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
32
|
|
33
|
Kinyamu HK, Bennett BD, Bushel PR, Archer TK. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. J Biol Chem 2019; 295:1271-1287. [PMID: 31806706 DOI: 10.1074/jbc.ra119.011174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Indexed: 11/06/2022] Open
Abstract
Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Brian D Bennett
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709.,Integrative Bioinformatics Support Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| |
Collapse
|
34
|
Abstract
An important capacity of genes is the rapid change of expression levels to cope with the environment, known as expression responsiveness or plasticity. Elucidating the genomic mechanisms determining expression plasticity is critical for understanding the molecular basis of phenotypic plasticity, fitness and adaptation. In this study, we systematically quantified gene expression plasticity in four metazoan species by integrating changes of expression levels under a large number of genetic and environmental conditions. From this, we demonstrated that expression plasticity measures a distinct feature of gene expression that is orthogonal to other well-studied features, including gene expression level and tissue specificity/broadness. Expression plasticity is conserved across species with important physiological implications. The magnitude of expression plasticity is highly correlated with gene function and genes with high plasticity are implicated in disease susceptibility. Genome-wide analysis identified many conserved promoter cis-elements, trans-acting factors (such as CTCF), and gene body histone modifications (H3K36me3, H3K79me2 and H4K20me1) that are significantly associated with expression plasticity. Analysis of expression changes in perturbation experiments further validated a causal role of specific transcription factors and histone modifications. Collectively, this work reveals the general properties, physiological implications and multivariable regulation of gene expression plasticity in metazoans, extending the mechanistic understanding of gene regulation.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Fei He
- Biology Department, Brookhaven National Lab, Upton, NY 11967, USA
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
35
|
Albig C, Wang C, Dann GP, Wojcik F, Schauer T, Krause S, Maenner S, Cai W, Li Y, Girton J, Muir TW, Johansen J, Johansen KM, Becker PB, Regnard C. JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila. Nat Commun 2019; 10:5343. [PMID: 31767855 PMCID: PMC6877644 DOI: 10.1038/s41467-019-13174-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
In flies, the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, such as dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1's targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). JASPer-JIL-1 (JJ)-complex is the major form of kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, to modulate transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome.
Collapse
Affiliation(s)
- Christian Albig
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), LMU Munich, 81377, Munich, Germany
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geoffrey P Dann
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, 08544, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felix Wojcik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, 08544, USA
| | - Tamás Schauer
- Bioinformatics Unit, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Martinsried, Germany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany
| | - Sylvain Maenner
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany
- UMR7365 CNRS-UL, IMoPA, University of Lorraine, 54505, Vandoeuvre-lès-Nancy, France
| | - Weili Cai
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yeran Li
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Tom W Muir
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, 08544, USA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany.
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany.
| |
Collapse
|
36
|
Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76:2899-2916. [PMID: 31147750 PMCID: PMC11105573 DOI: 10.1007/s00018-019-03144-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019; 15:e1007932. [PMID: 30699116 PMCID: PMC6370247 DOI: 10.1371/journal.pgen.1007932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Proper determination of cell fates depends on epigenetic information that is used to preserve memory of decisions made earlier in development. Post-translational modification of histone residues is thought to be a central means by which epigenetic information is propagated. In particular, modifications of histone H3 lysine 27 (H3K27) are strongly correlated with both gene activation and gene repression. H3K27 acetylation is found at sites of active transcription, whereas H3K27 methylation is found at loci silenced by Polycomb group proteins. The histones bearing these modifications are encoded by the replication-dependent H3 genes as well as the replication-independent H3.3 genes. Owing to differential rates of nucleosome turnover, H3K27 acetylation is enriched on replication-independent H3.3 histones at active gene loci, and H3K27 methylation is enriched on replication-dependent H3 histones across silenced gene loci. Previously, we found that modification of replication-dependent H3K27 is required for Polycomb target gene silencing, but it is not required for gene activation. However, the contribution of replication-independent H3.3K27 to these functions is unknown. Here, we used CRISPR/Cas9 to mutate the endogenous replication-independent H3.3K27 to a non-modifiable residue. Surprisingly, we find that H3.3K27 is also required for Polycomb target gene silencing despite the association of H3.3 with active transcription. However, the requirement for H3.3K27 comes at a later stage of development than that found for replication-dependent H3K27, suggesting a greater reliance on replication-independent H3.3K27 in post-mitotic cells. Notably, we find no evidence of global transcriptional defects in H3.3K27 mutants, despite the strong correlation between H3.3K27 acetylation and active transcription. During development, naïve precursor cells acquire distinct identities through differential regulation of gene expression. The process of cell fate specification is progressive and depends on memory of prior developmental decisions. Maintaining cell identities over time is not dependent on changes in genome sequence. Instead, epigenetic mechanisms propagate information on cell identity by maintaining select sets of genes in either the on or off state. Chemical modifications of histone proteins, which package and organize the genome within cells, are thought to play a central role in epigenetic gene regulation. However, identifying which histone modifications are required for gene regulation, and defining the mechanisms through which they function in the maintenance of cell identity, remains a longstanding research challenge. Here, we focus on the role of histone H3 lysine 27 (H3K27). Modifications of H3K27 are associated with both gene activation and gene silencing (i.e. H3K27 acetylation and methylation, respectively). The histones bearing these modifications are encoded by different histone genes. One set of histone genes is only expressed during cell division, whereas the other set of histone genes is expressed in both dividing and non-dividing cells. Because most cells permanently stop dividing by the end of development, these “replication-independent” histone genes are potentially important for long-term maintenance of cell identity. In this study, we demonstrate that replication-independent H3K27 is required for gene silencing by the Polycomb group of epigenetic regulators. However, despite a strong correlation between replication-independent histones and active genes, we find that replication-independent H3K27 is not required for gene activation. As mutations in replication-independent H3K27 have recently been identified in human cancers, this work may help to inform the mechanisms by which histone mutations contribute to human disease.
Collapse
Affiliation(s)
- Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher M. Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A. Gregory Matera
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel J. McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
38
|
Meers MP, Adelman K, Duronio RJ, Strahl BD, McKay DJ, Matera AG. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster. BMC Genomics 2018; 19:157. [PMID: 29466941 PMCID: PMC5822475 DOI: 10.1186/s12864-018-4510-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background High-resolution transcription start site (TSS) mapping in D. melanogaster embryos and cell lines has revealed a rich and detailed landscape of both cis- and trans-regulatory elements and factors. However, TSS profiling has not been investigated in an orthogonal in vivo setting. Here, we present a comprehensive dataset that links TSS dynamics with nucleosome occupancy and gene expression in the wandering third instar larva, a developmental stage characterized by large-scale shifts in transcriptional programs in preparation for metamorphosis. Results The data recapitulate major regulatory classes of TSSs, based on peak width, promoter-proximal polymerase pausing, and cis-regulatory element density. We confirm the paucity of divergent transcription units in D. melanogaster, but also identify notable exceptions. Furthermore, we identify thousands of novel initiation events occurring at unannotated TSSs that can be classified into functional categories by their local density of histone modifications. Interestingly, a sub-class of these unannotated TSSs overlaps with functionally validated enhancer elements, consistent with a regulatory role for “enhancer RNAs” (eRNAs) in defining developmental transcription programs. Conclusions High-depth TSS mapping is a powerful strategy for identifying and characterizing low-abundance and/or low-stability RNAs. Global analysis of transcription initiation patterns in a developing organism reveals a vast number of novel initiation events that identify potential eRNAs as well as other non-coding transcripts critical for animal development. Electronic supplementary material The online version of this article (10.1186/s12864-018-4510-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael P Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA. .,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
39
|
Meers MP, Leatham-Jensen M, Penke TJR, McKay DJ, Duronio RJ, Matera AG. An Animal Model for Genetic Analysis of Multi-Gene Families: Cloning and Transgenesis of Large Tandemly Repeated Histone Gene Clusters. Methods Mol Biol 2018; 1832:309-325. [PMID: 30073535 DOI: 10.1007/978-1-4939-8663-7_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histone post-translational modifications (PTMs) are thought to participate in a range of essential molecular and cellular processes, including gene expression, replication, and nuclear organization. Importantly, histone PTMs are also thought to be prime candidates for carriers of epigenetic information across cell cycles and generations. However, directly testing the necessity of histone PTMs themselves in these processes by mutagenesis has been extremely difficult to carry out because of the highly repetitive nature of histone genes in animal genomes. We developed a transgenic system to generate Drosophila melanogaster genotypes in which the entire complement of replication-dependent histone genes is mutant at a residue of interest. We built a BAC vector containing a visible marker for lineage tracking along with the capacity to clone large (60-100 kb) inserts that subsequently can be site-specifically integrated into the D. melanogaster genome. We demonstrate that artificial tandem arrays of the core 5 kb replication-dependent histone repeat can be generated with relative ease. This genetic platform represents the first histone replacement system to leverage a single tandem transgenic insertion for facile genetics and analysis of molecular and cellular phenotypes. We demonstrate the utility of our system for directly preventing histone residues from being modified, and studying the consequent phenotypes. This system can be generalized to the cloning and transgenic insertion of any tandemly repeated sequence of biological interest.
Collapse
Affiliation(s)
- Michael P Meers
- Integrative Program in Biological and Genome Sciences, Curriculum in Genetics and Molecular Biology, Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mary Leatham-Jensen
- Integrative Program in Biological and Genome Sciences, Curriculum in Genetics and Molecular Biology, Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taylor J R Penke
- Integrative Program in Biological and Genome Sciences, Curriculum in Genetics and Molecular Biology, Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J McKay
- Integrative Program in Biological and Genome Sciences, Curriculum in Genetics and Molecular Biology, Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Duronio
- Integrative Program in Biological and Genome Sciences, Curriculum in Genetics and Molecular Biology, Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - A Gregory Matera
- Integrative Program in Biological and Genome Sciences, Curriculum in Genetics and Molecular Biology, Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|