1
|
Zhang Y, Zhang S, Xu L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023; 9:66. [PMID: 37735530 PMCID: PMC10514296 DOI: 10.1038/s41522-023-00435-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota serves as a critical "organ" in the life cycle of animals, particularly in the intricate interplay between herbivorous pests and plants. This review summarizes the pivotal functions of the gut microbiota in mediating the insect-plant interactions, encompassing their influence on host insects, modulation of plant physiology, and regulation of the third trophic level species within the ecological network. Given these significant functions, it is plausible to harness these interactions and their underlying mechanisms to develop novel eco-friendly pest control strategies. In this context, we also outline some emerging pest control methods based on the intestinal microbiota or bacteria-mediated interactions, such as symbiont-mediated RNAi and paratransgenesis, albeit these are still in their nascent stages and confront numerous challenges. Overall, both opportunities and challenges coexist in the exploration of the intestinal microbiota-mediated interactions between insect pests and plants, which will not only enrich the fundamental knowledge of plant-insect interactions but also facilitate the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Hangzhou, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
2
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
3
|
Negin B, Aharoni A. Let's connect nature with hypothesis-based experimentation and explore life in context. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:23-25. [PMID: 36423223 DOI: 10.1111/tpj.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
In a recent paper in Nature, Edith Heard from the European Molecular Biology Laboratory (EMBL) suggested that molecular biologists should 'reconnect with nature' by diversifying sampling locations. Although this approach has its own benefits, we suggest that advanced methods should rather be used to take hypothesis-based experiments to nature, thereby supplying a much-needed context for experimentation under controlled conditions. Following the CRISPR (clustered regularly interspaced short palindromic repeats) revolution, this approach has become accessible to many research groups. For the past several years we have developed the groundwork and initiated such experimentation. This included the assembly of a mobile laboratory on a four-wheel drive truck and examining genome-edited metabolic mutants in wild tree tobacco (Nicotiana glauca), grown in nature. Our findings included both targeted answers to focused questions, but also surprising results that could only be reached while working in natural settings.
Collapse
Affiliation(s)
- Boaz Negin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| |
Collapse
|
4
|
Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar. Life (Basel) 2022; 12:life12111830. [DOI: 10.3390/life12111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Populus is a genus of globally significant plantation trees used widely in industrial and agricultural production. Poplars are easily damaged by Micromelalopha troglodyta and Hyphantria cunea, resulting in decreasing quality. Bt toxin-encoded by the Cry gene has been widely adopted in poplar breeding because of its strong insect resistance. There is still no comprehensive and sufficient information about the effects of Cry1Ah1-modified (CM) poplars on the ecological environment. Here, we sampled the rhizosphere soils of field-grown CM and non-transgenic (NT) poplars and applied 16S rRNA and internal transcribed spacer amplicon Illumina MiSeq sequencing to determine the bacterial community associated with the CM and NT poplars. Based on the high-throughput sequencing of samples, we found that the predominant taxa included Proteobacteria (about 40% of the total bacteria), Acidobacteria (about 20% of the total bacteria), and Actinobacteria (about 20% of the total bacteria) collected from the natural rhizosphere of NT and CM poplars. In addition, studies on the microbial diversity of poplar showed that Cry1Ah1 expression has no significant influence on rhizosphere soil alkaline nitrogen, but significantly affects soil phosphorus, soil microbial biomass nitrogen, and carbon. The results exhibited a similar bacterial community structure between CM varieties affected by the expression of Cry1Ah1 and non-transgenic poplars. In addition, Cry1Ah1 expression revealed no significant influence on the composition of rhizosphere microbiomes. These results broadly reflect the effect of the Bt toxin-encoded by Cry1Ah1 on the ecology and environment and provide a clear path for researchers to continue research in this field in the future.
Collapse
|
5
|
Sullam KE, Musa T. Ecological Dynamics and Microbial Treatments against Oomycete Plant Pathogens. PLANTS 2021; 10:plants10122697. [PMID: 34961168 PMCID: PMC8707103 DOI: 10.3390/plants10122697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In this review, we explore how ecological concepts may help assist with applying microbial biocontrol agents to oomycete pathogens. Oomycetes cause a variety of agricultural diseases, including potato late blight, apple replant diseases, and downy mildew of grapevine, which also can lead to significant economic damage in their respective crops. The use of microbial biocontrol agents is increasingly gaining interest due to pressure from governments and society to reduce chemical plant protection products. The success of a biocontrol agent is dependent on many ecological processes, including the establishment on the host, persistence in the environment, and expression of traits that may be dependent on the microbiome. This review examines recent literature and trends in research that incorporate ecological aspects, especially microbiome, host, and environmental interactions, into biological control development and applications. We explore ecological factors that may influence microbial biocontrol agents’ efficacy and discuss key research avenues forward.
Collapse
|
6
|
Chai R, Rooney WM, Milner JJ, Walker D. Challenges of using protein antibiotics for pathogen control. PEST MANAGEMENT SCIENCE 2021; 77:3836-3840. [PMID: 33527621 DOI: 10.1002/ps.6312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Bacterial phytopathogens represent a significant threat to many economically important crops. Current control measures often inflict harm on the environment and may ultimately impact on human health through the spread of antibiotic resistance. Antimicrobial proteins such as bacteriocins have been suggested as the next generation of disease control agents since they are able to specifically target the pathogen of interest with minimal impact on the wider microbial community and environment. However, substantial gaps in knowledge with regards to the efficacy and application of bacteriocins to combat phytopathogenic bacteria remain. Here we highlight the immediate challenges the community must address to ensure maximum exploitation of antimicrobial proteins in the field. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ray Chai
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - William M Rooney
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
- Plant Science Group, College of Molecular, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Joel J Milner
- Plant Science Group, College of Molecular, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel Walker
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Clouse KM, Wagner MR. Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges. Front Bioeng Biotechnol 2021; 9:567548. [PMID: 34136470 PMCID: PMC8201784 DOI: 10.3389/fbioe.2021.567548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Growing human population size and the ongoing climate crisis create an urgent need for new tools for sustainable agriculture. Because microbiomes have profound effects on host health, interest in methods of manipulating agricultural microbiomes is growing rapidly. Currently, the most common method of microbiome manipulation is inoculation of beneficial organisms or engineered communities; however, these methods have been met with limited success due to the difficulty of establishment in complex farm environments. Here we propose genetic manipulation of the host plant as another avenue through which microbiomes could be manipulated. We discuss how domestication and modern breeding have shaped crop microbiomes, as well as the potential for improving plant-microbiome interactions through conventional breeding or genetic engineering. We summarize the current state of knowledge on host genetic control of plant microbiomes, as well as the key challenges that remain.
Collapse
Affiliation(s)
- Kayla M. Clouse
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - Maggie R. Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
- Kansas Biological Survey, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Li Y, Lin X, Hu J, Shuai J, Wei Y, He D. Synthesis and biological evaluation of stilbene-based peptoid mimics against the phytopathogenic bacterium Xanthomonas citri pv. citri. PEST MANAGEMENT SCIENCE 2021; 77:343-353. [PMID: 32741107 DOI: 10.1002/ps.6024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The emergence of drug-resistant phytopathogenic bacteria and the need for new types of biological disease-control agents have accelerated efforts toward searching for alternative candidates with a low propensity for resistance development. In this study, a new series of stilbene-based peptoid mimics were synthesized, and their biological activities were evaluated against citrus pathogenic bacteria in vitro and in vivo. RESULTS Antibacterial bioassay results showed that the dicationic peptoid mimics 9a and 9b displayed excellent bioactivity against Xanthomonas citri pv. citri, with the minimum inhibitory concentration values of 25 μM, which were superior to those of commercial copper biocides Delite (200 μM) and Kasumin Bordeaux (100 μM). In vivo bioassay further confirmed their control efficacy against plant bacterial diseases. In addition, the antibacterial mechanism of action elucidated their membrane-disruption effects resulting in the leakage of the bacterial membranes, which was similar to that of antimicrobial peptides. Moreover, the inhibition effect on biofilm formation of peptoid mimics has also been demonstrated. CONCLUSION Stilbene-based peptoid mimics synthesized in this study showed promising antibacterial activity with a potent membrane-disruptive mechanism. The results suggested that stilbene-based peptoid mimics have the potential as a candidate new type of bactericide for citrus disease protection.
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xingdong Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianbo Shuai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Daohang He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Sun L, Ke F, Nie Z, Wang P, Xu J. Citrus Genetic Engineering for Disease Resistance: Past, Present and Future. Int J Mol Sci 2019; 20:E5256. [PMID: 31652763 PMCID: PMC6862092 DOI: 10.3390/ijms20215256] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
Worldwide, citrus is one of the most important fruit crops and is grown in more than 130 countries, predominantly in tropical and subtropical areas. The healthy progress of the citrus industry has been seriously affected by biotic and abiotic stresses. Several diseases, such as canker and huanglongbing, etc., rigorously affect citrus plant growth, fruit quality, and yield. Genetic engineering technologies, such as genetic transformation and genome editing, represent successful and attractive approaches for developing disease-resistant crops. These genetic engineering technologies have been widely used to develop citrus disease-resistant varieties against canker, huanglongbing, and many other fungal and viral diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based systems have made genome editing an indispensable genetic manipulation tool that has been applied to many crops, including citrus. The improved CRISPR systems, such as CRISPR/CRISPR-associated protein (Cas)9 and CRISPR/Cpf1 systems, can provide a promising new corridor for generating citrus varieties that are resistant to different pathogens. The advances in biotechnological tools and the complete genome sequence of several citrus species will undoubtedly improve the breeding for citrus disease resistance with a much greater degree of precision. Here, we attempt to summarize the recent successful progress that has been achieved in the effective application of genetic engineering and genome editing technologies to obtain citrus disease-resistant (bacterial, fungal, and virus) crops. Furthermore, we also discuss the opportunities and challenges of genetic engineering and genome editing technologies for citrus disease resistance.
Collapse
Affiliation(s)
- Lifang Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Fuzhi Ke
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Zhenpeng Nie
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Ping Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| |
Collapse
|
11
|
Fitzpatrick CR, Mustafa Z, Viliunas J. Soil microbes alter plant fitness under competition and drought. J Evol Biol 2019; 32:438-450. [PMID: 30739360 DOI: 10.1111/jeb.13426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Plants exist across varying biotic and abiotic environments, including variation in the composition of soil microbial communities. The ecological effects of soil microbes on plant communities are well known, whereas less is known about their importance for plant evolutionary processes. In particular, the net effects of soil microbes on plant fitness may vary across environmental contexts and among plant genotypes, setting the stage for microbially mediated plant evolution. Here, we assess the effects of soil microbes on plant fitness and natural selection on flowering time in different environments. We performed two experiments in which we grew Arabidopsis thaliana genotypes replicated in either live or sterilized soil microbial treatments, and across varying levels of either competition (isolation, intraspecific competition or interspecific competition) or watering (well-watered or drought). We found large effects of competition and watering on plant fitness as well as the expression and natural selection of flowering time. Soil microbes increased average plant fitness under interspecific competition and drought and shaped the response of individual plant genotypes to drought. Finally, plant tolerance to either competition or drought was uncorrelated between soil microbial treatments suggesting that the plant traits favoured under environmental stress may depend on the presence of soil microbes. In summary, our experiments demonstrate that soil microbes can have large effects on plant fitness, which depend on both the environment and individual plant genotype. Future work in natural systems is needed for a complete understanding of the evolutionary importance of interactions between plants and soil microorganisms.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Zainab Mustafa
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Joani Viliunas
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
12
|
Habtewold T, Tapanelli S, Masters EKG, Hoermann A, Windbichler N, Christophides GK. Streamlined SMFA and mosquito dark-feeding regime significantly improve malaria transmission-blocking assay robustness and sensitivity. Malar J 2019; 18:24. [PMID: 30683107 PMCID: PMC6347765 DOI: 10.1186/s12936-019-2663-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/19/2019] [Indexed: 02/03/2023] Open
Abstract
Background The development of malaria transmission-blocking strategies including the generation of malaria refractory mosquitoes to replace the wild populations through means of gene drives hold great promise. The standard membrane feeding assay (SMFA) that involves mosquito feeding on parasitized blood through an artificial membrane system is a vital tool for evaluating the efficacy of transmission-blocking interventions. However, despite the availability of several published protocols, the SMFA remains highly variable and broadly insensitive. Methods The SMFA protocol was optimized through coordinated culturing of Anopheles coluzzii mosquitoes and Plasmodium falciparum parasite coupled with placing mosquitoes under a strict dark regime before, during, and after the gametocyte feed. Results A detailed description of essential steps is provided toward synchronized generation of highly fit An. coluzzii mosquitoes and P. falciparum gametocytes in preparation for an SMFA. A dark-infection regime that emulates the natural vector-parasite interaction system is described, which results in a significant increase in the infection intensity and prevalence. Using this optimal SMFA pipeline, a series of putative transmission-blocking antimicrobial peptides (AMPs) were screened, confirming that melittin and magainin can interfere with P. falciparum development in the vector. Conclusion A robust SMFA protocol that enhances the evaluation of interventions targeting human malaria transmission in laboratory setting is reported. Melittin and magainin are identified as highly potent antiparasitic AMPs that can be used for the generation of refractory Anopheles gambiae mosquitoes.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK.
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
13
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
14
|
Solid-Phase Synthesis and Antibacterial Activity of an Artificial Cyclic Peptide Containing Two Disulfide Bridges. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9757-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|