1
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
2
|
Zhang J, Li J, Wang Y, Shi C. NMR methods to detect fluoride binding and transport by membrane proteins. Methods Enzymol 2024; 696:25-42. [PMID: 38658082 DOI: 10.1016/bs.mie.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) methods can probe the motions of membrane proteins in liposomes at the atomic level, and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. High-resolution crystallography snapshots have provided a structural basis for fluoride channels. NMR is a powerful tool to build upon these snapshots and depict a dynamic picture of fluoride channels in native-like lipid bilayers. In this contribution, we discuss solid-state and solution NMR experiments to detect fluoride binding and transport by fluoride channels. Ongoing developments in membrane protein sample preparation and ssNMR methodology, particularly in using 1H, 19F and 13C-detection schemes, offer additional opportunities to study structure and functional aspects of fluoride channels.
Collapse
Affiliation(s)
- Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Juan Li
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Yusong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China.
| |
Collapse
|
3
|
Zhang J, Song D, Schackert FK, Li J, Xiang S, Tian C, Gong W, Carloni P, Alfonso-Prieto M, Shi C. Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR. SCIENCE ADVANCES 2023; 9:eadg9709. [PMID: 37611110 PMCID: PMC10446490 DOI: 10.1126/sciadv.adg9709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) methods can probe the motions of membrane proteins in liposomes at the atomic level and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we report our study on the fluoride channel Fluc-Ec1 in phospholipid bilayers based on ssNMR and molecular dynamics simulations. Previously unidentified fluoride binding sites in the aqueous vestibules were experimentally verified by 19F-detected ssNMR. One of the two fluoride binding sites in the polar track was identified as a water molecule by 1H-detected ssNMR. Meanwhile, a dynamic hotspot at loop 1 was observed by comparing the spectra of wild-type Fluc-Ec1 in variant buffer conditions or with its mutants. Therefore, we propose that fluoride conduction in the Fluc channel occurs via a "water-mediated knock-on" permeation mechanism and that loop 1 is a key molecular determinant for channel gating.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Dan Song
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Florian Karl Schackert
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Juan Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Shengqi Xiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Changlin Tian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Weimin Gong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Paolo Carloni
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Chaowei Shi
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| |
Collapse
|
4
|
Galles GD, Infield DT, Clark CJ, Hemshorn ML, Manikandan S, Fazan F, Rasouli A, Tajkhorshid E, Galpin JD, Cooley RB, Mehl RA, Ahern CA. Tuning phenylalanine fluorination to assess aromatic contributions to protein function and stability in cells. Nat Commun 2023; 14:59. [PMID: 36599844 PMCID: PMC9813137 DOI: 10.1038/s41467-022-35761-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The aromatic side-chains of phenylalanine, tyrosine, and tryptophan interact with their environments via both hydrophobic and electrostatic interactions. Determining the extent to which these contribute to protein function and stability is not possible with conventional mutagenesis. Serial fluorination of a given aromatic is a validated method in vitro and in silico to specifically alter electrostatic characteristics, but this approach is restricted to a select few experimental systems. Here, we report a group of pyrrolysine-based aminoacyl-tRNA synthetase/tRNA pairs (tRNA/RS pairs) that enable the site-specific encoding of a varied spectrum of fluorinated phenylalanine amino acids in E. coli and mammalian (HEK 293T) cells. By allowing the cross-kingdom expression of proteins bearing these unnatural amino acids at biochemical scale, these tools may potentially enable the study of biological mechanisms which utilize aromatic interactions in structural and cellular contexts.
Collapse
Affiliation(s)
- Grace D Galles
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Colin J Clark
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Marcus L Hemshorn
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Shivani Manikandan
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Frederico Fazan
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Richard B Cooley
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Ryan A Mehl
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
5
|
Yadav PR, Basha SH. Impact of F80M and F83M mutations on the functionality of fluoride ion channel elucidated in microsecond level molecular dynamic simulation. J Biomol Struct Dyn 2022; 40:10899-10904. [PMID: 34463212 DOI: 10.1080/07391102.2021.1951356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluoride ion channels of the Fluc family plays a critically important role in combating environmental fluoride toxicity. As per the crystal structure of these fluoride ion channels, the pore region is densely packed with a series of hydrogen bond donating residues arranged in a ladder fashion creating an ion conducting pathway. In earlier studies, it was revealed that although the ion conducting pathway polarity is highly conserved, however the functionality of the channel protein depends on several residues at particular positions. While, a threonine at end of the pore is critically important in forming initial interactions, two phenylalanines at the central region coordinate F- transportation through the channel. It was also revealed that these two phenylalanines cannot be substituted by any other aromatic, polar or non-polar residues without hindering the functionality with exception of methionine. In another study, it was revealed that these two phenylalanines F80 and F83 when mutated with methionine; F80M lead to active state, while the F83M has lead to inactivity of F- anion conductivity. However, the exact atomic level detailing on how exactly these mutations have impacted the conductivity remained elusive. In this scenario, in this present study, we have modeled these two mutations and performed a microsecond level simulation on each mutation compared with wild type towards understanding the atomic level detailing revealing several insights on what exactly happening at these residues responsible for the selective conductivity of F- ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pulala Raghuveer Yadav
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | |
Collapse
|
6
|
Prins S, Corradi V, Sheppard DN, Tieleman DP, Vergani P. Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains. J Biol Chem 2022; 298:101615. [PMID: 35065958 PMCID: PMC8861112 DOI: 10.1016/j.jbc.2022.101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction.
Collapse
Affiliation(s)
- Stella Prins
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Valentina Corradi
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Paola Vergani
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
7
|
Ion permeation, selectivity, and electronic polarization in fluoride channels. Biophys J 2022; 121:1336-1347. [PMID: 35151630 PMCID: PMC9034187 DOI: 10.1016/j.bpj.2022.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fluoride channels (Flucs) export toxic F- from the cytoplasm. Crystallography and mutagenesis have identified several conserved residues crucial for fluoride transport, but the permeation mechanism at the molecular level has remained elusive. Herein, we have applied constant-pH molecular dynamics and free-energy-sampling methods to investigate fluoride permeation through a Fluc protein from Escherichia coli. We find that fluoride is facile to permeate in its charged form, i.e., F-, by traversing through a non-bonded network. The extraordinary F- selectivity is gained by the hydrogen-bonding capability of the central binding site and the Coulombic filter at the channel entrance. The F- permeation rate calculated using an electronically polarizable force field is significantly more accurate compared with the experimental value than that calculated using a more standard additive force field, suggesting an essential role for electronic polarization in the F--Fluc interactions.
Collapse
|
8
|
McIlwain BC, Gundepudi R, Koff BB, Stockbridge RB. The fluoride permeation pathway and anion recognition in Fluc family fluoride channels. eLife 2021; 10:69482. [PMID: 34250906 PMCID: PMC8315801 DOI: 10.7554/elife.69482] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Fluc family fluoride channels protect microbes against ambient environmental fluoride by undermining the cytoplasmic accumulation of this toxic halide. These proteins are structurally idiosyncratic, and thus the permeation pathway and mechanism have no analogy in other known ion channels. Although fluoride-binding sites were identified in previous structural studies, it was not evident how these ions access aqueous solution, and the molecular determinants of anion recognition and selectivity have not been elucidated. Using x-ray crystallography, planar bilayer electrophysiology, and liposome-based assays, we identified additional binding sites along the permeation pathway. We used this information to develop an oriented system for planar lipid bilayer electrophysiology and observed anion block at one of these sites, revealing insights into the mechanism of anion recognition. We propose a permeation mechanism involving alternating occupancy of anion-binding sites that are fully assembled only as the substrate approaches.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Roja Gundepudi
- Program in Biophysics, University of Michigan, Ann Arbor, United States
| | - B Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States.,Program in Biophysics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
9
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
Chaudhari MI, Vanegas JM, Pratt LR, Muralidharan A, Rempe SB. Hydration Mimicry by Membrane Ion Channels. Annu Rev Phys Chem 2020; 71:461-484. [PMID: 32155383 DOI: 10.1146/annurev-physchem-012320-015457] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.
Collapse
Affiliation(s)
- Mangesh I Chaudhari
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA;
| | - Juan M Vanegas
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA; .,Current affiliation: Department of Physics, University of Vermont, Burlington, Vermont 05405, USA
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Ajay Muralidharan
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA.,Current affiliation: Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Susan B Rempe
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA;
| |
Collapse
|
11
|
An Interfacial Sodium Ion is an Essential Structural Feature of Fluc Family Fluoride Channels. J Mol Biol 2020; 432:1098-1108. [PMID: 31945374 DOI: 10.1016/j.jmb.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Fluc family fluoride channels are assembled as primitive antiparallel homodimers. Crystallographic studies revealed a cation bound at the center of the protein, where it is coordinated at the dimer interface by main chain carbonyl oxygen atoms from the midmembrane breaks in two corresponding transmembrane helices. Here, we show that this cation is a stably bound sodium ion, and although it is not a transported substrate, its presence is required for the channel to adopt an open, fluoride-conducting conformation. The interfacial site is selective for sodium over other cations, except for Li+, which competes with Na+ for binding, but does not support channel activity. The strictly structural role fulfilled by this sodium provides new context to understand the structures, mechanisms, and evolutionary origins of widespread Na+-coupled transporters.
Collapse
|
12
|
Hartel AJW, Shekar S, Ong P, Schroeder I, Thiel G, Shepard KL. High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. Anal Chim Acta 2019; 1061:13-27. [PMID: 30926031 PMCID: PMC6860018 DOI: 10.1016/j.aca.2019.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations.
Collapse
Affiliation(s)
- Andreas J W Hartel
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| | - Siddharth Shekar
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Peijie Ong
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kenneth L Shepard
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| |
Collapse
|
13
|
Last NB, Stockbridge RB, Wilson AE, Shane T, Kolmakova-Partensky L, Koide A, Koide S, Miller C. A CLC-type F -/H + antiporter in ion-swapped conformations. Nat Struct Mol Biol 2018; 25:601-606. [PMID: 29941917 PMCID: PMC6044475 DOI: 10.1038/s41594-018-0082-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 11/09/2022]
Abstract
Fluoride/proton antiporters of the CLCF family combat F- toxicity in bacteria by exporting this halide from the cytoplasm. These transporters belong to the widespread CLC superfamily but display transport properties different from those of the well-studied Cl-/H+ antiporters. Here, we report a structural and functional investigation of these F--transport proteins. Crystal structures of a CLCF homolog from Enterococcus casseliflavus are captured in two conformations with simultaneous accessibility of F- and H+ ions via separate pathways on opposite sides of the membrane. Manipulation of a key glutamate residue critical for H+ and F- transport reverses the anion selectivity of transport; replacement of the glutamate with glutamine or alanine completely inhibits F- and H+ transport while allowing for rapid uncoupled flux of Cl-. The structural and functional results lead to a 'windmill' model of CLC antiport wherein F- and H+ simultaneously move through separate ion-specific pathways that switch sidedness during the transport cycle.
Collapse
Affiliation(s)
- Nicholas B Last
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Randy B Stockbridge
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Ashley E Wilson
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Tania Shane
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | | | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York University School of Medicine, New York, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Christopher Miller
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
14
|
Abstract
Crystallization of dual-topology fluoride (Fluc) channels requires small, soluble crystallization chaperones known as monobodies, which act as primary crystal lattice contacts. Previous structures of Flucs have been solved in the presence of monobodies that inhibit fluoride currents in single-channel electrophysiological recordings. These structures have revealed two-fold symmetric, doubly bound arrangements, with one monobody on each side of the membrane. The combined electrophysiological and structural observations raise the possibility that chaperone binding allosterically closes the channel, altering the structure from its conducting form. To address this, we identify and solve the structure with a different monobody that only partially blocks fluoride currents. The structure of the channel-monobody complex is asymmetric, with monobody bound to one side of the channel only. The channel conformation is nearly identical on the bound and uncomplexed sides, and to all previously solved structures, providing direct structural evidence that monobody binding does not induce local structural changes. Inhibitory crystallization chaperones bind on each side of the membrane Crystal structure of channel with one side free of chaperone binding S8 chaperone-bound channel is competent for fluoride transport Chaperones inhibit channels via a “cork-in-bottle” mechanism of physical occlusion
Collapse
|
15
|
Turman DL, Cheloff AZ, Corrado AD, Nathanson JT, Miller C. Molecular Interactions between a Fluoride Ion Channel and Synthetic Protein Blockers. Biochemistry 2018; 57:1212-1218. [PMID: 29393634 DOI: 10.1021/acs.biochem.7b01272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluoride ion channels of the Fluc family selectively export F- ions to rescue unicellular organisms from acute F- toxicity. Crystal structures of bacterial Fluc channels in complex with synthetic monobodies, fibronectin-derived soluble β-sandwich fold proteins, show 2-fold symmetric homodimers with an antiparallel transmembrane topology. Monobodies also block Fluc F- current via a pore blocking mechanism. However, little is known about the energetic contributions of individual monobody residues to the affinity of the monobody-channel complex or whether the structural paratope corresponds to functional reality. This study seeks to structurally identify and compare residues interacting with Fluc between two highly similar monobodies and subjects them to mutagenesis and functional measurements of equilibrium affinities via a fluorescence anisotropy binding assay to determine their energetic contributions. The results indicate that the functional and structural paratopes strongly agree and that many Tyr residues at the interface, while playing a key role in affinity, can be substituted with Phe and Trp without large disruptions.
Collapse
Affiliation(s)
- Daniel L Turman
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Abraham Z Cheloff
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Alexis D Corrado
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jacob T Nathanson
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Christopher Miller
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|