1
|
Iwanaga R, Yahagi N, Hakeda‐Suzuki S, Suzuki T. Cell adhesion and actin dynamics factors promote axonal extension and synapse formation in transplanted Drosophila photoreceptor cells. Dev Growth Differ 2024; 66:205-218. [PMID: 38403285 PMCID: PMC11457513 DOI: 10.1111/dgd.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Vision is formed by the transmission of light stimuli to the brain through axons extending from photoreceptor cells. Damage to these axons leads to loss of vision. Despite research on neural circuit regeneration through transplantation, achieving precise axon projection remains challenging. To achieve optic nerve regeneration by transplantation, we employed the Drosophila visual system. We previously established a transplantation method for Drosophila utilizing photoreceptor precursor cells extracted from the eye disc. However, little axonal elongation of transplanted cells into the brain, the lamina, was observed. We verified axonal elongation to the lamina by modifying the selection process for transplanted cells. Moreover, we focused on N-cadherin (Ncad), a cell adhesion factor, and Twinstar (Tsr), which has been shown to promote actin reorganization and induce axon elongation in damaged nerves. Overexpression of Ncad and tsr promoted axon elongation to the lamina, along with presynaptic structure formation in the elongating axons. Furthermore, overexpression of Neurexin-1 (Nrx-1), encoding a protein identified as a synaptic organizer, was found to not only promote presynapse formation but also enhance axon elongation. By introducing Ncad, tsr, and Nrx-1, we not only successfully achieved axonal projection of transplanted cells to the brain beyond the retina, but also confirmed the projection of transplanted cells into a deeper ganglion, the medulla. The present study offers valuable insights to realize regeneration through transplantation in a more complex nervous system.
Collapse
Affiliation(s)
- Riku Iwanaga
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
| | - Nagisa Yahagi
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
| | - Satoko Hakeda‐Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
- Research Initiatives and Promotion OrganizationYokohama National UniversityYokohamaJapan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
| |
Collapse
|
2
|
Osaka J, Yasuda H, Watanuki Y, Kato Y, Nitta Y, Sugie A, Sato M, Suzuki T. Identification of genes regulating stimulus-dependent synaptic assembly in Drosophila using an automated synapse quantification system. Genes Genet Syst 2023; 97:297-309. [PMID: 36878557 DOI: 10.1266/ggs.22-00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Neural activity-dependent synaptic plasticity is an important physiological phenomenon underlying environmental adaptation, memory and learning. However, its molecular basis, especially in presynaptic neurons, is not well understood. Previous studies have shown that the number of presynaptic active zones in the Drosophila melanogaster photoreceptor R8 is reversibly changed in an activity-dependent manner. During reversible synaptic changes, both synaptic disassembly and assembly processes were observed. Although we have established a paradigm for screening molecules involved in synaptic stability and several genes have been identified, genes involved in stimulus-dependent synaptic assembly are still elusive. Therefore, the aim of this study was to identify genes regulating stimulus-dependent synaptic assembly in Drosophila using an automated synapse quantification system. To this end, we performed RNAi screening against 300 memory-defective, synapse-related or transmembrane molecules in photoreceptor R8 neurons. Candidate genes were narrowed down to 27 genes in the first screen using presynaptic protein aggregation as a sign of synaptic disassembly. In the second screen, we directly quantified the decreasing synapse number using a GFP-tagged presynaptic protein marker. We utilized custom-made image analysis software, which automatically locates synapses and counts their number along individual R8 axons, and identified cirl as a candidate gene responsible for synaptic assembly. Finally, we present a new model of stimulus-dependent synaptic assembly through the interaction of cirl and its possible ligand, ten-a. This study demonstrates the feasibility of using the automated synapse quantification system to explore activity-dependent synaptic plasticity in Drosophila R8 photoreceptors in order to identify molecules involved in stimulus-dependent synaptic assembly.
Collapse
Affiliation(s)
- Jiro Osaka
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Haruka Yasuda
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yusuke Watanuki
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yuya Kato
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yohei Nitta
- Brain Research Institute, Niigata University
| | | | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University.,Graduate School of Frontier Science Initiative, Kanazawa University
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
3
|
Monagas-Valentin P, Bridger R, Chandel I, Koff M, Novikov B, Schroeder P, Wells L, Panin V. Protein tyrosine phosphatase 69D is a substrate of protein O-mannosyltransferases 1-2 that is required for the wiring of sensory axons in Drosophila. J Biol Chem 2023; 299:102890. [PMID: 36634851 PMCID: PMC9950532 DOI: 10.1016/j.jbc.2023.102890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.
Collapse
Affiliation(s)
- Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Patrick Schroeder
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
4
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Bali N, Lee HK(P, Zinn K. Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. eLife 2022; 11:e71469. [PMID: 35356892 PMCID: PMC9000958 DOI: 10.7554/elife.71469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Type IIa receptor-like protein tyrosine phosphatases (RPTPs) are essential for neural development. They have cell adhesion molecule (CAM)-like extracellular domains that interact with cell-surface ligands and coreceptors. We identified the immunoglobulin superfamily CAM Sticks and Stones (Sns) as a new partner for the Drosophila Type IIa RPTP Lar. Lar and Sns bind to each other in embryos and in vitro, and the human Sns ortholog, Nephrin, binds to human Type IIa RPTPs. Genetic analysis shows that Lar and Sns function together to regulate larval neuromuscular junction development, axon guidance in the mushroom body (MB), and innervation of the optic lobe (OL) medulla by R7 photoreceptors. In the neuromuscular system, Lar and Sns are both required in motor neurons, and may function as coreceptors. In the MB and OL, however, the relevant Lar-Sns interactions are in trans (between neurons), so Sns functions as a Lar ligand in these systems.
Collapse
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hyung-Kook (Peter) Lee
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
6
|
Douthit J, Hairston A, Lee G, Morrison CA, Holguera I, Treisman JE. R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners. eLife 2021; 10:65895. [PMID: 34003117 PMCID: PMC8205486 DOI: 10.7554/elife.65895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here, we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.
Collapse
Affiliation(s)
- Jessica Douthit
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Ariel Hairston
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Gina Lee
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Carolyn A Morrison
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Isabel Holguera
- Department of Biology, New York University, New York, United States
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
7
|
Takechi H, Hakeda-Suzuki S, Nitta Y, Ishiwata Y, Iwanaga R, Sato M, Sugie A, Suzuki T. Glial insulin regulates cooperative or antagonistic Golden goal/Flamingo interactions during photoreceptor axon guidance. eLife 2021; 10:66718. [PMID: 33666170 PMCID: PMC7987344 DOI: 10.7554/elife.66718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022] Open
Abstract
Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo (Fmi) to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon-to-one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shapes the entire organization of the visual system.
Collapse
Affiliation(s)
- Hiroki Takechi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Satoko Hakeda-Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yohei Nitta
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuichi Ishiwata
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Riku Iwanaga
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Brain Research Institute, Niigata University, Niigata, Japan
| | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
8
|
Kawamura H, Hakeda-Suzuki S, Suzuki T. Activity-dependent endocytosis of Wingless regulates synaptic plasticity in the Drosophila visual system. Genes Genet Syst 2021; 95:235-247. [PMID: 33298662 DOI: 10.1266/ggs.20-00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neural activity contributes to synaptic regulation in sensory systems, which allows organisms to adjust to changing environments. However, little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Previous studies have shown that following prolonged exposure to natural ambient light, the presynaptic active zone (AZ), an area associated with presynaptic neurotransmitter release in Drosophila photoreceptors, undergoes reversible remodeling. Other studies suggest that the secretory protein Wingless (Wg; an ortholog of Wnt-1) can mediate communication between synaptic cells to achieve synaptic remodeling. However, the source of Wg and the mechanism of Wg signal modulation by neuronal activity remained unclear. Here, we found that Wg secreted from glial cells regulates synaptic remodeling in photoreceptors. In addition, antibody staining revealed that Wg changes its localization depending on light conditions. Although Wg is secreted from glial cells, Wg appeared inside photoreceptor axons when flies were kept under light conditions, suggesting that an increase in neuronal activity causes Wg internalization into photoreceptors by endocytosis. Indeed, by blocking endocytosis in photoreceptors, the localization of Wg in photoreceptors disappeared. Interestingly, Wg accumulation was higher in axons with disassembled AZ structure than in axons whose AZ structure was stabilized at the single-cell level, indicating that Wg endocytosis may trigger AZ disassembly. Furthermore, when we genetically activated Wg signaling, Wg accumulation in photoreceptors decreased. Conversely, when we suppressed Wg signaling there was an increase in Wg accumulation. Through RNAi screening of Ca2+-binding proteins in photoreceptors, we found that Calcineurin is a key molecule that triggers Wg endocytosis. Overall, we propose that Wg signaling is regulated by a negative feedback loop driven by Wg endocytosis. The increase in neuronal activity is transmitted via calcium signaling, which leads to a decrease in Wg signaling and thereby promotes presynaptic remodeling.
Collapse
Affiliation(s)
- Hinata Kawamura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | | | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
9
|
Özel MN, Kulkarni A, Hasan A, Brummer J, Moldenhauer M, Daumann IM, Wolfenberg H, Dercksen VJ, Kiral FR, Weiser M, Prohaska S, von Kleist M, Hiesinger PR. Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors. Dev Cell 2019; 50:447-461.e8. [PMID: 31353313 DOI: 10.1016/j.devcel.2019.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 06/21/2019] [Indexed: 11/15/2022]
Abstract
Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.
Collapse
Affiliation(s)
- M Neset Özel
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Neuroscience Graduate Program, UT Southwestern Medical Center Dallas, Dallas, TX 75390, USA
| | - Abhishek Kulkarni
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Amr Hasan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Josephine Brummer
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Marian Moldenhauer
- Computational Medicine and Numerical Mathematics, Zuse Institute Berlin, 14195 Berlin, Germany; Department of Mathematics and Informatics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ilsa-Maria Daumann
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heike Wolfenberg
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Vincent J Dercksen
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - F Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Weiser
- Computational Medicine and Numerical Mathematics, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Steffen Prohaska
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Informatics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Shimozono M, Osaka J, Kato Y, Araki T, Kawamura H, Takechi H, Hakeda-Suzuki S, Suzuki T. Cell surface molecule, Klingon, mediates the refinement of synaptic specificity in the Drosophila visual system. Genes Cells 2019; 24:496-510. [PMID: 31124270 DOI: 10.1111/gtc.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/04/2019] [Accepted: 05/19/2019] [Indexed: 11/29/2022]
Abstract
In the Drosophila brain, neurons form genetically specified synaptic connections with defined neuronal targets. It is proposed that each central nervous system neuron expresses specific cell surface proteins, which act as identification tags. Through an RNAi screen of cell surface molecules in the Drosophila visual system, we found that the cell adhesion molecule Klingon (Klg) plays an important role in repressing the ectopic formation of extended axons, preventing the formation of excessive synapses. Cell-specific manipulation of klg showed that Klg is required in both photoreceptors and the glia, suggesting that the balanced homophilic interaction between photoreceptor axons and the glia is required for normal synapse formation. Previous studies suggested that Klg binds to cDIP and our genetic analyses indicate that cDIP is required in glia for ectopic synaptic repression. These data suggest that Klg play a critical role together with cDIP in refining synaptic specificity and preventing unnecessary connections in the brain.
Collapse
Affiliation(s)
- Mai Shimozono
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Jiro Osaka
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Yuya Kato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Tomohiro Araki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hinata Kawamura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hiroki Takechi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Satoko Hakeda-Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| |
Collapse
|
11
|
Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron 2018; 100:1369-1384.e6. [PMID: 30467079 PMCID: PMC7501880 DOI: 10.1016/j.neuron.2018.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Drosophila Dpr (21 paralogs) and DIP proteins (11 paralogs) are cell recognition molecules of the immunoglobulin superfamily (IgSF) that form a complex protein interaction network. DIP and Dpr proteins are expressed in a synaptic layer-specific fashion in the visual system. How interactions between these proteins regulate layer-specific synaptic circuitry is not known. Here we establish that DIP-α and its interacting partners Dpr6 and Dpr10 regulate multiple processes, including arborization within layers, synapse number, layer specificity, and cell survival. We demonstrate that heterophilic binding between Dpr6/10 and DIP-α and homophilic binding between DIP-α proteins promote interactions between processes in vivo. Knockin mutants disrupting the DIP/Dpr binding interface reveal a role for these proteins during normal development, while ectopic expression studies support an instructive role for interactions between DIPs and Dprs in circuit development. These studies support an important role for the DIP/Dpr protein interaction network in regulating cell-type-specific connectivity patterns.
Collapse
|
12
|
Suzuki T, Oochi K, Hakeda-Suzuki S, Suzuki T. Transplantation of photoreceptor precursor cells into the retina of an adult Drosophila. Dev Growth Differ 2018; 60:442-453. [PMID: 29989152 DOI: 10.1111/dgd.12545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
Blindness caused by the disconnection between photoreceptor cells and the brain can be cured by restoring this connection through the transplantation of retinal precursor neurons. However, even after transplanting these cells, it is still unclear how to guide the axons over the long distance from the retina to the brain. To establish a method of guiding the axons of transplanted neurons, we used the Drosophila visual system. By testing different conditions, including the dissociation and preincubation length, we have successfully established a method to transplant photoreceptor precursor cells isolated from the developing eye discs of third-instar larvae into the adult retina. Moreover, we overexpressed N-cadherin (CadN) in the transplant, since it is known to be broadly expressed in the optic lobe well after developmental stages, continuing through adult stages. We found that promoting the cell adhesive properties using CadN enhances the axonal length of the grafted photoreceptor neurons and therefore is useful for future transplantation. We tested the overexpression of a CadN::Frazzled chimeric receptor and found that there was no difference in axonal length from our wild-type transplants, suggesting that the intracellular domain of CadN is necessary for axonal elongation. Altogether, using the Drosophila visual system, we have established an excellent platform for exploring the molecules required for proper axon extension of transplanted neuronal cells. Future studies building from this platform will be useful for regenerative therapy of the human nervous system based on transplantation.
Collapse
Affiliation(s)
- Takahisa Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Keita Oochi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|