1
|
Liu DY, Li M, Yu J, Gao Y, Zhang X, Hu D, Northoff G, Song XM, Zhu J. Sex differences in the human brain related to visual motion perception. Biol Sex Differ 2024; 15:92. [PMID: 39529200 PMCID: PMC11552312 DOI: 10.1186/s13293-024-00668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Previous studies have found that the temporal duration required for males to perceive visual motion direction is significantly shorter than that for females. However, the neural correlates of such shortened duration perception remain yet unclear. Given that motion perception is primarily associated with the neural activity of the middle temporal visual complex (MT+), we here test the novel hypothesis that the neural mechanism of these behavioral sex differences is mainly related to the MT+ region. METHODS We utilized ultra-high field (UHF) MRI to investigate sex differences in the MT+ brain region. A total of 95 subjects (48 females) participated in two separate studies. Cohort 1, consisting of 33 subjects (16 females), completed task-fMRI (drafting grating stimuli) experiment. Cohort 2, comprising 62 subjects (32 females), engaged in a psychophysical experiment measuring motion perception along different temporal thresholds as well as conducting structural and functional MRI scanning of MT+. RESULTS Our findings show pronounced sex differences in major brain parameters within the left MT+ (but not the right MT+, i.e., laterality). In particular, males demonstrate (i) larger gray matter volume (GMV) and higher brain's spontaneous activity at the fastest infra-slow frequency band in the left MT+; and (ii) stronger functional connectivity between the left MT+ and the left centromedial amygdala (CM). Meanwhile, both female and male participants exhibited comparable correlations between motion perception ability and the multimodal imaging indexes of the MT+ region, i.e., larger GMV, higher brain's spontaneous activity, and faster motion discrimination. CONCLUSIONS Our findings reveal sex differences of imaging indicators of structure and function in the MT+ region, which also relate to the temporal threshold of motion discrimination. Overall, these results show how behavioral sex differences in visual motion perception are generated, and advocate considering sex as a crucial biological variable in both human brain and behavioral research.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Juan Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaotong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, China
- College of Electrical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, ON, K1Z 7K4, Canada
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, China.
| | - Junming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Swanson LR, Jungers S, Varghese R, Cullen KR, Evans MD, Nielson JL, Schallmo MP. Enhanced visual contrast suppression during peak psilocybin effects: Psychophysical results from a pilot randomized controlled trial. J Vis 2024; 24:5. [PMID: 39499526 PMCID: PMC11540033 DOI: 10.1167/jov.24.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
In visual perception, an effect known as surround suppression occurs wherein the apparent contrast of a center stimulus is reduced when it is presented within a higher-contrast surrounding stimulus. Many key aspects of visual perception involve surround suppression, yet the neuromodulatory processes involved remain unclear. Psilocybin is a serotonergic psychedelic compound known for its robust effects on visual perception, particularly texture, color, object, and motion perception. We asked whether surround suppression is altered under peak effects of psilocybin. Using a contrast-matching task with different center-surround stimulus configurations, we measured surround suppression after 25 mg of psilocybin compared with placebo (100 mg niacin). Data on harms were collected, and no serious adverse events were reported. After taking psilocybin, participants (n = 6) reported stronger surround suppression of perceived contrast compared to placebo. Furthermore, we found that the intensity of subjective psychedelic visuals induced by psilocybin correlated positively with the magnitude of surround suppression. We note the potential relevance of our findings for the field of psychiatry, given that studies have demonstrated weakened visual surround suppression in both major depressive disorder and schizophrenia. Our findings are thus relevant to understanding the visual effects of psilocybin, and the potential mechanisms of visual disruption in mental health disorders.
Collapse
Affiliation(s)
- Link Ray Swanson
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Jungers
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ranji Varghese
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jessica L Nielson
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Song XM, Liu D, Hirjak D, Hu X, Han J, Roe AW, Yao D, Tan Z, Northoff G. Motor versus Psychomotor? Deciphering the Neural Source of Psychomotor Retardation in Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403063. [PMID: 39207086 PMCID: PMC11515905 DOI: 10.1002/advs.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Major depressive disorder (MDD) is characterized by psychomotor retardation whose underlying neural source remains unclear. Psychomotor retardation may either be related to a motor source like the motor cortex or, alternatively, to a psychomotor source with neural changes outside motor regions, like input regions such as visual cortex. These two alternative hypotheses in main (n = 41) and replication (n = 18) MDD samples using 7 Tesla MRI are investigated. Analyzing both global and local connectivity in primary motor cortex (BA4), motor network and middle temporal visual cortex complex (MT+), the main findings in MDD are: 1) Reduced local and global synchronization and increased local-to-global output in motor regions, which do not correlate with psychomotor retardation, though. 2) Reduced local-to-local BA4 - MT+ functional connectivity (FC) which correlates with psychomotor retardation. 3) Reduced global synchronization and increased local-to-global output in MT+ which relate to psychomotor retardation. 4) Reduced variability in the psychophysical measures of MT+ based motion perception which relates to psychomotor retardation. Together, it is shown that visual cortex MT+ and its relation to motor cortex play a key role in mediating psychomotor retardation. This supports psychomotor over motor hypothesis about the neural source of psychomotor retardation in MDD.
Collapse
Affiliation(s)
- Xue Mei Song
- Department of Neurosurgery of the Second Affiliated HospitalInterdisciplinary Institute of Neuroscience and TechnologySchool of MedicineZhejiang UniversityHangzhou310029China
- Key Laboratory of Biomedical Engineering of Ministry of EducationQiushi Academy for Advanced StudiesCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
| | - Dong‐Yu Liu
- Department of Neurosurgery of the Second Affiliated HospitalInterdisciplinary Institute of Neuroscience and TechnologySchool of MedicineZhejiang UniversityHangzhou310029China
- Key Laboratory of Biomedical Engineering of Ministry of EducationQiushi Academy for Advanced StudiesCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
| | - Dusan Hirjak
- Department of Psychiatry and PsychotherapyCentral Institute of Mental HealthMedical Faculty MannheimUniversity of Heidelberg69117MannheimGermany
| | - Xi‐Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's HospitalSchool of MedicineZhejiang UniversityHangzhou310013China
| | - Jin‐Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's HospitalSchool of MedicineZhejiang UniversityHangzhou310013China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated HospitalInterdisciplinary Institute of Neuroscience and TechnologySchool of MedicineZhejiang UniversityHangzhou310029China
| | - De‐Zhong Yao
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Zhong‐Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's HospitalSchool of MedicineZhejiang UniversityHangzhou310013China
| | - Georg Northoff
- University of Ottawa Institute of Mental Health ResearchUniversity of OttawaOttawaONK1Z 7K4Canada
| |
Collapse
|
4
|
Gao Y, Cai YC, Liu DY, Yu J, Wang J, Li M, Xu B, Wang T, Chen G, Northoff G, Bai R, Song XM. GABAergic inhibition in human hMT+ predicts visuo-spatial intelligence mediated through the frontal cortex. eLife 2024; 13:RP97545. [PMID: 39352734 PMCID: PMC11444681 DOI: 10.7554/elife.97545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juan Yu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bin Xu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Gang Chen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Hangzhou, China
| | - Ruiliang Bai
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Fan Y, Tao Y, Wang J, Gao Y, Wei W, Zheng C, Zhang X, Song XM, Northoff G. Irregularity of visual motion perception and negative symptoms in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:82. [PMID: 39349502 PMCID: PMC11443095 DOI: 10.1038/s41537-024-00496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 10/02/2024]
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder characterized by perceptual, emotional, and behavioral abnormalities, with cognitive impairment being a prominent feature of the disorder. Recent studies demonstrate irregularity in SZ with increased variability on the neural level. Is there also irregularity on the psychophysics level like in visual perception? Here, we introduce a methodology to analyze the irregularity in a trial-by-trial way to compare the SZ and healthy control (HC) subjects. In addition, we use an unsupervised clustering algorithm K-means + + to identify SZ subgroups in the sample, followed by validation of the subgroups based on intraindividual visual perception variability and clinical symptomatology. The K-means + + method divided SZ patients into two subgroups by measuring durations across trials in the motion discrimination task, i.e., high, and low irregularity of SZ patients (HSZ, LSZ). We found that HSZ and LSZ subgroups are associated with more negative and positive symptoms respectively. Applying a mediation model in the HSZ subgroup, the enhanced irregularity mediates the relationship between visual perception and negative symptoms. Together, we demonstrate increased irregularity in visual perception of a HSZ subgroup, including its association with negative symptoms. This may serve as a promising marker for identifying and distinguishing SZ subgroups.
Collapse
Affiliation(s)
- Yi Fan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yunhai Tao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chanying Zheng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Liu DY, Hu XW, Han JF, Tan ZL, Song XM. Abnormal activation patterns in MT+ during visual motion perception in major depressive disorder. Front Psychiatry 2024; 15:1433239. [PMID: 39252757 PMCID: PMC11381256 DOI: 10.3389/fpsyt.2024.1433239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Objective Previous studies have found that patients with Major Depressive Disorder (MDD) exhibit impaired visual motion perception capabilities, and multi-level abnormalities in the human middle temporal complex (MT+), a key brain area for processing visual motion information. However, the brain activity pattern of MDD patients during the perception of visual motion information is currently unclear. In order to study the effect of depression on the activity and functional connectivity (FC) of MT+ during the perception of visual motion information, we conducted a study combining task-state fMRI and psychophysical paradigm to compare MDD patients and healthy control (HC). Methods Duration threshold was examined through a visual motion perception psychophysical experiment. In addition, a classic block-design grating motion task was utilized for fMRI scanning of 24 MDD patients and 25 HC. The grating moved randomly in one of eight directions. We examined the neural activation under visual stimulation conditions compared to the baseline and FC. Results Compared to HC group, MDD patients exhibited increased duration threshold. During the task, MDD patients showed decreased beta value and percent signal change in left and right MT+. In the sample comprising MDD and HC, there was a significant negative correlation between beta value in right MT+ and duration threshold. And in MDD group, activation in MT+ were significantly correlated with retardation score. Notably, no such differences in activation were observed in primary visual cortex (V1). Furthermore, when left MT+ served as the seed region, compared to the HC, MDD group showed increased FC with right calcarine fissure and surrounding cortex and decreased FC with left precuneus. Conclusion Overall, the findings of this study highlight that the visual motion perception function impairment in MDD patients relates to abnormal activation patterns in MT+, and task-related activity are significantly connected to the retardation symptoms of the disease. This not only provides insights into the potential neurobiological mechanisms behind visual motion perception disorder in MDD patients from the aspect of task-related brain activity, but also supports the importance of MT+ as a candidate biomarker region for MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Murray SO, Kolodny T, Webb SJ. Linking cortical surface area to computational properties in human visual perception. iScience 2024; 27:110490. [PMID: 39148711 PMCID: PMC11325354 DOI: 10.1016/j.isci.2024.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Cortical structure and function are closely linked, shaping the neural basis of human behavior. This study explores how cortical surface area (SA), a structural feature, influences computational properties in human visual perception. Using a combination of psychophysical, neuroimaging, and computational modeling approaches, we find that variations in SA across the parietal and frontal cortices are linked to distinct behavioral patterns in a motion perception task. These differences in behavior correspond to specific parameters within a divisive normalization model, indicating a unique contribution of SA to the spatial organization of cortical circuitry. This work highlights the importance of cortical architecture in modifying computational processes that underlie perception, enhancing our understanding of how structural differences can influence neural function and behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Tamar Kolodny
- Department of Psychology and the School of Brain Sciences and Cognition, Ben-Gurion University, Beer Sheva, Israel
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Research Institute, 1920 Terry Avenue, Building Cure-03, Seattle, WA 98101, USA
| |
Collapse
|
8
|
Solomon JA, Nagle F, Tyler CW. Spatial summation for motion detection. Vision Res 2024; 221:108422. [PMID: 38718618 DOI: 10.1016/j.visres.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
We used the psychophysical summation paradigm to reveal some spatial characteristics of the mechanism responsible for detecting a motion-defined visual target in central vision. There has been much previous work on spatial summation for motion detection and direction discrimination, but none has assessed it in terms of the velocity threshold or used velocity noise to provide a measure of the efficiency of the velocity processing mechanism. Motion-defined targets were centered within square fields of randomly selected gray levels. The motion was produced within the disk-shaped target region by shifting the pixels rightwards for 0.2 s. The uniform target motion was perturbed by Gaussian motion noise in horizontal strips of 16 pixels. Independent variables were field size, the diameter of the disk target, and the variance of an independent perturbation added to the (signed) velocity of each 16-pixel strip. The dependent variable was the threshold velocity for target detection. Velocity thresholds formed swoosh-shaped (descending, then ascending) functions of target diameter. Minimum values were obtained when targets subtended approximately 2 degrees of visual angle. The data were fit with a continuum of models, extending from the theoretically ideal observer through various inefficient and noisy refinements thereof. In particular, we introduce the concept of sparse sampling to account for the relative inefficiency of the velocity thresholds. The best fits were obtained from a model observer whose responses were determined by comparing the velocity profile of each stimulus with a limited set of sparsely sampled "DoG" templates, each of which is the product of a random binary array and the difference between two 2-D Gaussian density functions.
Collapse
Affiliation(s)
- Joshua A Solomon
- Centre for Applied Vision Research, City, University of London, UK.
| | - Fintan Nagle
- Centre for Applied Vision Research, City, University of London, UK
| | - Christopher W Tyler
- Centre for Applied Vision Research, City, University of London, UK; Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| |
Collapse
|
9
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
10
|
Murray GE, Norton DJ. Reduced visual context effects in global motion processing in depression. PLoS One 2023; 18:e0291513. [PMID: 37703305 PMCID: PMC10499266 DOI: 10.1371/journal.pone.0291513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Research supports abnormal inhibitory visual motion processing in adults with remitted and current depression, but all studies to date have used paradigms with simple grating stimuli. Global motion processing, where multiple motion signals must be integrated, has not been explored in depression, nor have inhibitory processes within that domain. Depressed participants (n = 46) and healthy controls (n = 28) completed a direction discrimination task featuring a random dot pattern stimulus. Various signal (rightward or leftward dots) to noise (dots with randomly assigned directions) ratios modulated task difficulty. Metrics of global center surround suppression and facilitation were calculated. Accuracy in the baseline condition (i.e., no surrounding annulus) was not significantly different between depressed and healthy participants. Global center surround suppression and facilitation were not significantly different between healthy and depressed participants overall. When limiting the sample to unmedicated individuals, depressed participants (n = 27) showed a reduced global center surround suppression effect compared to controls, and there was no difference in global center surround facilitation. While global motion processing is intact in depression, abnormal center surround suppression effects in depression do extend to global motion stimuli. These alterations may be mitigated by the psychotropic medications taken by some subjects in our depressed sample. Future studies should explore the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Grace E. Murray
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States of America
- Department of Psychology, Williams College, Williamstown, MA, United States of America
- McLean Hospital, Belmont, MA, United States of America
| | - Daniel J. Norton
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States of America
- Department of Psychology, Williams College, Williamstown, MA, United States of America
- McLean Hospital, Belmont, MA, United States of America
- Department of Psychology, Gordon College, Wenham, MA, United States of America
| |
Collapse
|
11
|
Murray SO, Kolodny T, Webb SJ. Cortical Surface Area Relates to Distinct Computational Properties in Human Visual Perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545373. [PMID: 37398212 PMCID: PMC10312808 DOI: 10.1101/2023.06.16.545373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the relationship between cortical structure and function is essential for elucidating the neural basis of human behavior. However, the impact of cortical structural features on the computational properties of neural circuits remains poorly understood. In this study, we demonstrate that a simple structural feature - cortical surface area (SA) - relates to specific computational properties underlying human visual perception. By combining psychophysical, neuroimaging, and computational modeling approaches, we show that differences in SA in the parietal and frontal cortices are associated with distinct patterns of behavior in a motion perception task. These behavioral differences can be accounted for by specific parameters of a divisive normalization model, suggesting that SA in these regions contributes uniquely to the spatial organization of cortical circuitry. Our findings provide novel evidence linking cortical structure to distinct computational properties and offer a framework for understanding how cortical architecture can impact human behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle WA USA 98195
- Seattle Children’s Research Institute, 1920 Terry Ave, Building Cure-03, Seattle WA 98101
| |
Collapse
|
12
|
Nguyen BN, Srinivasan R, McKendrick AM. Short-term homeostatic visual neuroplasticity in adolescents after two hours of monocular deprivation. IBRO Neurosci Rep 2023; 14:419-427. [PMID: 37388492 PMCID: PMC10300437 DOI: 10.1016/j.ibneur.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/25/2023] [Accepted: 04/17/2023] [Indexed: 07/01/2023] Open
Abstract
In healthy adults with normal vision, temporary deprivation of one eye's visual experience produces transient yet robust homeostatic plasticity effects, where the deprived eye becomes more dominant. This shift in ocular dominance is short-lived and compensatory. Previous work shows that monocular deprivation decreases resting state gamma aminobutyric acid (GABA; inhibitory neurotransmitter) levels in visual cortex, and that those with the greatest reduction in GABA have stronger shifts due to monocular deprivation. Components of the GABAergic system in visual cortex vary with age (early childhood, early teen years, ageing); hence if GABA is critical to homeostatic plasticity within the visual system, adolescence may be a key developmental period where differences in plasticity manifest. Here we measured short-term visual deprivation effects on binocular rivalry in 24 adolescents (aged 10-15 years) and 23 young adults (aged 20-25 years). Despite differences in baseline features of binocular rivalry (adolescents showed more mixed percept p < 0.001 and a tendency for faster switching p = 0.06 compared to adults), deprived eye dominance increased (p = 0.01) similarly for adolescents and adults after two hours of patching. Other aspects of binocular rivalry - time to first switch (heralding the onset of rivalry) and mixed percept - were unaltered by patching. These findings suggest that binocular rivalry after patching can be used as a behavioral proxy for experience-dependent visual cortical plasticity in adolescents in the same way as adults, and that homeostatic plasticity to compensate for temporarily reduced visual input is established and effective by adolescence.
Collapse
Affiliation(s)
- Bao N. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rekha Srinivasan
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M. McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Division of Optometry, School of Allied Health, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Makowski LM, Rammsayer TH, Tadin D, Thomas P, Troche SJ. On the interplay of temporal resolution power and spatial suppression in their prediction of psychometric intelligence. PLoS One 2022; 17:e0274809. [PMID: 36121867 PMCID: PMC9484675 DOI: 10.1371/journal.pone.0274809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
As a measure of the brain’s temporal fine-tuning capacity, temporal resolution power (TRP) explained repeatedly a substantial amount of variance in psychometric intelligence. Recently, spatial suppression, referred to as the increasing difficulty in quickly perceiving motion direction as the size of the moving stimulus increases, has attracted particular attention, when it was found to be positively related to psychometric intelligence. Due to the conceptual similarities of TRP and spatial suppression, the present study investigated their mutual interplay in the relation to psychometric intelligence in 273 young adults to better understand the reasons for these relationships. As in previous studies, psychometric intelligence was positively related to a latent variable representing TRP but, in contrast to previous reports, negatively to latent and manifest measures of spatial suppression. In a combined structural equation model, TRP still explained a substantial amount of variance in psychometric intelligence while the negative relation between spatial suppression and intelligence was completely explained by TRP. Thus, our findings confirmed TRP to be a robust predictor of psychometric intelligence but challenged the assumption of spatial suppression as a representation of general information processing efficiency as reflected in psychometric intelligence. Possible reasons for the contradictory findings on the relation between spatial suppression and psychometric intelligence are discussed.
Collapse
Affiliation(s)
| | | | - Duje Tadin
- Department of Brain and Cognitive Sciences, Neuroscience, Ophthalmology and Center for Visual Science, University of Rochester, Rochester, NY, United States of America
| | - Philipp Thomas
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Stefan J. Troche
- Institute of Psychology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Mukerji A, Byrne KN, Yang E, Levi DM, Silver MA. Visual cortical γ-aminobutyric acid and perceptual suppression in amblyopia. Front Hum Neurosci 2022; 16:949395. [PMID: 36118971 PMCID: PMC9479630 DOI: 10.3389/fnhum.2022.949395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 01/23/2023] Open
Abstract
In amblyopia, abnormal visual experience during development leads to an enduring loss of visual acuity in adulthood. Physiological studies in animal models suggest that intracortical GABAergic inhibition may mediate visual deficits in amblyopia. To better understand the relationship between visual cortical γ-aminobutyric acid (GABA) and perceptual suppression in persons with amblyopia (PWA), we employed magnetic resonance spectroscopy (MRS) to quantify GABA levels in both PWA and normally-sighted persons (NSP). In the same individuals, we obtained psychophysical measures of perceptual suppression for a variety of ocular configurations. In PWA, we found a robust negative correlation between the depth of amblyopia (the difference in visual acuity between the amblyopic and non-amblyopic eyes) and GABA concentration that was specific to visual cortex and was not observed in a sensorimotor cortical control region. Moreover, lower levels of visual cortical GABA were associated with weaker perceptual suppression of the fellow eye by the amblyopic eye and stronger suppression of the amblyopic eye by the fellow eye. Taken together, our findings provide evidence that intracortical GABAergic inhibition is an important component of the pathology of human amblyopia and suggest possible therapeutic interventions to restore vision in the amblyopic eye through enhancement of visual cortical GABAergic signaling in PWA.
Collapse
Affiliation(s)
- Arjun Mukerji
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States,Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| | - Kelly N. Byrne
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Eunice Yang
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Dennis M. Levi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States,Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Michael A. Silver
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States,Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Michael A. Silver,
| |
Collapse
|
16
|
Kınıklıoğlu M, Boyaci H. Increasing the spatial extent of attention strengthens surround suppression. Vision Res 2022; 199:108074. [PMID: 35717748 DOI: 10.1016/j.visres.2022.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Here we investigate how the extent of spatial attention affects center-surround interaction in visual motion processing. To do so, we measured motion direction discrimination thresholds in humans using drifting gratings and two attention conditions. Participants were instructed to limit their attention to the central part of the stimulus under the narrow attention condition, and to both central and surround parts under the wide attention condition. We found stronger surround suppression under the wide attention condition. The magnitude of the attention effect increased with the size of the surround when the stimulus had low contrast, but did not change when it had high contrast. Results also showed that attention had a weaker effect when the center and surround gratings drifted in opposite directions. Next, to establish a link between the behavioral results and the neuronal response characteristics, we performed computer simulations using the divisive normalization model. Our simulations showed that using smaller versus larger multiplicative attentional gain and parameters derived from the medial temporal (MT) area of the cortex, the model can successfully predict the observed behavioral results. These findings reveal the critical role of spatial attention on surround suppression and establish a link between neuronal activity and behavior. Further, these results also suggest that the reduced surround suppression found in certain clinical disorders (e.g., schizophrenia and autism spectrum disorder) may be caused by abnormal attention mechanisms.
Collapse
Affiliation(s)
- Merve Kınıklıoğlu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
| | - Huseyin Boyaci
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Department of Psychology, Bilkent University, Ankara 06800, Turkey; Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
17
|
Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI). Neuroimage Clin 2022; 32:102821. [PMID: 34628303 PMCID: PMC8501506 DOI: 10.1016/j.nicl.2021.102821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
Cerebral visual impairment (CVI) is associated with impaired global motion processing. Mean motion coherence thresholds was higher in individuals with CVI. fMRI responses in area hMT+ showed an aberrant response profile in CVI. White matter tract reconstruction revealed cortico-cortical dysmyelination in CVI.
Cerebral visual impairment (CVI) is associated with a wide range of visual perceptual deficits including global motion processing. However, the underlying neurophysiological basis for these impairments remain poorly understood. We investigated global motion processing abilities in individuals with CVI compared to neurotypical controls using a combined behavioral and multi-modal neuroimaging approach. We found that CVI participants had a significantly higher mean motion coherence threshold (determined using a random dot kinematogram pattern simulating optic flow motion) compared to controls. Using functional magnetic resonance imaging (fMRI), we investigated activation response profiles in functionally defined early (i.e. primary visual cortex; area V1) and higher order (i.e. middle temporal cortex; area hMT+) stages of motion processing. In area V1, responses to increasing motion coherence were similar in both groups. However, in the CVI group, activation in area hMT+ was significantly reduced compared to controls, and consistent with a surround facilitation (rather than suppression) response profile. White matter tract reconstruction obtained from high angular resolution diffusion imaging (HARDI) revealed evidence of increased mean, axial, and radial diffusivities within cortico-cortical (i.e. V1-hMT+), but not thalamo-hMT+ connections. Overall, our results suggest that global motion processing deficits in CVI may be associated with impaired signal integration and segregation mechanisms, as well as white matter integrity at the level of area hMT+.
Collapse
|
18
|
Liu DY, Ju X, Gao Y, Han JF, Li Z, Hu XW, Tan ZL, Northoff G, Song XM. From Molecular to Behavior: Higher Order Occipital Cortex in Major Depressive Disorder. Cereb Cortex 2021; 32:2129-2139. [PMID: 34613359 DOI: 10.1093/cercor/bhab343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion. Using high-field 7 T magnetic resonance imaging (MRI), including resting state functional MRI and proton magnetic resonance spectroscopy, the amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent signal in MT, MT-seeded functional connectivity (FC), and gamma-aminobutyric acid (GABA) in MT were investigated. Applying the vision motion psychophysical task, the motion suppression index of subjects was also examined. We demonstrate significantly elevated neural variability (as measured by ALFF) in MT together with decreases in both MT GABA and motion suppression in our MDD sample. Unlike in healthy subjects, MT neural variability no longer modulates the relationship of MT GABA and motion suppression in MDD. MT also exhibits reduction in global inter-regional FC to MPFC in MDD. Finally, elevated MT ALFF relates to specifically retardation in behavior as measured by the Hamilton subscore. Together, MT provides a strong candidate for biomarker in MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhe Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,University of Ottawa Institute of Mental Health Research, University of Ottawa; Ottawa, ON, K1Z 7K4, Canada
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Schach S, Surges R, Helmstaedter C. Visual surround suppression in people with epilepsy correlates with attentional-executive functioning, but not with epilepsy or seizure types. Epilepsy Behav 2021; 121:108080. [PMID: 34062447 DOI: 10.1016/j.yebeh.2021.108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Following reports that an index of visual surround suppression (SI) may serve as a biomarker for an imbalance of cortical excitation and inhibition in different psychiatric and neurological disorders including epilepsy, we evaluated whether SI is associated with seizure susceptibility, seizure spread, and inhibitory effects of antiseizure medication (ASM). METHODS In this prospective controlled study, we examined SI with a motion discrimination task in people with genetic generalized epilepsy (GGE) and focal epilepsy with and without focal to bilateral tonic-clonic seizures. Cofactors such as GABAergic ASM, attentional-executive functioning, and depression were taken into account. RESULTS Data of 45 patients were included in the final analysis. Suppression index was not related to epilepsy or seizure type, GABAergic ASM treatment or mood. However, SI correlated with attentional-executive functioning (r = 0.32), which in turn was associated with ASM load (r = -0.38). Repeated task administration (N = 7) proved a high stability over a one-week interval (rtt = 0.89). CONCLUSIONS Our results do not support the hypothesis that SI is a reliable biomarker for mechanisms related to inhibition of seizure spread or seizure frequency, i.e., it does not seem to reflect inhibitory capacities in epilepsy. Likewise, SI did not differentiate GGE from focal epilepsy, nor was it influenced by ASM load or mode of action. Thus, in epilepsy, no added value of including SI to routine diagnostics can be concluded.
Collapse
Affiliation(s)
- Sophia Schach
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
20
|
Peñaloza B, Herzog MH, Öğmen H. Adaptive mechanisms of visual motion discrimination, integration, and segregation. Vision Res 2021; 188:96-114. [PMID: 34304144 DOI: 10.1016/j.visres.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Under ecological conditions, the luminance impinging on the retina varies within a dynamic range of 220 dB. Stimulus contrast can also vary drastically within a scene and eye movements leave little time for sampling luminance. Given these fundamental problems, the human brain allocates a significant amount of resources and deploys both structural and functional solutions that work in tandem to compress this range. Here we propose a new dynamic neural model built upon well-established canonical neural mechanisms. The model consists of two feed-forward stages. The first stage encodes the stimulus spatially and normalizes its activity by extracting contrast and discounting the background luminance. These normalized activities allow a second stage to implement a contrast-dependent spatial-integration strategy. We show how the properties of this model can account for adaptive properties of motion discrimination, integration, and segregation.
Collapse
Affiliation(s)
- Boris Peñaloza
- Perceptual and Cognitive Dynamics Laboratory, Department of Electrical & Computer Engineering, University of Denver, Denver, CO 80208, USA; Universidad Tecnológica de Panamá, Panama.
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Haluk Öğmen
- Perceptual and Cognitive Dynamics Laboratory, Department of Electrical & Computer Engineering, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
21
|
Park ASY, Schütz AC. Selective postsaccadic enhancement of motion perception. Vision Res 2021; 188:42-50. [PMID: 34280816 PMCID: PMC7611369 DOI: 10.1016/j.visres.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022]
Abstract
Saccadic eye movements can drastically affect motion perception: during saccades, the stationary surround is swept rapidly across the retina and contrast sensitivity is suppressed. However, after saccades, contrast sensitivity is enhanced for color and high-spatial frequency stimuli and reflexive tracking movements known as ocular following responses (OFR) are enhanced in response to large field motion. Additionally, OFR and postsaccadic enhancement of neural activity in primate motion processing areas are well correlated. It is not yet known how this postsaccadic enhancement arises. Therefore, we tested if the enhancement can be explained by changes in the balance of centre-surround antagonism in motion processing, where spatial summation is favoured at low contrasts and surround suppression is favoured at high contrasts. We found motion perception was selectively enhanced immediately after saccades for high spatial frequency stimuli, consistent with previously reported selective postsaccadic enhancement of contrast sensitivity for flashed high spatial frequency stimuli. The observed enhancement was also associated with changes in spatial summation and suppression, as well as contrast facilitation and inhibition, suggesting that motion processing is augmented to maximise visual perception immediately after saccades. The results highlight that spatial and contrast properties of underlying neural mechanisms for motion processing can be affected by an antecedent saccade for highly detailed stimuli and are in line with studies that show behavioural and neuronal enhancement of motion processing in non-human primates.
Collapse
Affiliation(s)
- Adela S Y Park
- Experimental and Biological Psychology, University of Marburg, Marburg, Germany.
| | - Alexander C Schütz
- Experimental and Biological Psychology, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
22
|
Ip IB, Bridge H. Investigating the neurochemistry of the human visual system using magnetic resonance spectroscopy. Brain Struct Funct 2021; 227:1491-1505. [PMID: 33900453 PMCID: PMC9046312 DOI: 10.1007/s00429-021-02273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Biochemical processes underpin the structure and function of the visual cortex, yet our understanding of the fundamental neurochemistry of the visual brain is incomplete. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive brain imaging tool that allows chemical quantification of living tissue by detecting minute differences in the resonant frequency of molecules. Application of MRS in the human brain in vivo has advanced our understanding of how the visual brain consumes energy to support neural function, how its neural substrates change as a result of disease or dysfunction, and how neural populations signal during perception and plasticity. The aim of this review is to provide an entry point to researchers interested in investigating the neurochemistry of the visual system using in vivo measurements. We provide a basic overview of MRS principles, and then discuss recent findings in four topics of vision science: (i) visual perception, plasticity in the (ii) healthy and (iii) dysfunctional visual system, and (iv) during visual stimulation. Taken together, evidence suggests that the neurochemistry of the visual system provides important novel insights into how we perceive the world.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
23
|
Arranz-Paraíso S, Read JCA, Serrano-Pedraza I. Reduced surround suppression in monocular motion perception. J Vis 2021; 21:10. [PMID: 33450007 PMCID: PMC7814361 DOI: 10.1167/jov.21.1.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Motion discrimination of large stimuli is impaired at high contrast and short durations. This psychophysical result has been linked with the center-surround suppression found in neurons of area MT. Recent physiology results have shown that most frontoparallel MT cells respond more strongly to binocular than to monocular stimulation. Here we measured the surround suppression strength under binocular and monocular viewing. Thirty-nine participants took part in two experiments: (a) where the nonstimulated eye viewed a blank field of the same luminance (n = 8) and (b) where it was occluded with a patch (n = 31). In both experiments, we measured duration thresholds for small (1 deg diameter) and large (7 deg) drifting gratings of 1 cpd with 85% contrast. For each subject, a Motion Suppression Index (MSI) was computed by subtracting the duration thresholds in logarithmic units of the large minus the small stimulus. Results were similar in both experiments. Combining the MSI of both experiments, we found that the strength of suppression for binocular condition (MSIbinocular = 0.249 ± 0.126 log10 (ms)) is 1.79 times higher than under monocular viewing (MSImonocular = 0.139 ± 0.137 log10 (ms)). This increase is too high to be explained by the higher perceived contrast of binocular stimuli and offers a new way of testing whether MT neurons account for surround suppression. Potentially, differences in surround suppression reported in clinical populations may reflect altered binocular processing.
Collapse
Affiliation(s)
| | - Jenny C A Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- https://www.jennyreadresearch.com/
| | - Ignacio Serrano-Pedraza
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- https://www.ucm.es/serranopedrazalab/
| |
Collapse
|
24
|
Kiemes A, Davies C, Kempton MJ, Lukow PB, Bennallick C, Stone JM, Modinos G. GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal 1H-MRS-fMRI Studies. Front Psychiatry 2021; 12:644315. [PMID: 33762983 PMCID: PMC7982484 DOI: 10.3389/fpsyt.2021.644315] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Multimodal neuroimaging studies combining proton magnetic resonance spectroscopy (1H-MRS) to quantify GABA and/or glutamate concentrations and functional magnetic resonance imaging (fMRI) to measure brain activity non-invasively have advanced understanding of how neurochemistry and neurophysiology may be related at a macroscopic level. The present study aimed to perform a systematic review and meta-analysis of available studies examining the relationship between 1H-MRS glutamate and/or GABA levels and task-related fMRI signal in the healthy brain. Ovid (Medline, Embase, and PsycINFO) and Pubmed databases were systematically searched to identify articles published until December 2019. The primary outcome of interest was the association between resting levels of glutamate or GABA and task-related fMRI. Fifty-five papers were identified for inclusion in the systematic review. A further 22 studies were entered into four separate meta-analyses. These meta-analyses found evidence of significant negative associations between local GABA levels and (a) fMRI activation to visual tasks in the occipital lobe, and (b) activation to emotion processing in the medial prefrontal cortex (mPFC)/anterior cingulate cortex (ACC). However, there was no significant association between mPFC/ACC glutamate levels and fMRI activation to cognitive control tasks or to emotional processing, with the relationship to emotion processing related neural activity narrowly missing significance. Moreover, our systematic review also found converging evidence of negative associations between GABA levels and local brain activity, and positive associations between glutamate levels and distal brain activity, outside of the 1H-MRS sampling region. Albeit less consistently, additional relationships between GABA levels and distal brain activity and between glutamate levels and local brain activity were found. It remains unclear if the absence of effects for other brain regions and other cognitive-emotional domains reflects study heterogeneity or potential confounding effects of age, sex, or other unknown factors. Advances in 1H-MRS methodology as well as in the integration of 1H-MRS readouts with other imaging modalities for indexing neural activity hold great potential to reveal key aspects of the pathophysiology of mental health disorders involving aberrant interactions between neurochemistry and neurophysiology such as schizophrenia.
Collapse
Affiliation(s)
- Amanda Kiemes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cathy Davies
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Kempton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina B Lukow
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carly Bennallick
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex & University of Brighton, Brighton, United Kingdom
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Centre Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Mol Psychiatry 2021; 26:6747-6755. [PMID: 33863994 PMCID: PMC8760062 DOI: 10.1038/s41380-021-01090-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a complex state-dependent psychiatric illness for which biomarkers linking psychophysical, biochemical, and psychopathological changes remain yet elusive, though. Earlier studies demonstrate reduced GABA in lower-order occipital cortex in acute MDD leaving open its validity and significance for higher-order visual perception, though. The goal of our study is to fill that gap by combining psychophysical investigation of visual perception with measurement of GABA concentration in middle temporal visual area (hMT+) in acute depressed MDD. Psychophysically, we observe a highly specific deficit in visual surround motion suppression in a large sample of acute MDD subjects which, importantly, correlates with symptom severity. Both visual deficit and its relation to symptom severity are replicated in the smaller MDD sample that received MRS. Using high-field 7T proton Magnetic resonance spectroscopy (1H-MRS), acute MDD subjects exhibit decreased GABA concentration in visual MT+ which, unlike in healthy subjects, no longer correlates with their visual motion performance, i.e., impaired SI. In sum, our combined psychophysical-biochemical study demonstrates an important role of reduced occipital GABA for altered visual perception and psychopathological symptoms in acute MDD. Bridging the gap from the biochemical level of occipital GABA over visual-perceptual changes to psychopathological symptoms, our findings point to the importance of the occipital cortex in acute depressed MDD including its role as candidate biomarker.
Collapse
|
26
|
Li H, Huang G, Lin Q, Zhao J, Fu Q, Li L, Mao Y, Wei X, Yang W, Wang B, Zhang Z, Huang D. EEG Changes in Time and Time-Frequency Domain During Movement Preparation and Execution in Stroke Patients. Front Neurosci 2020; 14:827. [PMID: 32973428 PMCID: PMC7468244 DOI: 10.3389/fnins.2020.00827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
This study investigated electroencephalogram (EEG) changes during movement preparation and execution in stroke patients. EEG-based event-related potential (ERP) technology was used to measure brain activity changes. Seventeen stroke patients participated in this study and completed ERP tests that were designed to measure EEG changes during unilateral upper limb movements in preparation and execution stages, with Instruction Response Movement (IRM) and Cued Instruction Response Movement (CIRM) paradigms. EEG data were analyzed using motor potential (MP) in the time domain and the mu-rhythm and beta frequency band response mean value (R-means) in the time-frequency domain. In IRM, the MP amplitude at Cz was higher during hemiplegic arm movement than during unaffected arm movement. MP latency was shorter at Cz and the contralesional motor cortex during hemiplegic arm movement in CIRM compared to IRM. No significant differences were found in R-means among locations, between movement sides in both ERP tests. This study presents the brain activity changes in the time and time-frequency domains in stroke patients during movement preparation and execution and supports the contralesional compensation and adjacent-region compensation mechanism of post-stroke brain reconstruction. These findings may contribute to future rehabilitation research about neuroplasticity and technology development such as the brain-computer interface.
Collapse
Affiliation(s)
- Hai Li
- Neurorehabilitation Laboratory, Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan Huang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Fu
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States
| | - Le Li
- Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yurong Mao
- Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xijun Wei
- Neurorehabilitation Laboratory, Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wanzhang Yang
- Neurorehabilitation Laboratory, Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Bingshui Wang
- Neurorehabilitation Laboratory, Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhiguo Zhang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Peñaloza B, Herzog MH, Öğmen H. Non-retinotopic adaptive center-surround modulation in motion processing. Vision Res 2020; 174:10-21. [DOI: 10.1016/j.visres.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/15/2022]
|
28
|
Murray SO, Kolodny T, Schallmo MP, Gerdts J, Bernier RA. Late fMRI Response Components Are Altered in Autism Spectrum Disorder. Front Hum Neurosci 2020; 14:241. [PMID: 32694986 PMCID: PMC7338757 DOI: 10.3389/fnhum.2020.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/02/2020] [Indexed: 12/01/2022] Open
Abstract
Disrupted cortical neural inhibition has been hypothesized to be a primary contributor to the pathophysiology of autism spectrum disorder (ASD). This hypothesis predicts that ASD will be associated with an increase in neural responses. We tested this prediction by comparing fMRI response magnitudes to simultaneous visual, auditory, and motor stimulation in ASD and neurotypical (NT) individuals. No increases in the initial transient response in any brain region were observed in ASD, suggesting that there is no increase in overall cortical neural excitability. Most notably, there were widespread fMRI magnitude increases in the ASD response following stimulation offset, approximately 6–8 s after the termination of sensory and motor stimulation. In some regions, the higher fMRI offset response in ASD could be attributed to a lack of an “undershoot”—an often observed feature of fMRI responses believed to reflect inhibitory processing. Offset response magnitude was associated with reaction times (RT) in the NT group and may explain an overall reduced RT in the ASD group. Overall, our results suggest that increases in neural responsiveness are present in ASD but are confined to specific components of the neural response, are particularly strong following stimulation offset, and are linked to differences in RT.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
29
|
Distinct patterns of surround modulation in V1 and hMT. Neuroimage 2020; 220:117084. [PMID: 32629144 DOI: 10.1016/j.neuroimage.2020.117084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 01/06/2023] Open
Abstract
Modulation of a neuron's responses by the stimuli presented outside of its classical receptive field is ubiquitous in the visual system. This "surround modulation" mechanism is believed to be critical for efficient processing and leads to many well-known perceptual effects. The details of surround modulation, however, are still not fully understood. One of the open questions is related to the differences in surround modulation mechanisms in different cortical areas, and their interactions. Here we study patterns of surround modulation in primary visual cortex (V1) and middle temporal complex (hMT+) utilizing a well-studied effect in motion perception, where human observers' ability to discriminate the drift direction of a grating improves as its size gets bigger if the grating has a low contrast, and deteriorates if it has a high contrast. We first replicated the findings in the literature with a behavioral experiment using small and large (1.67 and 8.05 degrees of visual angle) drifting gratings with either low (2%) or high (99%) contrast presented at the periphery. Next, using functional MRI, we found that in V1 with increasing size cortical responses increased at both contrast levels. Whereas in hMT+ with increasing size cortical responses remained unchanged or decreased at high contrast, and increased at low contrast, reflecting the perceptual effect. We also show that the divisive normalization model successfully predicts these activity patterns, and establishes a link between the behavioral results and hMT+ activity. We conclude that surround modulation patterns in V1 and hMT+ are different, and that the size-contrast interaction in motion perception is likely to originate in hMT+.
Collapse
|
30
|
Abstract
Abnormal sensory processing has been observed in autism, including superior visual motion discrimination, but the neural basis for these sensory changes remains unknown. Leveraging well-characterized suppressive neural circuits in the visual system, we used behavioral and fMRI tasks to demonstrate a significant reduction in neural suppression in young adults with autism spectrum disorder (ASD) compared to neurotypical controls. MR spectroscopy measurements revealed no group differences in neurotransmitter signals. We show how a computational model that incorporates divisive normalization, as well as narrower top-down gain (that could result, for example, from a narrower window of attention), can explain our observations and divergent previous findings. Thus, weaker neural suppression is reflected in visual task performance and fMRI measures in ASD, and may be attributable to differences in top-down processing. Sensory hypersensitivity is common in autism spectrum disorders. Using functional MRI, psychophysics, and computational modeling, Schallmo et al. show that differences in visual motion perception in ASD are accompanied by weaker neural suppression in visual cortex.
Collapse
|
31
|
Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of Cortical GABA and Glutamate in Young Adults With Autism Spectrum Disorder. Autism Res 2020; 13:1111-1129. [PMID: 32297709 DOI: 10.1002/aur.2300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder, possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evidence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cortex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls. Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysical visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups, with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals. Autism Res 2020, 13: 1111-1129. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectroscopy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism. In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical adults. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Michael-Paul Schallmo
- Department of Psychology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Orekhova EV, Rostovtseva EN, Manyukhina VO, Prokofiev AO, Obukhova TS, Nikolaeva AY, Schneiderman JF, Stroganova TA. Spatial suppression in visual motion perception is driven by inhibition: Evidence from MEG gamma oscillations. Neuroimage 2020; 213:116753. [PMID: 32194278 DOI: 10.1016/j.neuroimage.2020.116753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Spatial suppression (SS) is a visual perceptual phenomenon that is manifest in a reduction of directional sensitivity for drifting high-contrast gratings whose size exceeds the center of the visual field. Gratings moving at faster velocities induce stronger SS. The neural processes that give rise to such size- and velocity-dependent reductions in directional sensitivity are currently unknown, and the role of surround inhibition is unclear. In magnetoencephalogram (MEG), large high-contrast drifting gratings induce a strong gamma response (GR), which also attenuates with an increase in the gratings' velocity. It has been suggested that the slope of this GR attenuation is mediated by inhibitory interactions in the primary visual cortex. Herein, we investigate whether SS is related to this inhibitory-based MEG measure. We evaluated SS and GR in two independent samples of participants: school-age boys and adult women. The slope of GR attenuation predicted inter-individual differences in SS in both samples. Test-retest reliability of the neuro-behavioral correlation was assessed in the adults, and was high between two sessions separated by several days or weeks. Neither frequencies nor absolute amplitudes of the GRs correlated with SS, which highlights the functional relevance of velocity-related changes in GR magnitude caused by augmentation of incoming input. Our findings provide evidence that links the psychophysical phenomenon of SS to inhibitory-based neural responses in the human primary visual cortex. This supports the role of inhibitory interactions as an important underlying mechanism for spatial suppression.
Collapse
Affiliation(s)
- Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden.
| | - Ekaterina N Rostovtseva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; National Research University Higher School of Economics, Moscow, Russian Federation, Moscow, Russian Federation
| | - Andrey O Prokofiev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Anastasia Yu Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
33
|
Kolodny T, Schallmo MP, Gerdts J, Bernier RA, Murray SO. Response Dissociation in Hierarchical Cortical Circuits: a Unique Feature of Autism Spectrum Disorder. J Neurosci 2020; 40:2269-2281. [PMID: 32015023 PMCID: PMC7083290 DOI: 10.1523/jneurosci.2376-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
A prominent hypothesis regarding the pathophysiology of autism is that an increase in the balance between neural excitation and inhibition results in an increase in neural responses. However, previous reports of population-level response magnitude in individuals with autism have been inconsistent. Critically, network interactions have not been considered in previous neuroimaging studies of excitation and inhibition imbalance in autism. In particular, a defining characteristic of cortical organization is its hierarchical and interactive structure; sensory and cognitive systems are comprised of networks where later stages inherit and build upon the processing of earlier input stages, and also influence and shape earlier stages by top-down modulation. Here we used the well established connections of the human visual system to examine response magnitudes in a higher-order motion processing region [middle temporal area (MT+)] and its primary input region (V1). Simple visual stimuli were presented to adult individuals with autism spectrum disorders (ASD; n = 24, mean age 23 years, 8 females) and neurotypical controls (n = 24, mean age 22, 8 females) during fMRI scanning. We discovered a strong dissociation of fMRI response magnitude between region MT+ and V1 in individuals with ASD: individuals with high MT+ responses had attenuated V1 responses. The magnitude of MT+ amplification and of V1 attenuation was associated with autism severity, appeared to result from amplified suppressive feedback from MT+ to V1, and was not present in neurotypical controls. Our results reveal the potential role of altered hierarchical network interactions in the pathophysiology of ASD.SIGNIFICANCE STATEMENT An imbalance between neural excitation and inhibition, resulting in increased neural responses, has been suggested as a pathophysiological pathway to autism, but direct evidence from humans is lacking. In the current study we consider the role of interactions between stages of sensory processing when testing increased neural responses in individuals with autism. We used the well known hierarchical structure of the visual motion pathway to demonstrate dissociation in the fMRI response magnitude between adjacent stages of processing in autism: responses are attenuated in a primary visual area but amplified in a subsequent higher-order area. This response dissociation appears to rely on enhanced suppressive feedback between regions and reveals a previously unknown cortical network alteration in autism.
Collapse
Affiliation(s)
| | - Michael-Paul Schallmo
- Departments of Psychology
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jennifer Gerdts
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 95195, and
| | - Raphael A Bernier
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 95195, and
| | | |
Collapse
|
34
|
Park S, Nguyen BN, McKendrick AM. Ageing elevates peripheral spatial suppression of motion regardless of divided attention. Ophthalmic Physiol Opt 2020; 40:117-127. [DOI: 10.1111/opo.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/16/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Soa Park
- Department of Optometry and Vision Sciences The University of Melbourne Parkville Victoria Australia
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences The University of Melbourne Parkville Victoria Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
35
|
Linares D, Amoretti S, Marin-Campos R, Sousa A, Prades L, Dalmau J, Bernardo M, Compte A. Spatial Suppression and Sensitivity for Motion in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2020; 1. [DOI: 10.1093/schizbullopen/sgaa045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Abstract
Perceptual spatial suppression is a phenomenon in which the perceived strength of a stimulus in some region of the space is reduced when the stimulus is surrounded by other stimuli. For contrast perception, several studies suggest that spatial suppression is reduced in patients with schizophrenia. For motion perception, only one study has been conducted in a cohort of 16 patients, suggesting that spatial suppression is reduced. It is unknown, however, whether this reduction is related to the lower intelligence quotient (IQ) that schizophrenic patients usually show; as there is evidence that spatial suppression for motion increases with IQ in healthy individuals. Here, we sought to determine the spatial suppression for motion in a larger cohort of 33 patients with schizophrenia, controlling for IQ. We found a weakened spatial suppression in patients with schizophrenia, consistent with the previous study (g = 0.47, CI = [0.055, 0.88], combining the previous and our study). For comparison, we performed a meta-analysis on spatial suppression for contrast and found a similar effect size. We found that patients had a lower IQ than controls, but this difference did not explain their weaker spatial suppression. Further, we found that spatial suppression of patients, but not controls, increased with their IQ and, it decreased with age in both groups. Finally, as we estimated lapses of attention, we could estimate motion sensitivity and found that it was decreased in patients. We speculate about possible alterations in neurotransmission that might explain the reduced spatial suppression and sensitivity that we found.
Collapse
Affiliation(s)
- Daniel Linares
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | | - Rafael Marin-Campos
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - André Sousa
- Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Laia Prades
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Dalmau
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Hospital Clínic, University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Miquel Bernardo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic, University of Barcelona, Barcelona, Spain
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Albert Compte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
36
|
Development of Center-Surround Suppression in Infant Motion Processing. Curr Biol 2019; 29:3059-3064.e2. [PMID: 31495583 DOI: 10.1016/j.cub.2019.07.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022]
Abstract
Motion direction of a large high-contrast pattern is more difficult to perceive than that of a small one [1]. This counterintuitive perceptual phenomenon is considered to reflect surround suppression, a receptive field property observed in the visual cortex [2-5]. Here, we demonstrate that this phenomenon can be observed in human infants. Infants at 7 to 8 months of age showed higher sensitivity for a small motion stimulus than for a large one. However, infants under 6 months showed the opposite result; motion sensitivity was higher for a large stimulus. These results suggest that suppressive surround regions beyond classical receptive fields develop in the second half of the first year. Moreover, we examined the size of spatial summation in infants and found that the spatial summation area shrinks from 3 to 8 months of age. Our findings suggest that the summation area for motion is broad with no surround suppression in early infancy and that it narrows and acquires suppressive surround regions in the first year of life, which might reflect the developmental changes in the receptive field structure.
Collapse
|
37
|
|
38
|
Brunton BW, Beyeler M. Data-driven models in human neuroscience and neuroengineering. Curr Opin Neurobiol 2019; 58:21-29. [PMID: 31325670 DOI: 10.1016/j.conb.2019.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/22/2019] [Indexed: 12/26/2022]
Abstract
Discoveries in modern human neuroscience are increasingly driven by quantitative understanding of complex data. Data-intensive approaches to modeling have promise to dramatically advance our understanding of the brain and critically enable neuroengineering capabilities. In this review, we provide an accessible primer to modern modeling approaches and highlight recent data-driven discoveries in the domains of neuroimaging, single-neuron and neuronal population responses, and device neuroengineering. Further, we suggest that meaningful progress requires the community to tackle open challenges in the realms of model interpretability and generalizability, training pipelines of data-fluent human neuroscientists, and integrated consideration of data ethics.
Collapse
Affiliation(s)
- Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael Beyeler
- Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nat Commun 2019; 10:2732. [PMID: 31266956 PMCID: PMC6606582 DOI: 10.1038/s41467-019-10653-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Segregation of objects from their backgrounds is a fundamental visual function and one that is particularly effective when objects are in motion. Theoretically, suppressive center-surround mechanisms are well suited for accomplishing motion segregation. This longstanding hypothesis, however, has received limited empirical support. We report converging correlational and causal evidence that spatial suppression of background motion signals is critical for rapid segmentation of moving objects. Motion segregation ability is strongly predicted by both individual and stimulus-driven variations in spatial suppression strength. Moreover, aging-related superiority in perceiving background motion is associated with profound impairments in motion segregation. This segregation deficit is alleviated via perceptual learning, but only when motion segregation training also causes decreased sensitivity to background motion. We argue that perceptual insensitivity to large moving stimuli effectively implements background subtraction, which, in turn, enhances the visibility of moving objects and accounts for the observed link between spatial suppression and motion segregation. The visual system excels at segregating moving objects from their backgrounds, a key visual function hypothesized to be driven by suppressive centre-surround mechanisms. Here, the authors show that spatial suppression of background motion signals is critical for rapid segmentation of moving objects.
Collapse
|
40
|
Disentangling locus of perceptual learning in the visual hierarchy of motion processing. Sci Rep 2019; 9:1557. [PMID: 30733535 PMCID: PMC6367332 DOI: 10.1038/s41598-018-37892-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/17/2018] [Indexed: 12/03/2022] Open
Abstract
Visual perceptual learning (VPL) can lead to long-lasting perceptual improvements. One of the central topics in VPL studies is the locus of plasticity in the visual processing hierarchy. Here, we tackled this question in the context of motion processing. We took advantage of an established transition from component-dependent representations at the earliest level to pattern-dependent representations at the middle-level of cortical motion processing. Two groups of participants were trained on the same motion direction identification task using either grating or plaid stimuli. A set of pre- and post-training tests was used to determine the degree of learning specificity and generalizability. This approach allowed us to disentangle contributions from different levels of processing stages to behavioral improvements. We observed a complete bi-directional transfer of learning between component and pattern stimuli that moved to the same directions, indicating learning-induced plasticity associated with intermediate levels of motion processing. Moreover, we found that motion VPL is specific to the trained stimulus direction, speed, size, and contrast, diminishing the possibility of non-sensory decision-level enhancements. Taken together, these results indicate that, at least for the type of stimuli and the task used here, motion VPL most likely alters visual computation associated with signals at the middle stage of motion processing.
Collapse
|
41
|
Schallmo MP, Millin R, Kale AM, Kolodny T, Edden RAE, Bernier RA, Murray SO. Glutamatergic facilitation of neural responses in MT enhances motion perception in humans. Neuroimage 2019; 184:925-931. [PMID: 30312807 PMCID: PMC6230494 DOI: 10.1016/j.neuroimage.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
There is large individual variability in human neural responses and perceptual abilities. The factors that give rise to these individual differences, however, remain largely unknown. To examine these factors, we measured fMRI responses to moving gratings in the motion-selective region MT, and perceptual duration thresholds for motion direction discrimination. Further, we acquired MR spectroscopy data, which allowed us to quantify an index of neurotransmitter levels in the region of area MT. These three measurements were conducted in separate experimental sessions within the same group of male and female subjects. We show that stronger Glx (glutamate + glutamine) signals in the MT region are associated with both higher fMRI responses and superior psychophysical task performance. Our results suggest that greater baseline levels of glutamate within MT facilitate motion perception by increasing neural responses in this region.
Collapse
Affiliation(s)
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Alex M Kale
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Murray SO, Schallmo MP, Kolodny T, Millin R, Kale A, Thomas P, Rammsayer TH, Troche SJ, Bernier RA, Tadin D. Sex Differences in Visual Motion Processing. Curr Biol 2018; 28:2794-2799.e3. [PMID: 30122530 PMCID: PMC6133755 DOI: 10.1016/j.cub.2018.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
The importance of sex as a biological variable has recently been emphasized by major funding organizations [1] and within the neuroscience community [2]. Critical sex-based neural differences are indicated by, for example, conditions such as autism spectrum disorder (ASD) that have a strong sex bias with a higher prevalence among males [51, 3]. Motivated by this broader context, we report a marked sex difference in a visual motion perception task among neurotypical adults. Motion duration thresholds [4, 5]-the minimum duration needed to accurately perceive motion direction-were considerably shorter for males than females. We replicated this result across three laboratories and 263 total participants. This type of enhanced performance has previously been observed only in special populations including ASD, depression, and senescence [6-8]. The observed sex difference cannot be explained by general differences in speed of visual processing, overall visual discrimination abilities, or potential motor-related differences. We also show that while individual differences in motion duration thresholds are associated with differences in fMRI responsiveness of human MT+, surprisingly, MT+ response magnitudes did not differ between males and females. Thus, we reason that sex differences in motion perception are not captured by an MT+ fMRI measure that predicts within-sex individual differences in perception. Overall, these results show how sex differences can manifest unexpectedly, highlighting the importance of sex as a factor in the design and analysis of perceptual and cognitive studies.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle WA 98195, USA.
| | | | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Alex Kale
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Philipp Thomas
- Department of Psychology, University of Bern, Bern, Switzerland
| | | | - Stefan J Troche
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, U.S.A
| | - Duje Tadin
- Departments of Brain and Cognitive Sciences, Ophthalmology, and Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
43
|
Arranz-Paraíso S, Serrano-Pedraza I. Testing the link between visual suppression and intelligence. PLoS One 2018; 13:e0200151. [PMID: 29979774 PMCID: PMC6034845 DOI: 10.1371/journal.pone.0200151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
The impairment to discriminate the motion direction of a large high contrast stimulus or to detect a stimulus surrounded by another one is called visual suppression and is the result of the normal function of our visual inhibitory mechanisms. Recently, Melnick et al. (2013), using a motion discrimination task, showed that intelligence strongly correlates with visual suppression (r = 0.71). Cook et al. (2016) also showed a strong link between contrast surround suppression and IQ (r = 0.87), this time using a contrast matching task. Our aim is to test this link using two different visual suppression tasks: a motion discrimination task and a contrast detection task. Fifty volunteers took part in the experiments. Using Bayesian staircases, we measured duration thresholds in the motion experiment and contrast thresholds in the spatial experiment. Although we found a much weaker effect, our results from the motion experiment still replicate previous results supporting the link between motion surround suppression and IQ (r = 0.43). However, our results from the spatial experiment do not support the link between contrast surround suppression and IQ (r = -0.09). Methodological differences between this study and previous studies which could explain these discrepancies are discussed.
Collapse
Affiliation(s)
| | - Ignacio Serrano-Pedraza
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|