1
|
Alsalmi OA, Aljohani AI, Almutairi SM, Alsufyani RO, Alrubayee AR, Alzahrani KJ, Alkhammash GE, Aljuaid HM, Alghamdi HS, Alsaeedi FA. Clinical Significance of Fragile X Syndrome 2 (FXR2) in Breast Cancer. Genes (Basel) 2025; 16:302. [PMID: 40149453 PMCID: PMC11942179 DOI: 10.3390/genes16030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The fragile X protein family comprises three members: the fragile X syndrome protein (FMRP) and its structural homologs, fragile X syndrome 1 and 2 (FXR1 and FXR2). FMRP has a significant role in controlling the genesis and progression of various forms of human cancer. However, studies on the prognostic significance of FXR2 in cancer are scarce. Thus, this study aimed to investigate the clinicopathological significance of FXR2, a member of the FMRP family, in primary breast cancer (BC). Methods: A total of 100 formalin-fixed paraffin-embedded (FFPE) tissue blocks from invasive BC cases were collected from King Abdulaziz Hospital in Saudi Arabia. Immunohistochemistry (IHC) was used to assess FXR2 protein expression in the BC tissues, and the results were correlated with clinicopathological parameters, such as tumor grade, tumor size and hormone receptor status. Additionally, the association between clinicopathological features and FXR2 mRNA expression was assessed using the BC Gene-Expression Miner v5.0 tool on all publicly available DNA microarray (n = 10,872) and RNA sequence (n = 4421) data to validate the results. Results: FXR2 protein expression was significantly associated with human epidermal growth factor 2 (HER2) negativity (p = 0.010) and low Ki67 (p < 0.001). Both DNA microarray and RNA sequence data showed that HER2 negativity was strongly linked to high levels of FXR2 mRNA. High FXR2 mRNA levels were also correlated with hormone receptor negativity and mutated p53. Conclusions: This study suggests that FXR2 may have indirect clinical significance in BC. However, further studies are warranted to deepen our understanding of the association between FXR2 and other clinicopathological parameters, which could lead to improved diagnostic, treatment, and prognostic strategies for BC patients.
Collapse
Affiliation(s)
- Ohud A. Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Abrar I. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Shahad M. Almutairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Rana O. Alsufyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | | | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Ghaida E. Alkhammash
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Hessa M. Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Hanan S. Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| | - Fouzeyyah A. Alsaeedi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.I.A.); (S.M.A.); (R.O.A.); (K.J.A.); (G.E.A.); (H.M.A.); (H.S.A.)
| |
Collapse
|
2
|
Zhao Z, Zhu L, Luo Y, Xu H, Zhang Y. Collateral lethality: A unique type of synthetic lethality in cancers. Pharmacol Ther 2025; 265:108755. [PMID: 39581504 DOI: 10.1016/j.pharmthera.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Genetic interactions play crucial roles in cell-essential functions. Intrinsic genetic defects in tumors typically involve gain-of- and loss-of-function mutations in tumor suppressor genes (TSGs) and oncogenes, respectively, providing potential antitumor vulnerabilities. Moreover, tumor cells with TSG deficiencies exhibit heightened sensitivity to the inhibition of compensatory pathways. Synthetic and collateral lethality are two strategies used for exploiting novel drug targets in multiple types of cancer. Collateral lethality is a unique type of synthetic lethality that occurs when passenger genes are co-deleted in neighboring TSGs. Although synthetic lethality has already been successfully demonstrated in clinical practice, antitumor therapeutics based on collateral lethality are predominantly still in the preclinical phase. Therefore, screening for potential genetic interactions within the cancer genome has emerged as a promising approach for drug development. Here, the two conceptual therapeutic strategies that involve the deletion or inactivation of cancer-specific TSGs are discussed. Moreover, existing approaches for screening and identifying potential gene partners are also discussed. Particularly, this review highlights the current advances of "collateral lethality" in the preclinical phase and addresses the challenges involved in translating them into therapeutic applications. This review provides insights into these strategies as new opportunities for the development of personalized antitumor therapies.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Luo
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Heng Xu
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Khan FA, Fouad D, Ataya FS, Fang N, Dong J, Ji S. FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression. Biol Direct 2024; 19:104. [PMID: 39511680 PMCID: PMC11542266 DOI: 10.1186/s13062-024-00553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology. METHODS The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments. RESULTS FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01). CONCLUSIONS Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Middle Urumqi Road, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Middle Urumqi Road, Shanghai, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Tsui KH, Liu CL, Yeh HL, Liu MK, Li CH, Chen WH, Jiang KC, Li HR, Thuy Dung PV, Hsiao M, Abou-Kheir W, Liu YN. WNT1-inducible signaling pathway protein 1 activation through C-X-C motif chemokine ligand 5/C-X-C chemokine receptor type 2/leukemia inhibitory factor/leukemia inhibitory factor receptor signaling promotes immunosuppression and neuroendocrine differentiation in prostate cancer. iScience 2024; 27:110562. [PMID: 39175775 PMCID: PMC11338985 DOI: 10.1016/j.isci.2024.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
The interaction between prostate cancer (PCa) cells and prostate stromal cells fosters an immunosuppressive tumor microenvironment (TME) that promotes tumor growth and immune evasion. However, the specific signaling pathways involved remain unclear. We identified a key mechanism involving the CXCL5/CXCR2 and LIF/LIFR pathways, which create a feedforward loop that enhances neuroendocrine differentiation (NED) in PCa cells and upregulates WNT1-inducible signaling pathway protein 1 (WISP1) in both cell types. WISP1 upregulation is essential for inducing immune checkpoints and immunosuppressive cytokines via LIF/LIFR signaling and STAT3 phosphorylation. This process leads to increased neuroendocrine markers, immune checkpoints, cell proliferation, and migration. Notably, WISP1 levels in patient sera correlate with PCa progression, suggesting its potential as a biomarker. Our findings elucidate the mechanisms by which reciprocal communication between PCa cells and stromal cells contributes to the formation of an immunosuppressive TME, driving the malignant progression of PCa and highlighting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ke Hung Tsui
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medical, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Kun Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Hsiu Li
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Ramberger E, Sapozhnikova V, Ng YLD, Dolnik A, Ziehm M, Popp O, Sträng E, Kull M, Grünschläger F, Krüger J, Benary M, Müller S, Gao X, Murgai A, Haji M, Schmidt A, Lutz R, Nogai A, Braune J, Laue D, Langer C, Khandanpour C, Bassermann F, Döhner H, Engelhardt M, Straka C, Hundemer M, Beule D, Haas S, Keller U, Einsele H, Bullinger L, Knop S, Mertins P, Krönke J. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. NATURE CANCER 2024; 5:1267-1284. [PMID: 38942927 PMCID: PMC11358022 DOI: 10.1038/s43018-024-00784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2024] [Indexed: 06/30/2024]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valeriia Sapozhnikova
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yuen Lam Dora Ng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dolnik
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Eric Sträng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Kull
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Florian Grünschläger
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Josefine Krüger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sina Müller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiang Gao
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Arunima Murgai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Annika Schmidt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Lutz
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Nogai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Braune
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Laue
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Florian Bassermann
- Department of Medicine III, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Hartmut Döhner
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | - Michael Hundemer
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Simon Haas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Ulrich Keller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
- Nuremberg General Hospital, Nuremberg, Germany.
- Paracelsus Medical School, Nuremberg, Germany.
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| | - Jan Krönke
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Liu Y, Chen W, Liu M, Yeh H, Chen W, Jiang K, Li H, Chen Z, Wang W, Abou‐Kheir W, Wen Y. Immunosuppressive role of BDNF in therapy-induced neuroendocrine prostate cancer. Mol Oncol 2024; 18:1665-1686. [PMID: 38381121 PMCID: PMC11161734 DOI: 10.1002/1878-0261.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Prostate stromal cells play a crucial role in the promotion of tumor growth and immune evasion in the tumor microenvironment (TME) through intricate molecular alterations in their interaction with prostate cancer (PCa) cells. While the impact of these cells on establishing an immunosuppressive response and influencing PCa aggressiveness remains incompletely understood. Our study shows that the activation of the leukemia inhibitory factor (LIF)/LIF receptor (LIFR) pathway in both prostate tumor and stromal cells, following androgen deprivation therapy (ADT), leads to the development of an immunosuppressive TME. Activation of LIF/LIFR signaling in PCa cells induces neuroendocrine differentiation (NED) and upregulates immune checkpoint expression. Inhibition of LIF/LIFR attenuates these effects, underscoring the crucial role of LIF/LIFR in linking NED to immunosuppression. Prostate stromal cells expressing LIFR contribute to NED and immunosuppressive marker abundance in PCa cells, while LIFR knockdown in prostate stromal cells reverses these effects. ADT-driven LIF/LIFR signaling induces brain-derived neurotrophic factor (BDNF) expression, which, in turn, promotes NED, aggressiveness, and immune evasion in PCa cells. Clinical analyses demonstrate elevated BDNF levels in metastatic castration-resistant PCa (CRPC) and a positive correlation with programmed death-ligand 1 (PDL1) and immunosuppressive signatures. This study shows that the crosstalk between PCa cells and prostate stromal cells enhances LIF/LIFR signaling, contributing to an immunosuppressive TME and NED in PCa cells through the upregulation of BDNF.
Collapse
Affiliation(s)
- Yen‐Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Wei‐Yu Chen
- Department of Pathology, Wan Fang HospitalTaipei Medical UniversityTaiwan
- Department of Pathology, School of Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Ming‐Kun Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Hsiu‐Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Wei‐Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Kuo‐Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Han‐Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Zi‐Qing Chen
- Division of Clinical Pharmacy, School of PharmacyTaipei Medical UniversityTaiwan
| | - Wan‐Hsin Wang
- Division of Clinical Pharmacy, School of PharmacyTaipei Medical UniversityTaiwan
| | - Wassim Abou‐Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of MedicineAmerican University of BeirutLebanon
| | - Yu‐Ching Wen
- Department of Urology, Wan Fang HospitalTaipei Medical UniversityTaiwan
- Department of Urology, School of Medicine, College of MedicineTaipei Medical UniversityTaiwan
- TMU Research Center of Urology and KidneyTaipei Medical UniversityTaiwan
| |
Collapse
|
7
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|
9
|
Fragile X-Related Protein FXR1 Controls Human Adenovirus Capsid mRNA Metabolism. J Virol 2023; 97:e0153922. [PMID: 36749074 PMCID: PMC9972981 DOI: 10.1128/jvi.01539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens causing a variety of diseases. A well-controlled expression of virus capsid mRNAs originating from the major late transcription unit (MLTU) is essential for forming the infectious virus progeny. However, regulation of the MLTU mRNA metabolism has mainly remained enigmatic. In this study, we show that the cellular RNA-binding protein FXR1 controls the stability of the HAdV-5 MLTU mRNAs, as depletion of FXR1 resulted in increased steady-state levels of MLTU mRNAs. Surprisingly, the lack of FXR1 reduced viral capsid protein accumulation and formation of the infectious virus progeny, indicating an opposing function of FXR1 in HAdV-5 infection. Further, the long FXR1 isoform interfered with MLTU mRNA translation, suggesting FXR1 isoform-specific functions in virus-infected cells. We also show that the FXR1 protein interacts with N6-methyladenosine (m6A)-modified MLTU mRNAs, thereby acting as a novel m6A reader protein in HAdV-5 infected cells. Collectively, our study identifies FXR1 as a regulator of MLTU mRNA metabolism in the lytic HAdV-5 life cycle. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, such as the common cold and conjunctivitis. Even though adenoviruses have been studied for more than 6 decades, there are still gaps in understanding how the virus interferes with the host cell to achieve efficient growth. In this study, we identified the cellular RNA-binding protein FXR1 as a factor manipulating the HAdV life cycle. We show that the FXR1 protein specifically interferes with mRNAs encoding essential viral capsid proteins. Since the lack of the FXR1 protein reduces virus growth, we propose that FXR1 can be considered a novel cellular proviral factor needed for efficient HAdV growth. Collectively, our study provides new detailed insights about the HAdV-host interactions, which might be helpful when developing countermeasures against pathogenic adenovirus infections and for improving adenovirus-based therapies.
Collapse
|
10
|
IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci U S A 2022; 119:e2200477119. [PMID: 36322753 PMCID: PMC9659396 DOI: 10.1073/pnas.2200477119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
IGF2BP2 binds to a number of RNA transcripts and has been suggested to function as a tumor promoter, although little is known regarding the mechanisms that regulate its roles in RNA metabolism. Here we demonstrate that IGF2BP2 binds to the 3' untranslated region of the transcript encoding ATP6V1A, a catalytic subunit of the vacuolar ATPase (v-ATPase), and serves as a substrate for the NAD+-dependent deacetylase SIRT1, which regulates how IGF2BP2 affects the stability of the ATP6V1A transcript. When sufficient levels of SIRT1 are expressed, it catalyzes the deacetylation of IGF2BP2, which can bind to the ATP6V1A transcript but does not mediate its degradation. However, when SIRT1 expression is low, the acetylated form of IGF2BP2 accumulates, and upon binding to the ATP6V1A transcript recruits the XRN2 nuclease, which catalyzes transcript degradation. Thus, the stability of the ATP6V1A transcript is significantly compromised in breast cancer cells when SIRT1 expression is low or knocked-down. This leads to a reduction in the expression of functional v-ATPase complexes in cancer cells and to an impairment in their lysosomal activity, resulting in the production of a cellular secretome consisting of increased numbers of exosomes enriched in ubiquitinated protein cargo and soluble hydrolases, including cathepsins, that together combine to promote tumor cell survival and invasiveness. These findings describe a previously unrecognized role for IGF2BP2 in mediating the degradation of a messenger RNA transcript essential for lysosomal function and highlight how its sirtuin-regulated acetylation state can have significant biological and disease consequences.
Collapse
|
11
|
Wang P, Mao S, Yi T, Wang L. LncRNA MALAT1 Targets miR-9-3p to Upregulate SAP97 in the Hippocampus of Mice with Vascular Dementia. Biochem Genet 2022; 61:916-930. [PMID: 36227424 DOI: 10.1007/s10528-022-10289-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Vascular dementia (VaD) is the second most common subtype of dementia, but the precise mechanism underlying VaD is not fully understood. Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) can act as a key regulator in physiological and pathological processes, including neurological disorders, but whether it is correlated with VaD has not been elucidated. In this study, we established a mouse model of VaD by the transient bilateral common carotid artery occlusion surgery. As expected, the Morris water maze showed that VaD mice had significant deficits in spatial learning and memory. MALAT1 was elevated in the hippocampus of VaD mice. Additionally, we found that microRNA (miR)-9-3p was downregulated in the VaD hippocampus. By performing a dual-luciferase report assay, we verified the binding relationship between MALAT1 and miR-9-3p. Interestingly, synapse-associated protein-97 (SAP97), a well-known gene related to synaptic functions, was found upregulated in the hippocampus of VaD mice. In vitro experiments performed on hippocampal neurons demonstrated that miR-9-3p negatively regulated SAP97 expression. The downregulation of MALAT1 in hippocampal neurons increased miR-9-3p and reduced SAP97, whereas miR-9-3p inhibition rescued the MALAT1 downregulation-mediated SAP97 reduction. In conclusion, the present study reported the alterations in the expression levels of MALAT1, miR-9-3p, and SAP97 in the hippocampus of VaD mice, suggesting that MALAT1 targets miR-9-3p to upregulate SAP97 in the hippocampus of mice with VaD. This work will be helpful for understanding the molecular mechanisms of VaD.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Senlin Mao
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Tingting Yi
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
12
|
Kieffer F, Hilal F, Gay AS, Debayle D, Pronot M, Poupon G, Lacagne I, Bardoni B, Martin S, Gwizdek C. Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP. Front Mol Biosci 2022; 9:954087. [PMID: 36237573 PMCID: PMC9553004 DOI: 10.3389/fmolb.2022.954087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.
Collapse
Affiliation(s)
- Félicie Kieffer
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Fahd Hilal
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Iliona Lacagne
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Carole Gwizdek
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Carole Gwizdek,
| |
Collapse
|
13
|
Nordio L, Bazzocchi C, Genova F, Serra V, Longeri M, Franzo G, Rondena M, Stefanello D, Giudice C. Molecular and Immunohistochemical Expression of LTA4H and FXR1 in Canine Oral Melanoma. Front Vet Sci 2021; 8:767887. [PMID: 34966807 PMCID: PMC8710725 DOI: 10.3389/fvets.2021.767887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Oral melanoma is a common canine tumor whose prognosis is considered ominous, but poorly predicted by histology alone. In the present study the gene and protein expression of Leukotriene A4 hydrolase (LTA4H) and Fragile-X-mental retardation-related protein1 (FXR1), both reported as related to metastatic potential in different tumors, were investigated in canine oral melanoma. The main aim of the study was to confirm and quantify the presence of LTA4H and FXR1 genes and protein in oral melanomas. A secondary aim was to investigate their association with histologic prognostic criteria (mitotic count, Ki-67 index). Formalin-fixed-paraffin-embedded canine oral melanomas (36) were collected and histopathological evaluation carried out. Immunolabelling for LTA4H and FXR1 and Ki-67 were performed. RT-PCR evaluated LTA4H and FXR1 gene expressions. Histologically, most tumors were epithelioid cell melanomas (19/36) and were amelanotic, mildly or moderately pigmented (5, 12 and 13/36 respectively), only 6 were highly pigmented. Mitotic count ranged 1-106, Ki-67 index ranged 4.5–52.3. Thirty-two (32/32) melanomas immunolabelled for LTA4H and 33/34 for FXR1. RT-PCR values ranged 0.76–5.11 ΔCt for LTA4H and 0.22–6.24 ΔCt for FXR1. Molecular and immunohistochemical expression of both LTA4H and FXR1 did not statically correlate with mitotic count or Ki-67 index. The present study demonstrates LTA4H and FXR1 gene and protein in canine oral melanoma, however their expression is apparently unrelated to histopathologic prognostic criteria. Although LTA4H and FXR1 seem unrelated to tumor behavior, their extensive expression in the present cohort of cases suggest that they may play a role in canine oral melanoma oncogenesis.
Collapse
Affiliation(s)
- Laura Nordio
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Francesca Genova
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Valentina Serra
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Maria Longeri
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Università degli Studi di Padova, Legnaro, Italy
| | - Marco Rondena
- San Marco Veterinary Clinic and Laboratory, Veggiano, Italy
| | - Damiano Stefanello
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Chiara Giudice
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Xu W, Zhang Y, Qin D, Gui Y, Wang S, Du G, Yang F, Li L, Yuan S, Wang M, Wu X. Transcription factor-like 5 is a potential DNA/RNA-binding protein essential for maintaining male fertility in mice. J Cell Sci 2021; 135:273810. [PMID: 34931239 DOI: 10.1242/jcs.259036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Transcription factor-like 5 (TCFL5) is a testis-specific protein that contains the basic helix-loop-helix domain, but the in vivo functions of TCFL5 remain unknown. Herein, we generated CRISPR/Cas9-mediated knockout mice to dissect the function of TCFL5 in mouse testes. Surprisingly, we found that it was difficult to generate homozygous mice with the Tcfl5 deletion since the heterozygous males (Tcfl5+/-) were infertile. We did; however, observe markedly abnormal phenotypes of spermatids and spermatozoa in the testes and epididymides of Tcfl5+/- mice. Mechanistically, we demonstrated that TCFL5 transcriptionally and post-transcriptionally regulated a set of genes participating in male germ cell development via TCFL5 ChIP-DNA and eCLIP-RNA high-throughput sequencing. We also identified a known RBP, FXR1 as an interacting partner of TCFL5 that may coordinate the transition and localization of TCFL5 in the nucleus. Collectively, we herein report for the first time that Tcfl5 is haploinsufficient in vivo and acts as a dual-function protein that mediates DNA and RNA to regulate spermatogenesis.
Collapse
Affiliation(s)
- Weiya Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guihua Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Centre for Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
15
|
Mukherjee M, Goswami S. Identification of Key Deregulated RNA-Binding Proteins in Pancreatic Cancer by Meta-Analysis and Prediction of Their Role as Modulators of Oncogenesis. Front Cell Dev Biol 2021; 9:713852. [PMID: 34912796 PMCID: PMC8667787 DOI: 10.3389/fcell.2021.713852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs) play a significant role in multiple cellular processes with their deregulations strongly associated with cancer. However, there are not adequate evidences regarding global alteration and functions of RBPs in pancreatic cancer, interrogated in a systematic manner. In this study, we have prepared an exhaustive list of RBPs from multiple sources, downloaded gene expression microarray data from a total of 241 pancreatic tumors and 124 normal pancreatic tissues, performed a meta-analysis, and obtained differentially expressed RBPs (DE-RBPs) using the Limma package of R Bioconductor. The results were validated in microarray datasets and the Cancer Genome Atlas (TCGA) RNA sequencing dataset for pancreatic adenocarcinoma (PAAD). Pathway enrichment analysis was performed using DE-RBPs, and we also constructed the protein-protein interaction (PPI) network to detect key modules and hub-RBPs. Coding and noncoding targets for top altered and hub RBPs were identified, and altered pathways modulated by these targets were also investigated. Our meta-analysis identified 45 upregulated and 15 downregulated RBPs as differentially expressed in pancreatic cancer, and pathway enrichment analysis demonstrated their important contribution in tumor development. As a result of PPI network analysis, 26 hub RBPs were detected and coding and noncoding targets for all these RBPs were categorized. Functional exploration characterized the pathways related to epithelial-to-mesenchymal transition (EMT), cell migration, and metastasis to emerge as major pathways interfered by the targets of these RBPs. Our study identified a unique meta-signature of 26 hub-RBPs to primarily modulate pancreatic tumor cell migration and metastasis in pancreatic cancer. IGF2BP3, ISG20, NIP7, PRDX1, RCC2, RUVBL1, SNRPD1, PAIP2B, and SIDT2 were found to play the most prominent role in the regulation of EMT in the process. The findings not only contribute to understand the biology of RBPs in pancreatic cancer but also to evaluate their candidature as possible therapeutic targets.
Collapse
Affiliation(s)
| | - Srikanta Goswami
- National Institute of Biomedical Genomics, Kalyani, India.,Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
16
|
Yuan H, Yan L, Wu M, Shang Y, Guo Q, Ma X, Zhang X, Zhu Y, Wu Z, Lobie PE, Zhu T. Analysis of the estrogen receptor-associated lncRNA landscape identifies a role for ERLC1 in breast cancer progression. Cancer Res 2021; 82:391-405. [PMID: 34810200 DOI: 10.1158/0008-5472.can-21-1155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Estrogen receptor alpha (ERα) plays a vital role in the development of normal breast tissue and in breast cancer. By cross-analyzing The Cancer Genome Atlas (TCGA) database, ERα-regulated long noncoding RNA 1 (ERLC1) was identified as a long noncoding RNA exhibiting a strong association with ERα signaling and high specificity of expression in breast tissue. ERLC1 was transcriptionally activated by ERα, and ERLC1 stabilized the ESR1 transcript by sequestering miR-129 and tethering FXR1 to maintain a positive feedback loop that potentiated ERα signaling. ERLC1 was elevated in tamoxifen-resistant breast cancer cells, where ERLC1 depletion restored sensitivity to tamoxifen and increased the efficacy of palbociclib or fulvestrant therapy. Collectively, these data warrant further investigation of ERLC1 as a modulator of therapeutic response and potential therapeutic target in ER+ breast cancer.
Collapse
Affiliation(s)
- Hui Yuan
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Linlin Yan
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mingming Wu
- Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China
| | - Yinzhong Shang
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | - Xin Ma
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao Zhang
- School of Life Sciences, University of Science and Technology of China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University
| | | | - Peter E Lobie
- Centre for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University
| | - Tao Zhu
- Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
17
|
Pinoli P, Srihari S, Wong L, Ceri S. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response. BMC Bioinformatics 2021; 22:250. [PMID: 33992077 PMCID: PMC8126165 DOI: 10.1186/s12859-021-04168-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells. RESULTS In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways. CONCLUSIONS This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.
Collapse
Affiliation(s)
- Pietro Pinoli
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Limsoon Wong
- School of Computing, National University of Singapore, Computing Drive 13, Singapore, Singapore
| | - Stefano Ceri
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
| |
Collapse
|
18
|
Hypoxia and Extracellular Acidification as Drivers of Melanoma Progression and Drug Resistance. Cells 2021; 10:cells10040862. [PMID: 33918883 PMCID: PMC8070386 DOI: 10.3390/cells10040862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia and elevated extracellular acidification are prevalent features of solid tumors and they are often shown to facilitate cancer progression and drug resistance. In this review, we have compiled recent and most relevant research pertaining to the role of hypoxia and acidification in melanoma growth, invasiveness, and response to therapy. Melanoma represents a highly aggressive and heterogeneous type of skin cancer. Currently employed treatments, including BRAF V600E inhibitors and immune therapy, often are not effective due to a rapidly developing drug resistance. A variety of intracellular mechanisms impeding the treatment were discovered. However, the tumor microenvironment encompassing stromal and immune cells, extracellular matrix, and physicochemical conditions such as oxygen level or acidity, may also influence the therapy effectiveness. Hypoxia and acidification are able to reprogram the metabolism of melanoma cells, enhance their survival and invasiveness, as well as promote the immunosuppressive environment. For this reason, these physicochemical features of the melanoma niche and signaling pathways related to them emerge as potential therapeutic targets.
Collapse
|
19
|
Wang H, Li B, Yan K, Wu Y, Wen Y, Liu Y, Fan P, Ma Q. Protein and Signaling Pathway Responses to rhIL-6 Intervention Before Lobaplatin Treatment in Osteosarcoma Cells. Front Oncol 2021; 11:602712. [PMID: 33791202 PMCID: PMC8006349 DOI: 10.3389/fonc.2021.602712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/16/2021] [Indexed: 01/28/2023] Open
Abstract
Lobaplatin is a third-generation platinum-based antineoplastic agent and is widely used for osteosarcoma treatment before and after tumor removal. However, treatment failure often results from lobaplatin drug resistance. In our study, we found that SaOS-2 and SOSP-9607 osteosarcoma cells became less sensitive to lobaplatin after treatment with exogenous interleukin (IL)-6. Quantitative proteomic analysis was performed to elucidate the underlying mechanism in SaOS-2 osteosarcoma cells. Cells were divided into a control group (CG), a lobaplatin treatment group (LG), a recombinant human IL-6 (rhIL-6), and a lobaplatin treatment group (rhILG). We performed three biological replicates in each group to compare the differential protein expression between groups using a tandem mass tag (TMT) labeling technology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1,313 proteins with significant differential expression was identified and quantified. The general characteristics of the significantly enriched proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-protein interaction (PPI) analysis was conducted using IntAct and STRING. In total, 31 proteins were further verified by parallel reaction monitoring (PRM), among which ras GTPase-activating protein-binding protein 1 (G3BP1), fragile X mental retardation syndrome-related protein 1 (hFXR1p), and far upstream element-binding protein 1 (FUBP1) were significantly differentially expressed. Immunohistochemistry results showed that these three proteins are highly expressed in specimens from platinum-resistant osteosarcoma patients, while the proteins are negatively or weakly expressed in specimens from platinum-sensitive osteosarcoma patients. The immunofluorescence staining results were in accord with the immunohistochemistry staining results. siRNA knockdown of FUBP1 showed a strikingly decreased IC50 value for lobaplatin in FUBP1-silenced cells, which verified the role of FUBP1 in the drug susceptibility of osteosarcoma and the potential therapeutic value for increasing the sensitivity to lobaplatin. This is the first proteomic study on a rhIL-6 intervention before lobaplatin treatment in osteosarcoma cells.
Collapse
Affiliation(s)
- Huan Wang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Li
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Kang Yan
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yonghong Wu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunyan Liu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Fan
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, Wenzhou, China
| | - Qiong Ma
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Wang B, Yin H, Zhang H, Wang T. circNRIP1 facilitates keloid progression via FXR1‑mediated upregulation of miR‑503‑3p and miR‑503‑5p. Int J Mol Med 2021; 47:70. [PMID: 33649815 PMCID: PMC7952250 DOI: 10.3892/ijmm.2021.4903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
Circular nuclear receptor interacting protein 1 (circNRIP1) is implicated in tumor initiation and progression; however, the underlying mechanism of keloid progression is unclear. To the best of our knowledge, the present study is the first to characterize the contribution of circNRIP1 to keloid progression and evaluate the potential underlying molecular mechanisms using keloid-derived fibroblasts. The expression profile of circNRIP1 was confirmed in keloid tissue. The contribution of circNRIP1 to keloid progression was investigated via loss-of-function assays. Furthermore, the molecular mechanism by which circNRIP1 contributes to pre-microRNA (miR)-503 maturation through blocking Fbxo4-mediated Fragile-X mental retardation 1 (FXR1) ubiquitination was verified. Finally, the biological functions of FXR1, miR-503-3p, and miR-503-5p in keloid-derived fibroblast proliferation, apoptosis and extracellular matrix accumulation were confirmed. circNRIP1 was highly expressed in keloid tissue and keloid-derived fibroblasts. Functional analysis showed that circNRIP1 knockdown successfully blocked the proliferation and expression of extracellular matrix-associated proteins while increasing the rate of apoptosis in keloid-derived fibroblasts. Mechanistically, circNRIP1 maintained FXR1 stability by impeding Fbxo4-mediated FXR1 ubiquitination and degradation. Additionally, FXR1 increased the abundance of miR-503-3p and miR-503-5p by contributing to pre-miR-503 maturation. Knockdown of FXR1, miR-503-3p and miR-503-5p also inhibited proliferation and extracellular matrix accumulation in keloid-derived fibroblasts and increased levels of cell apoptosis. Collectively, the present study confirmed that circNRIP1 contributed to pre-miR-503 maturation via blocking Fbxo4-mediated FXR1 ubiquitination and degradation, which facilitates keloid progression. These results indicate that circNRIP1 has potential as a novel therapeutic target for the control and/or treatment of keloids.
Collapse
Affiliation(s)
- Baolin Wang
- Department of Dermatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Hang Yin
- Department of Neurosurgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Hongmei Zhang
- Department of Pharmacy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Tiantian Wang
- Department of Dermatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
21
|
Shu H, Donnard E, Liu B, Jung S, Wang R, Richter JD. FMRP links optimal codons to mRNA stability in neurons. Proc Natl Acad Sci U S A 2020; 117:30400-30411. [PMID: 33199649 PMCID: PMC7720238 DOI: 10.1073/pnas.2009161117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.
Collapse
Affiliation(s)
- Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Elisa Donnard
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
22
|
Majumder M, Johnson RH, Palanisamy V. Fragile X-related protein family: a double-edged sword in neurodevelopmental disorders and cancer. Crit Rev Biochem Mol Biol 2020; 55:409-424. [PMID: 32878499 DOI: 10.1080/10409238.2020.1810621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fragile X-related (FXR) family proteins FMRP, FXR1, and FXR2 are RNA binding proteins that play a critical role in RNA metabolism, neuronal plasticity, and muscle development. These proteins share significant homology in their protein domains, which are functionally and structurally similar to each other. FXR family members are known to play an essential role in causing fragile X mental retardation syndrome (FXS), the most common genetic form of autism spectrum disorder. Recent advances in our understanding of this family of proteins have occurred in tandem with discoveries of great importance to neurological disorders and cancer biology via the identification of their novel RNA and protein targets. Herein, we review the FXR family of proteins as they pertain to FXS, other mental illnesses, and cancer. We emphasize recent findings and analyses that suggest contrasting functions of this protein family in FXS and tumorigenesis based on their expression patterns in human tissues. Finally, we discuss current gaps in our knowledge regarding the FXR protein family and their role in FXS and cancer and suggest future studies to facilitate bench to bedside translation of the findings.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Roger H Johnson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
23
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
24
|
Li Q, Chen W, Luo R, Zhang Z, Song M, Chen W, Yang Z, Yang Y, Guo Z, Yang A. Upregulation of OIP5-AS1 Predicts Poor Prognosis and Contributes to Thyroid Cancer Cell Proliferation and Migration. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:279-291. [PMID: 32193154 PMCID: PMC7078457 DOI: 10.1016/j.omtn.2019.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/03/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
As a common malignancy, thyroid cancer mainly occurs in the endocrine system. There have been accumulating studies on therapeutic methods of thyroid cancer, but its internal molecular mechanism is still not fully understood. Long noncoding RNA (lncRNA) OIP5-AS1 was confirmed as an oncogene and related to poor prognosis in various cancers. Nevertheless, its role and underlying mechanism remain unclear in thyroid cancer. Here, we observed a significant upregulation of OIP5-AS1 in thyroid cancer tissues and cells, and upregulated OIP5-AS1 was correlated with poor prognosis in thyroid cancer. Moreover, OIP5-AS1 knockdown resulted in the inhibited cell proliferation and migration, while overexpressed OIP5-AS1 exhibited the reverse function in thyroid cancer. Besides, OIP5-AS1 was found to positively regulate Wnt/β-catenin signaling pathway. Through mechanism exploration, OIP5-AS1 was discovered to activate Wnt/β-catenin signaling pathway via FXR1/YY1/CTNNB1 axis. Finally, rescue assays indicated that the inhibitive role of silenced OIP5-AS1 in thyroid cancer cell growth and Wnt/β-catenin signaling pathway could be rescued by overexpression of CTNNB1 or addition of lithium chloride (LiCl). In conclusion, upregulation of OIP5-AS1 predicted unfavorable prognosis and enhanced thyroid cancer cell growth by activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rongzhen Luo
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenkuan Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuanzhong Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhuming Guo
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
25
|
Molecular prognosticators in clinically and pathologically distinct cohorts of head and neck squamous cell carcinoma-A meta-analysis approach. PLoS One 2019; 14:e0218989. [PMID: 31310629 PMCID: PMC6634788 DOI: 10.1371/journal.pone.0218989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) includes multiple subsites that exhibit differential treatment outcome, which is in turn reflective of tumor stage/histopathology and molecular profile. This study hypothesized that the molecular profile is an accurate prognostic adjunct in patients triaged based on clinico-pathological characteristics. Towards this effect, publically available micro-array datasets (n = 8), were downloaded, classified based on HPV association (n = 83) and site (tongue n = 88; laryngopharynx n = 53; oropharynx n = 51) and re-analyzed (Genespring; v13.1). The significant genes were validated in respective cohorts in The Cancer Genome Atlas (TCGA) for correlation with clinico-pathological parameters/survival. The gene entities (n = 3258) identified from HPV based analysis, when validated in TCGA identified the subset specifically altered in HPV+ HNSCC (n = 63), with three genes showing survival impact (RPP25, NUDCD2, NOVA1). Site-specific meta-analysis identified respective differentials (tongue: 3508, laryngopharynx: 4893, oropharynx: 2386); validation in TCGA revealed markers with high incidence (altered in >10% of patients) in tongue (n = 331), laryngopharynx (n = 701) and oropharynx (n = 404). Assessment of these genes in clinical sub-cohorts of TCGA indicated that early stage tongue (MTFR1, C8ORF33, OTUD6B) and laryngeal cancers (TWISTNB, KLHL13 and UBE2Q1) were defined by distinct prognosticators. Similarly, correlation with perineural/angiolymophatic invasion, identified discrete marker panels with survival impact (tongue: NUDCD1, PRKC1; laryngopharynx: SLC4A1AP, PIK3CA, AP2M1). Alterations in ANO1, NUDCD1, PIK3CA defined survival in tongue cancer patients with nodal metastasis (node+ECS-), while EPS8 is a significant differential in node+ECS- laryngopharyngeal cancers. In oropharynx, wherein HPV is a major etiological factor, distinct prognosticators were identified in HPV+ (ECHDC2, HERC5, GGT6) and HPV- (GRB10, EMILIN1, FNDC1). Meta-analysis in combination with TCGA validation carried out in this study emphasized on the molecular heterogeneity inherent within HNSCC; the feasibility of leveraging this information for improving prognostic efficacy is also established. Subject to large scale clinical validation, the marker panel identified in this study can prove to be valuable prognostic adjuncts.
Collapse
|
26
|
Phelps HM, Pierce JM, Murphy AJ, Correa H, Qian J, Massion PP, Lovvorn HN. FXR1 expression domain in Wilms tumor. J Pediatr Surg 2019; 54:1198-1205. [PMID: 30894247 PMCID: PMC6545243 DOI: 10.1016/j.jpedsurg.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/PURPOSE Wilms tumor (WT) is the most common childhood kidney cancer globally. Our prior unbiased proteomic screen of WT disparities revealed increased expression of Fragile X-Related 1 (FXR1) in Kenyan specimens where survival is dismal. FXR1 is an RNA-binding protein that associates with poor outcomes in multiple adult cancers. The aim of this study therefore was to validate and characterize the FXR1 expression domain in WT. METHODS Quantitative FXR1 gene expression was compared between WT, adjacent, adult, and fetal kidney specimens. The cellular and subcellular expression domain of FXR1 was characterized across these tissues using immunoperoxidase staining. RNA-sequencing of FXR1 was performed from WT and other pediatric malignancies to examine its broader target potential. RESULTS FXR1 was detected in all clinical WT specimens evaluated (n = 82), and as a result appeared independent of demographic, histology, or adverse event. Specific cytosolic staining was strongest in blastema, intermediate and variable in epithelia, and weakest in stroma. When present, areas of skeletal muscle differentiation stained strongly for FXR1. qPCR revealed increased FXR1 expression in WT compared to adult and adjacent kidney (p < 0.0002) but was similar to fetal kidney (p = 0.648). RNA-sequencing revealed expression of FXR1 in multiple pediatric tumors, greatest in rhabdomyosarcoma and WT. CONCLUSIONS FXR1 was expressed consistently across this broad sampling of WT and most robustly in the primitive blastema. Notably, FXR1 labeled a specific self-renewing progenitor population of the fetal kidney.
Collapse
Affiliation(s)
| | - Janene M. Pierce
- Vanderbilt University Medical Center, Department of Pediatric Surgery, Nashville, TN
| | - Andrew J. Murphy
- St. Jude Children’s Research Hospital, Department of Surgery, Memphis, TN
| | - Hernan Correa
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, TN
| | - Jun Qian
- Vanderbilt University Medical Center, Department of Medicine and Vanderbilt Ingram Cancer Center, Nashville, TN
| | - Pierre P. Massion
- Vanderbilt University Medical Center, Department of Medicine and Vanderbilt Ingram Cancer Center, Nashville, TN
| | - Harold N. Lovvorn
- Vanderbilt University Medical Center, Department of Pediatric Surgery, Nashville, TN
| |
Collapse
|
27
|
Detection and Correlation of Single and Concomitant TP53, PTEN, and CDKN2A Alterations in Gliomas. Int J Mol Sci 2019; 20:ijms20112658. [PMID: 31151164 PMCID: PMC6600458 DOI: 10.3390/ijms20112658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Gliomas are the most frequent primary tumors of central nervous system and represent a heterogeneous group of tumors that originates from the glial cells. TP53, PTEN, and CDKN2A are important tumor suppressor genes that encode proteins involved in sustaining cellular homeostasis by different signaling pathways. Though genetic alterations in these genes play a significant role in tumorigenesis, few studies are available regarding the incidence and relation of concomitant TP53, PTEN, and CDKN2A alterations in gliomas. The purpose of this study was to evaluate the occurrence of mutation and deletion in these genes, through single-strand conformational polymorphism, array-comparative genomic hybridization, and fluorescence in situ hybridization techniques, in 69 gliomas samples. Molecular results demonstrated a significant higher prevalence of TP53, PTEN, and CDKN2A alterations in astrocytoma than other tumor subtypes, and heterozygous deletion was the most frequent event. In addition, a significant association was observed between TP53 and CDKN2A alterations (p = 0.0424), which tend to coexist in low grade astrocytomas (5/46 cases (10.9%)), suggesting that they are early events in development of these tumors, and PTEN and CDKN2A deletions (p = 0.0022), which occurred concomitantly in 9/50 (18%) patients, with CDKN2A changes preceding PTEN deletions, present preferably in high-grade gliomas.
Collapse
|
28
|
Cao H, Gao R, Yu C, Chen L, Feng Y. The RNA-binding protein FXR1 modulates prostate cancer progression by regulating FBXO4. Funct Integr Genomics 2019; 19:487-496. [PMID: 30746571 DOI: 10.1007/s10142-019-00661-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023]
Abstract
This paper is to characterize the expression status of Fragile X Mental Retardation, Autosomal Homolog 1 (FXR1) in prostate cancer cells and understand its mechanistic involvement in the tumor biology of prostate cancer. The relative expression of FXR1 in prostate cancer cells was determined by real-time polymerase chain reaction and Western blotting. Cell proliferation in FXR1-deficient cells was evaluated by cell counting and MTT assays. The migrative and invasive capacities were measured by transwell assay. The potential regulatory effect of FXR1 on FBXO4 was interrogated using luciferase reporter assay. The direct bind of FXR1 with FBXO4 transcripts was analyzed by RNA immunoprecipitation and RNA pull-down assay. We observed aberrant overexpression of FXR1 in prostate cancer cells at both transcript and protein levels. FXR1 deficiency was associated with inhibited cell proliferation/viability and compromised migration/invasion in prostate cancer cells. Mechanistically, FXR1 negatively regulated FBXO4 transcripts via direct association with its 3'UTR and promoted mRNA degradation. FBXO4 knockdown predominantly rescued the tumor-suppressive phenotype in FXR1-deficient cells. We uncovered the oncogenic role of FXR1 in prostate cancer cells and further demonstrated its dependence on FBXO4. Our data highlight the importance of FXR1-FBXO4 signaling in prostate cancer.
Collapse
Affiliation(s)
- Hongwen Cao
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai City, 200032, China
| | - Renjie Gao
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai City, 200032, China
| | - Chao Yu
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai City, 200032, China
| | - Lei Chen
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai City, 200032, China.
| | - Yigeng Feng
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai City, 200032, China.
| |
Collapse
|
29
|
Shi L, Xu L, Guan Q, Jin X, Yang J, Zhu X. Light-Trigerred Cellular Epigenetic Molecule Release To Reverse Tumor Multidrug Resistance. Bioconjug Chem 2018. [DOI: 10.1021/acs.bioconjchem.8b00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Li Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qinghua Guan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|