1
|
Tsai M, Sun J, Alexandre C, Shapiro M, Franchet A, Li Y, Gould AP, Vincent JP, Stockinger B, Diny NL. Drosophila AHR limits tumor growth and stem cell proliferation in the intestine. Wellcome Open Res 2025; 10:38. [PMID: 40212817 PMCID: PMC11982807 DOI: 10.12688/wellcomeopenres.23515.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) plays important roles in intestinal homeostasis, limiting tumour growth and promoting differentiation in the intestinal epithelium. Spineless, the Drosophila homolog of AHR, has only been studied in the context of development but not in the adult intestine. Methods The role of Spineless in the Drosophila midgut was studied by overexpression or inactivation of Spineless in infection and tumour models and RNA sequencing of sorted midgut progenitor cells. Results We show that spineless is upregulated in the adult intestinal epithelium after infection with Pseudomonas entomophila ( P. e.). Spineless inactivation increased stem cell proliferation following infection-induced injury. Spineless overexpression limited intestinal stem cell proliferation and reduced survival after infection. In two tumour models, using either Notch RNAi or constitutively active Yorkie, Spineless suppressed tumour growth and doubled the lifespan of tumour-bearing flies. At the transcriptional level it reversed the gene expression changes induced in Yorkie tumours, counteracting cell proliferation and altered metabolism. Conclusions These findings demonstrate a new role for Spineless in the adult Drosophila midgut and highlight the evolutionarily conserved functions of AHR/Spineless in the control of proliferation and differentiation of the intestinal epithelium.
Collapse
Affiliation(s)
- Minghua Tsai
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Jiawei Sun
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | | | - Ying Li
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Alex P. Gould
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | - Nicola Laura Diny
- The Francis Crick Institute, London, England, NW1 1AT, UK
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, North Rhine-Westphalia, 53127, Germany
| |
Collapse
|
2
|
Held M, Bisen RS, Zandawala M, Chockley AS, Balles IS, Hilpert S, Liessem S, Cascino-Milani F, Ache JM. Aminergic and peptidergic modulation of insulin-producing cells in Drosophila. eLife 2025; 13:RP99548. [PMID: 40063677 PMCID: PMC11893105 DOI: 10.7554/elife.99548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila - a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based 'intrinsic pharmacology' approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.
Collapse
Affiliation(s)
- Martina Held
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Rituja S Bisen
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Meet Zandawala
- Zandawala Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
- Department of Biochemistry and Molecular Biology, University of Nevada RenoRenoUnited States
| | - Alexander S Chockley
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Isabella S Balles
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Selina Hilpert
- Zandawala Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Sander Liessem
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Federico Cascino-Milani
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Jan M Ache
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| |
Collapse
|
3
|
Nielsen LM, Beck H, Oufiero C, Johnston RJ, Handler JS, Hagen JFD. Trichromacy and ultraviolet vision in a nocturnal marsupial. Sci Rep 2025; 15:7585. [PMID: 40038358 PMCID: PMC11880520 DOI: 10.1038/s41598-025-92039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Color vision among mammals is diverse and complex, with many physiological and genetic factors affecting spectral sensitivity, the ability to perceive different wavelengths of light. In this study, the color vision of the sugar glider (Petaurus breviceps), a nocturnal, gliding mammal, was examined through a series of behavioral tests, genetic analyses, and immunohistochemistry. This is the first study to classify the color vision capabilities of this species. Sugar gliders demonstrated trichromacy and ultraviolet (UV) sensitivity, the latter of which was further supported by genetic analysis. Visualization of the sugar glider retina exhibited a rod-dominant retina that expresses rhodopsin, short-wavelength sensitive 1 opsin, and long/medium-wavelength sensitive opsin. Diurnal primates were thought to be the only mammals able to visualize trichromatically, however the results of this examination and evidence from a few other marsupial studies provide support for nocturnal trichromacy in Metatheria. Intriguingly, the genetic basis for the medium-wavelength sensitivity in marsupials has yet to be discovered. Our results are evidence of a fourth Australian marsupial that is UV-trichromatic, supporting complex spectral sensitivity and UV vision as benefits to survival in nocturnal environments. Given that Rh1 sensitivity at 501 nm explains the green sensitivity behaviorally, question arises how many other nocturnal 'dichromatic' species use rods for trichromatic vision in mesopic light.
Collapse
Affiliation(s)
- Leah M Nielsen
- Department of Biology, Towson University, Baltimore, MD, 21252, USA
| | - Harald Beck
- Department of Biology, Towson University, Baltimore, MD, 21252, USA.
| | | | | | - Jesse S Handler
- The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | |
Collapse
|
4
|
Prud'homme B. The power of proximity: mechanisms and biological roles of transvection. Curr Opin Genet Dev 2024; 89:102269. [PMID: 39368316 DOI: 10.1016/j.gde.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The phenomenon of transvection, defined as a proximity-dependent interallelic interaction, has been observed in the context of complementation between mutant alleles for numerous Drosophila genes. Cases of transvection-like phenomena have also been observed in other species, including mammals. However, the potential contribution of transvection to wild-type gene regulation and the underlying mechanisms remain uncertain. Here, I review recent evidence demonstrating the relevance of transvection in physiological contexts. These findings suggest that transvection represents an additional layer of gene regulation that allows cells to fine-tune gene expression based on the proximity of homologous alleles. In addition, recent studies have measured the physical distance between interacting alleles, revealing unexpectedly large and variable distances. I will discuss how these distances are compatible with the 'hub' model of transcriptional regulation.
Collapse
Affiliation(s)
- Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Cedex 9, 13288 Marseille, France.
| |
Collapse
|
5
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
6
|
Ordway AJ, Helt RN, Johnston RJ. Transcriptional priming and chromatin regulation during stochastic cell fate specification. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230046. [PMID: 38432315 PMCID: PMC10909510 DOI: 10.1098/rstb.2023.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Stochastic cell fate specification, in which a cell chooses between two or more fates with a set probability, diversifies cell subtypes in development. Although this is a vital process across species, a common mechanism for these cell fate decisions remains elusive. This review examines two well-characterized stochastic cell fate decisions to identify commonalities between their developmental programmes. In the fly eye, two subtypes of R7 photoreceptors are specified by the stochastic ON/OFF expression of a transcription factor, spineless. In the mouse olfactory system, olfactory sensory neurons (OSNs) randomly select to express one copy of an olfactory receptor (OR) gene out of a pool of 2800 alleles. Despite the differences in these sensory systems, both stochastic fate choices rely on the dynamic interplay between transcriptional priming, chromatin regulation and terminal gene expression. The coupling of transcription and chromatin modifications primes gene loci in undifferentiated neurons, enabling later expression during terminal differentiation. Here, we compare these mechanisms, examine broader implications for gene regulation during development and posit key challenges moving forward. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Alison J. Ordway
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Rina N. Helt
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Kitamata M, Otake Y, Kitagori H, Zhang X, Maki Y, Boku R, Takeuchi M, Nakagoshi H. Functional opsin patterning for Drosophila color vision is established through signaling pathways in adjacent object-detection neurons. Development 2024; 151:dev202388. [PMID: 38421315 PMCID: PMC10984275 DOI: 10.1242/dev.202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.
Collapse
Affiliation(s)
- Manabu Kitamata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Otake
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideaki Kitagori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Xuanshuo Zhang
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Maki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Rika Boku
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masato Takeuchi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Urban EA, Chernoff C, Layng KV, Han J, Anderson C, Konzman D, Johnston RJ. Activating and repressing gene expression between chromosomes during stochastic fate specification. Cell Rep 2023; 42:111910. [PMID: 36640351 PMCID: PMC9976292 DOI: 10.1016/j.celrep.2022.111910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
DNA elements act across long genomic distances to regulate gene expression. During transvection in Drosophila, DNA elements on one allele of a gene act between chromosomes to regulate expression of the other allele. Little is known about the biological roles and developmental regulation of transvection. Here, we study the stochastic expression of spineless (ss) in photoreceptors in the fly eye to understand transvection. We determine a biological role for transvection in regulating expression of naturally occurring ss alleles. We identify DNA elements required for activating and repressing transvection. Different enhancers participate in transvection at different times during development to promote gene expression and specify cell fates. Bringing a silencer element on a heterologous chromosome into proximity with the ss locus "reconstitutes" the gene, leading to repression. Our studies show that transvection regulates gene expression via distinct DNA elements at specific timepoints in development, with implications for genome organization and architecture.
Collapse
Affiliation(s)
- Elizabeth A. Urban
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,These authors contributed equally
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Present address: Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA,These authors contributed equally
| | - Kayla Viets Layng
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Jeong Han
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Daniel Konzman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Lead contact,Correspondence:
| |
Collapse
|
9
|
Rzezniczak TZ, Rzezniczak MT, Reed BH, Dworkin I, Merritt TJS. Regulation at Drosophila's Malic Enzyme highlights the complexity of transvection and its sensitivity to genetic background. Genetics 2022; 223:6884207. [PMID: 36482767 PMCID: PMC9910402 DOI: 10.1093/genetics/iyac181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Transvection, a type of trans-regulation of gene expression in which regulatory elements on one chromosome influence elements on a paired homologous chromosome, is itself a complex biological phenotype subject to modification by genetic background effects. However, relatively few studies have explored how transvection is affected by distal genetic variation, perhaps because it is strongly influenced by local regulatory elements and chromosomal architecture. With the emergence of the "hub" model of transvection and a series of studies showing variation in transvection effects, it is becoming clear that genetic background plays an important role in how transvection influences gene transcription. We explored the effects of genetic background on transvection by performing two independent genome wide association studies (GWASs) using the Drosophila genetic reference panel (DGRP) and a suite of Malic enzyme (Men) excision alleles. We found substantial variation in the amount of transvection in the 149 DGRP lines used, with broad-sense heritability of 0.89 and 0.84, depending on the excision allele used. The specific genetic variation identified was dependent on the excision allele used, highlighting the complex genetic interactions influencing transvection. We focussed primarily on genes identified as significant using a relaxed P-value cutoff in both GWASs. The most strongly associated genetic variant mapped to an intergenic single nucleotide polymorphism (SNP), located upstream of Tiggrin (Tig), a gene that codes for an extracellular matrix protein. Variants in other genes, such transcription factors (CG7368 and Sima), RNA binding proteins (CG10418, Rbp6, and Rig), enzymes (AdamTS-A, CG9743, and Pgant8), proteins influencing cell cycle progression (Dally and Eip63E) and signaling proteins (Atg-1, Axo, Egfr, and Path) also associated with transvection in Men. Although not intuitively obvious how many of these genes may influence transvection, some have been previously identified as promoting or antagonizing somatic homolog pairing. These results identify several candidate genes to further explore in the understanding of transvection in Men and in other genes regulated by transvection. Overall, these findings highlight the complexity of the interactions involved in gene regulation, even in phenotypes, such as transvection, that were traditionally considered to be primarily influenced by local genetic variation.
Collapse
Affiliation(s)
- Teresa Z Rzezniczak
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Mark T Rzezniczak
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Thomas J S Merritt
- Corresponding author: Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
10
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Voortman L, Anderson C, Urban E, Yuan L, Tran S, Neuhaus-Follini A, Derrick J, Gregor T, Johnston RJ. Temporally dynamic antagonism between transcription and chromatin compaction controls stochastic photoreceptor specification in flies. Dev Cell 2022; 57:1817-1832.e5. [PMID: 35835116 PMCID: PMC9378680 DOI: 10.1016/j.devcel.2022.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Stochastic mechanisms diversify cell fates during development. How cells randomly choose between two or more fates remains poorly understood. In the Drosophila eye, the random mosaic of two R7 photoreceptor subtypes is determined by expression of the transcription factor Spineless (Ss). We investigated how cis-regulatory elements and trans factors regulate nascent transcriptional activity and chromatin compaction at the ss gene locus during R7 development. The ss locus is in a compact state in undifferentiated cells. An early enhancer drives transcription in all R7 precursors, and the locus opens. In differentiating cells, transcription ceases and the ss locus stochastically remains open or compacts. In SsON R7s, ss is open and competent for activation by a late enhancer, whereas in SsOFF R7s, ss is compact, and repression prevents expression. Our results suggest that a temporally dynamic antagonism, in which transcription drives large-scale decompaction and then compaction represses transcription, controls stochastic fate specification.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Urban
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Luorongxin Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Josh Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Joseph Henry Laboratories of Physics, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Developmental and Stem Cell Biology, UMR3738, Institut Pasteur, 75015 Paris, France
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Loell K, Wu Y, Staller MV, Cohen B. Activation domains can decouple the mean and noise of gene expression. Cell Rep 2022; 40:111118. [PMID: 35858548 PMCID: PMC9912357 DOI: 10.1016/j.celrep.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Regulatory mechanisms set a gene's average level of expression, but a gene's expression constantly fluctuates around that average. These stochastic fluctuations, or expression noise, play a role in cell-fate transitions, bet hedging in microbes, and the development of chemotherapeutic resistance in cancer. An outstanding question is what regulatory mechanisms contribute to noise. Here, we demonstrate that, for a fixed mean level of expression, strong activation domains (ADs) at low abundance produce high expression noise, while weak ADs at high abundance generate lower expression noise. We conclude that differences in noise can be explained by the interplay between a TF's nuclear concentration and the strength of its AD's effect on mean expression, without invoking differences between classes of ADs. These results raise the possibility of engineering gene expression noise independently of mean levels in synthetic biology contexts and provide a potential mechanism for natural selection to tune the noisiness of gene expression.
Collapse
Affiliation(s)
- Kaiser Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Yawei Wu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Max V. Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barak Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.
| |
Collapse
|
13
|
Bateman JR, Johnson JE. Altering enhancer-promoter linear distance impacts promoter competition in cis and in trans. Genetics 2022; 222:6617354. [PMID: 35748724 PMCID: PMC9434180 DOI: 10.1093/genetics/iyac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, pairing of maternal and paternal homologs can permit trans-interactions between enhancers on one homolog and promoters on another, an example of a phenomenon called transvection. When chromosomes are paired, promoters in cis and in trans to an enhancer can compete for the enhancer's activity, but the parameters that govern this competition are as yet poorly understood. To assess how the linear spacing between an enhancer and promoter can influence promoter competition in Drosophila, we employed transgenic constructs wherein the eye-specific enhancer GMR is placed at varying distances from a heterologous hsp70 promoter driving a fluorescent reporter. While GMR activates the reporter to a high degree when the enhancer and promoter are spaced by a few hundred base pairs, activation is strongly attenuated when the enhancer is moved 3 kilobases away. By examining transcription of endogenous genes near the point of transgene insertion, we show that linear spacing of 3 kb between GMR and the hsp70 promoter results in elevated transcription of neighboring promoters, suggesting a loss of specificity between the enhancer and its intended transgenic target promoter. Furthermore, increasing spacing between GMR and hsp70 by just 100 bp can enhance transvection, resulting in increased activation of a promoter on a paired homolog at the expense of a promoter in cis to the enhancer. Finally, cis-/trans-promoter competition assays in which one promoter carries mutations to key core promoter elements show that GMR will skew its activity toward a wild type promoter, suggesting that an enhancer is in a balanced competition between its potential target promoters in cis and in trans.
Collapse
Affiliation(s)
- Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | | |
Collapse
|
14
|
Voortman L, Johnston RJ. Transcriptional repression in stochastic gene expression, patterning, and cell fate specification. Dev Biol 2022; 481:129-138. [PMID: 34688689 PMCID: PMC8665150 DOI: 10.1016/j.ydbio.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/03/2023]
Abstract
Development is often driven by signaling and lineage-specific cues, yielding highly uniform and reproducible outcomes. Development also involves mechanisms that generate noise in gene expression and random patterns across tissues. Cells sometimes randomly choose between two or more cell fates in a mechanism called stochastic cell fate specification. This process diversifies cell types in otherwise homogenous tissues. Stochastic mechanisms have been extensively studied in prokaryotes where noisy gene activation plays a pivotal role in controlling cell fates. In eukaryotes, transcriptional repression stochastically limits gene expression to generate random patterns and specify cell fates. Here, we review our current understanding of repressive mechanisms that produce random patterns of gene expression and cell fates in flies, plants, mice, and humans.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
15
|
Agelopoulos M, Foutadakis S, Thanos D. The Causes and Consequences of Spatial Organization of the Genome in Regulation of Gene Expression. Front Immunol 2021; 12:682397. [PMID: 34149720 PMCID: PMC8212036 DOI: 10.3389/fimmu.2021.682397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Regulation of gene expression in time, space and quantity is orchestrated by the functional interplay of cis-acting elements and trans-acting factors. Our current view postulates that transcription factors recognize enhancer DNA and read the transcriptional regulatory code by cooperative DNA binding to specific DNA motifs, thus instructing the recruitment of transcriptional regulatory complexes forming a plethora of higher-ordered multi-protein-DNA and protein-protein complexes. Here, we reviewed the formation of multi-dimensional chromatin assemblies implicated in gene expression with emphasis on the regulatory role of enhancer hubs as coordinators of stochastic gene expression. Enhancer hubs contain many interacting regulatory elements and represent a remarkably dynamic and heterogeneous network of multivalent interactions. A functional consequence of such complex interaction networks could be that individual enhancers function synergistically to ensure coordination, tight control and robustness in regulation of expression of spatially connected genes. In this review, we discuss fundamental paradigms of such inter- and intra- chromosomal associations both in the context of immune-related genes and beyond.
Collapse
Affiliation(s)
| | | | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
16
|
Miller AC, Urban EA, Lyons EL, Herman TG, Johnston RJ. Interdependent regulation of stereotyped and stochastic photoreceptor fates in the fly eye. Dev Biol 2020; 471:89-96. [PMID: 33333066 PMCID: PMC7856283 DOI: 10.1016/j.ydbio.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Diversification of neuronal subtypes often requires stochastic gene regulatory mechanisms. How stochastically expressed transcription factors interact with other regulators in gene networks to specify cell fates is poorly understood. The random mosaic of color-detecting R7 photoreceptor subtypes in Drosophila is controlled by the stochastic on/off expression of the transcription factor Spineless (Ss). In SsON R7s, Ss induces expression of Rhodopsin 4 (Rh4), whereas in SsOFF R7s, the absence of Ss allows expression of Rhodopsin 3 (Rh3). Here, we find that the transcription factor Runt, which is initially expressed in all R7s, is sufficient to promote stochastic Ss expression. Later, as R7s develop, Ss negatively feeds back onto Runt to prevent repression of Rh4 and ensure proper fate specification. Together, stereotyped and stochastic regulatory inputs are integrated into feedforward and feedback mechanisms to control cell fate.
Collapse
Affiliation(s)
- Adam C Miller
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Elizabeth A Urban
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2685, USA
| | - Eric L Lyons
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Tory G Herman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2685, USA.
| |
Collapse
|
17
|
Identification of Genes Involved in the Differentiation of R7y and R7p Photoreceptor Cells in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3949-3958. [PMID: 32972998 PMCID: PMC7642934 DOI: 10.1534/g3.120.401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The R7 and R8 photoreceptor cells of the Drosophila compound eye mediate color vision. Throughout the majority of the eye, these cells occur in two principal types of ommatidia. Approximately 35% of ommatidia are of the pale type and express Rh3 in R7 cells and Rh5 in R8 cells. The remaining 65% are of the yellow type and express Rh4 in R7 cells and Rh6 in R8 cells. The specification of an R8 cell in a pale or yellow ommatidium depends on the fate of the adjacent R7 cell. However, pale and yellow R7 cells are specified by a stochastic process that requires the genes spineless, tango and klumpfuss. To identify additional genes involved in this process we performed genetic screens using a collection of 480 P{EP} transposon insertion strains. We identified genes in gain of function and loss of function screens that significantly altered the percentage of Rh3 expressing R7 cells (Rh3%) from wild-type. 36 strains resulted in altered Rh3% in the gain of function screen where the P{EP} insertion strains were crossed to a sevEP-GAL4 driver line. 53 strains resulted in altered Rh3% in the heterozygous loss of function screen. 4 strains showed effects that differed between the two screens, suggesting that the effect found in the gain of function screen was either larger than, or potentially masked by, the P{EP} insertion alone. Analyses of homozygotes validated many of the candidates identified. These results suggest that R7 cell fate specification is sensitive to perturbations in mRNA transcription, splicing and localization, growth inhibition, post-translational protein modification, cleavage and secretion, hedgehog signaling, ubiquitin protease activity, GTPase activation, actin and cytoskeletal regulation, and Ser/Thr kinase activity, among other diverse signaling and cell biological processes.
Collapse
|
18
|
Tan H, Fulton RE, Chou WH, Birkholz DA, Mannino MP, Yamaguchi DM, Aldrich JC, Jacobsen TL, Britt SG. Drosophila R8 photoreceptor cell subtype specification requires hibris. PLoS One 2020; 15:e0240451. [PMID: 33052948 PMCID: PMC7556441 DOI: 10.1371/journal.pone.0240451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Cell differentiation and cell fate determination in sensory systems are essential for stimulus discrimination and coding of environmental stimuli. Color vision is based on the differential color sensitivity of retinal photoreceptors, however the developmental programs that control photoreceptor cell differentiation and specify color sensitivity are poorly understood. In Drosophila melanogaster, there is evidence that the color sensitivity of different photoreceptors in the compound eye is regulated by inductive signals between cells, but the exact nature of these signals and how they are propagated remains unknown. We conducted a genetic screen to identify additional regulators of this process and identified a novel mutation in the hibris gene, which encodes an irre cell recognition module protein (IRM). These immunoglobulin super family cell adhesion molecules include human KIRREL and nephrin (NPHS1). hibris is expressed dynamically in the developing Drosophila melanogaster eye and loss-of-function mutations give rise to a diverse range of mutant phenotypes including disruption of the specification of R8 photoreceptor cell diversity. We demonstrate that hibris is required within the retina, and that hibris over-expression is sufficient to disrupt normal photoreceptor cell patterning. These findings suggest an additional layer of complexity in the signaling process that produces paired expression of opsin genes in adjacent R7 and R8 photoreceptor cells.
Collapse
Affiliation(s)
- Hong Tan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ruth E. Fulton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wen-Hai Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Denise A. Birkholz
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Meridee P. Mannino
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David M. Yamaguchi
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
19
|
Zechner C, Nerli E, Norden C. Stochasticity and determinism in cell fate decisions. Development 2020; 147:147/14/dev181495. [PMID: 32669276 DOI: 10.1242/dev.181495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development, cells need to make decisions about their fate in order to ensure that the correct numbers and types of cells are established at the correct time and place in the embryo. Such cell fate decisions are often classified as deterministic or stochastic. However, although these terms are clearly defined in a mathematical sense, they are sometimes used ambiguously in biological contexts. Here, we provide some suggestions on how to clarify the definitions and usage of the terms stochastic and deterministic in biological experiments. We discuss the frameworks within which such clear definitions make sense and highlight when certain ambiguity prevails. As an example, we examine how these terms are used in studies of neuronal cell fate decisions and point out areas in which definitions and interpretations have changed and matured over time. We hope that this Review will provide some clarification and inspire discussion on the use of terminology in relation to fate decisions.
Collapse
Affiliation(s)
- Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany .,Max Planck Center for Systems Biology, Pfotenhauerstraße 108, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Elisa Nerli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany .,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
20
|
Viets K, Sauria MEG, Chernoff C, Rodriguez Viales R, Echterling M, Anderson C, Tran S, Dove A, Goyal R, Voortman L, Gordus A, Furlong EEM, Taylor J, Johnston RJ. Characterization of Button Loci that Promote Homologous Chromosome Pairing and Cell-Type-Specific Interchromosomal Gene Regulation. Dev Cell 2019; 51:341-356.e7. [PMID: 31607649 DOI: 10.1016/j.devcel.2019.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023]
Abstract
Homologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting, X-inactivation, and transvection. In Drosophila, homologous chromosomes pair throughout development, promoting transvection. The "button" model of pairing proposes that specific regions along chromosomes pair with high affinity. Here, we identify buttons interspersed across the fly genome that pair with their homologous sequences, even when relocated to multiple positions in the genome. A majority of transgenes that span a full topologically associating domain (TAD) function as buttons, but not all buttons contain TADs. Additionally, buttons are enriched for insulator protein clusters. Fragments of buttons do not pair, suggesting that combinations of elements within a button are required for pairing. Pairing is necessary but not sufficient for transvection. Additionally, pairing and transvection are stronger in some cell types than in others, suggesting that pairing strength regulates transvection efficiency between cell types. Thus, buttons pair homologous chromosomes to facilitate cell-type-specific interchromosomal gene regulation.
Collapse
Affiliation(s)
- Kayla Viets
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael E G Sauria
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Max Echterling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abigail Dove
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raghav Goyal
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Department of Genome Biology, Heidelberg 69117, Germany
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Courgeon M, Desplan C. Coordination between stochastic and deterministic specification in the Drosophila visual system. Science 2019; 366:science.aay6727. [PMID: 31582524 DOI: 10.1126/science.aay6727] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Abstract
Sensory systems use stochastic fate specification to increase their repertoire of neuronal types. How these stochastic decisions are coordinated with the development of their targets is unknown. In the Drosophila retina, two subtypes of ultraviolet-sensitive R7 photoreceptors are stochastically specified. In contrast, their targets in the brain are specified through a deterministic program. We identified subtypes of the main target of R7, the Dm8 neurons, each specific to the different subtypes of R7s. Dm8 subtypes are produced in excess by distinct neuronal progenitors, independently from R7. After matching with their cognate R7, supernumerary Dm8s are eliminated by apoptosis. Two interacting cell adhesion molecules, Dpr11 and DIPγ, are essential for the matching of one of the synaptic pairs. These mechanisms allow the qualitative and quantitative matching of R7 and Dm8 and thereby permit the stochastic choice made in R7 to propagate to the brain.
Collapse
Affiliation(s)
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
22
|
Ramaekers A, Claeys A, Kapun M, Mouchel-Vielh E, Potier D, Weinberger S, Grillenzoni N, Dardalhon-Cuménal D, Yan J, Wolf R, Flatt T, Buchner E, Hassan BA. Altering the Temporal Regulation of One Transcription Factor Drives Evolutionary Trade-Offs between Head Sensory Organs. Dev Cell 2019; 50:780-792.e7. [PMID: 31447264 DOI: 10.1016/j.devcel.2019.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/24/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022]
Abstract
Size trade-offs of visual versus olfactory organs is a pervasive feature of animal evolution. This could result from genetic or functional constraints. We demonstrate that head sensory organ size trade-offs in Drosophila are genetically encoded and arise through differential subdivision of the head primordium into visual versus non-visual fields. We discover that changes in the temporal regulation of the highly conserved eyeless/Pax6 gene expression during development is a conserved mechanism for sensory trade-offs within and between Drosophila species. We identify a natural single nucleotide polymorphism in the cis-regulatory region of eyeless in a binding site of its repressor Cut that is sufficient to alter its temporal regulation and eye size. Because eyeless/Pax6 is a conserved regulator of head sensory placode subdivision, we propose that its temporal regulation is key to define the relative size of head sensory organs.
Collapse
Affiliation(s)
- Ariane Ramaekers
- Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France.
| | - Annelies Claeys
- VIB Center for Brain and Disease, VIB, Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Martin Kapun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine, LBD-IBPS), Paris, France
| | - Delphine Potier
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Simon Weinberger
- VIB Center for Brain and Disease, VIB, Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Nicola Grillenzoni
- Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Delphine Dardalhon-Cuménal
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine, LBD-IBPS), Paris, France
| | - Jiekun Yan
- VIB Center for Brain and Disease, VIB, Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Reinhard Wolf
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Erich Buchner
- Institute for Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bassem A Hassan
- Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France.
| |
Collapse
|
23
|
Urban EA, Johnston RJ. Buffering and Amplifying Transcriptional Noise During Cell Fate Specification. Front Genet 2018; 9:591. [PMID: 30555516 PMCID: PMC6282114 DOI: 10.3389/fgene.2018.00591] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
The molecular processes that drive gene transcription are inherently noisy. This noise often manifests in the form of transcriptional bursts, producing fluctuations in gene activity over time. During cell fate specification, this noise is often buffered to ensure reproducible developmental outcomes. However, sometimes noise is utilized as a “bet-hedging” mechanism to diversify functional roles across a population of cells. Studies of bacteria, yeast, and cultured cells have provided insights into the nature and roles of noise in transcription, yet we are only beginning to understand the mechanisms by which noise influences the development of multicellular organisms. Here we discuss the sources of transcriptional noise and the mechanisms that either buffer noise to drive reproducible fate choices or amplify noise to randomly specify fates.
Collapse
Affiliation(s)
- Elizabeth A Urban
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|