1
|
Whalen JM, Earley J, Wisniewski C, Mercurio AM, Cantor SB. Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability. NATURE CANCER 2025; 6:278-291. [PMID: 39838098 PMCID: PMC12041741 DOI: 10.1038/s43018-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jillian Earley
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christi Wisniewski
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Badugu S, Dhyani KM, Thakur M, Muniyappa K. Saccharomyces cerevisiae Rev7 promotes non-homologous end-joining by blocking Mre11 nuclease and Rad50's ATPase activities and homologous recombination. eLife 2024; 13:RP96933. [PMID: 39630591 PMCID: PMC11616998 DOI: 10.7554/elife.96933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Recent studies have shown that, in human cancer cells, the tetrameric Shieldin complex (comprising REV7, SHLD1, SHLD2, and SHLD3) facilitates non-homologous end-joining (NHEJ) while blocking homologous recombination (HR). Surprisingly, several eukaryotic species lack SHLD1, SHLD2, and SHLD3 orthologs, suggesting that Rev7 may leverage an alternative mechanism to regulate the double-strand break (DSB) repair pathway choice. Exploring this hypothesis, we discovered that Saccharomyces cerevisiae Rev7 physically interacts with the Mre11-Rad50-Xrs2 (MRX) subunits, impedes G-quadruplex DNA synergized HU-induced toxicity, and facilitates NHEJ, while antagonizing HR. Notably, we reveal that a 42-amino acid C-terminal fragment of Rev7 binds to the subunits of MRX complex, protects rev7∆ cells from G-quadruplex DNA-HU-induced toxicity, and promotes NHEJ by blocking HR. By comparison, the N-terminal HORMA domain, a conserved protein-protein interaction module, was dispensable. We further show that the full-length Rev7 impedes Mre11 nuclease and Rad50's ATPase activities without affecting the latter's ATP-binding ability. Combined, these results provide unanticipated insights into the functional interaction between the MRX subunits and Rev7 and highlight a previously unrecognized mechanism by which Rev7 facilitates DSB repair via NHEJ, and attenuation of HR, by blocking Mre11 nuclease and Rad50's ATPase activities in S. cerevisiae.
Collapse
Affiliation(s)
- Sugith Badugu
- Department of Biochemistry, Indian Institute of Science BangaloreBengaluruIndia
| | | | - Manoj Thakur
- Sri Venkateswara College, University of Delhi, Benito Juarez MargNew DelhiIndia
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science BangaloreBengaluruIndia
| |
Collapse
|
3
|
Xie B, Sanford EJ, Hung SH, Wagner M, Heyer WD, Smolka MB. Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 2024; 43:3027-3043. [PMID: 38839993 PMCID: PMC11251156 DOI: 10.1038/s44318-024-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Xie B, Sanford EJ, Hung SH, Wagner MM, Heyer WD, Smolka MB. Multi-Step Control of Homologous Recombination by Mec1/ATR Ensures Robust Suppression of Gross Chromosomal Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568146. [PMID: 38045423 PMCID: PMC10690203 DOI: 10.1101/2023.11.21.568146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Maciej Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Kim SM, Forsburg SL. Multiple DNA repair pathways contribute to MMS-induced post-replicative DNA synthesis in S. pombe . MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000974. [PMID: 37854101 PMCID: PMC10580077 DOI: 10.17912/micropub.biology.000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Replication stress can induce DNA synthesis outside of replicative S-phase. We have previously demonstrated that fission yeast cells stimulate DNA synthesis in G2-phase but not in M-phase in response to DNA alkylating agent MMS. In this study, we show that various DNA repair pathways, including translesion synthesis and break-induced replication contribute to post-replicative DNA synthesis. Checkpoint kinases, various repair and resection proteins, and multiple polymerases are also involved.
Collapse
Affiliation(s)
- Seong Min Kim
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States
| | - Susan L. Forsburg
- University of Southern California, Los Angeles, California, United States
| |
Collapse
|
6
|
Kim SM, Forsburg SL. Determinants of RPA megafoci localization to the nuclear periphery in response to replication stress. G3 (BETHESDA, MD.) 2022; 12:jkac116. [PMID: 35567482 PMCID: PMC9258583 DOI: 10.1093/g3journal/jkac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Upon replication stress, ssDNA, coated by the ssDNA-binding protein RPA, accumulates and generates a signal to activate the replication stress response. Severe replication stress induced by the loss of minichromosome maintenance helicase subunit Mcm4 in the temperature-sensitive Schizosaccharomyces pombe degron mutant (mcm4-dg) results in the formation of a large RPA focus that is translocated to the nuclear periphery. We show that resection and repair processes and chromatin remodeler Swr1/Ino80 are involved in the large RPA foci formation and its relocalization to nuclear periphery. This concentrated accumulation of RPA increases the recruitment of Cds1 to chromatin and results in an aberrant cell cycle that lacks MBF-mediated G1/S accumulation of Tos4. These findings reveal a distinct replication stress response mediated by localized accumulation of RPA that allows the evasion of cell cycle arrest.
Collapse
Affiliation(s)
- Seong Min Kim
- Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Susan L Forsburg
- Corresponding author: Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
7
|
Vines AJ, Cox K, Leland BA, King MC. Homology-directed repair involves multiple strand invasion cycles in fission yeast. Mol Biol Cell 2022; 33:ar30. [PMID: 35080989 PMCID: PMC9250353 DOI: 10.1091/mbc.e20-07-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair.
Collapse
Affiliation(s)
- Amanda J Vines
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Kenneth Cox
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Bryan A Leland
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| |
Collapse
|
8
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.
Collapse
Affiliation(s)
- Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; .,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Zhang Y, Davis L, Maizels N. Pathways and signatures of mutagenesis at targeted DNA nicks. PLoS Genet 2021; 17:e1009329. [PMID: 33857147 PMCID: PMC8078790 DOI: 10.1371/journal.pgen.1009329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/27/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Nicks are the most frequent form of DNA damage and a potential source of mutagenesis in human cells. By deep sequencing, we have identified factors and pathways that promote and limit mutagenic repair at a targeted nick in human cells. Mutations were distributed asymmetrically around the nick site. BRCA2 inhibited all categories of mutational events, including indels, SNVs and HDR. DNA2 and RPA promoted resection. DNA2 inhibited 1 bp deletions but contributed to longer deletions, as did REV7. POLQ stimulated SNVs. Parallel analysis of DSBs targeted to the same site identified similar roles for DNA2 and POLQ (but not REV7) in promoting deletions and for POLQ in stimulating SNVs. Insertions were infrequent at nicks, and most were 1 bp in length, as at DSBs. The translesion polymerase REV1 stimulated +1 insertions at one nick site but not another, illustrating the potential importance of sequence context in determining the outcome of mutagenic repair. These results highlight the potential for nicks to promote mutagenesis, especially in BRCA-deficient cells, and identify mutagenic signatures of DNA2, REV1, REV3, REV7 and POLQ.
Collapse
Affiliation(s)
- Yinbo Zhang
- Department of Immunology, University of Washington Medical School, Seattle, Washington, United States of America
| | - Luther Davis
- Department of Immunology, University of Washington Medical School, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington Medical School, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington Medical School, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. ACTA ACUST UNITED AC 2021; 2:115-125. [PMID: 33817557 PMCID: PMC7996122 DOI: 10.1007/s42764-021-00035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.
Collapse
|
11
|
Li T, Petreaca RC, Forsburg SL. Schizosaccharomyces pombe KAT5 contributes to resection and repair of a DNA double-strand break. Genetics 2021; 218:6173406. [PMID: 33723569 DOI: 10.1093/genetics/iyab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/14/2022] Open
Abstract
Chromatin remodeling is essential for effective repair of a DNA double-strand break (DSB). KAT5 (Schizosaccharomyces pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA DSB, including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination (HR). These phenotypes of mst1 are similar to pht1-4KR, a nonacetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs toward HR pathways by modulating resection at the DSB.
Collapse
Affiliation(s)
- Tingting Li
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Ruben C Petreaca
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
- Department of Molecular Genetics, Ohio State University, Marion, OH 43302, USA
| | - Susan L Forsburg
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
12
|
Liu S, Hua Y, Wang J, Li L, Yuan J, Zhang B, Wang Z, Ji J, Kong D. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 2021; 184:1314-1329.e10. [PMID: 33626331 DOI: 10.1016/j.cell.2021.01.048] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022]
Abstract
End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.
Collapse
Affiliation(s)
- Sijie Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingna Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyan Li
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Yuan
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyang Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
CRL4Cdt2 ubiquitin ligase regulates Dna2 and Rad16 (XPF) nucleases by targeting Pxd1 for degradation. PLoS Genet 2020; 16:e1008933. [PMID: 32692737 PMCID: PMC7394458 DOI: 10.1371/journal.pgen.1008933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/31/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
Structure-specific endonucleases (SSEs) play key roles in DNA replication, recombination, and repair. SSEs must be tightly regulated to ensure genome stability but their regulatory mechanisms remain incompletely understood. Here, we show that in the fission yeast Schizosaccharomyces pombe, the activities of two SSEs, Dna2 and Rad16 (ortholog of human XPF), are temporally controlled during the cell cycle by the CRL4Cdt2 ubiquitin ligase. CRL4Cdt2 targets Pxd1, an inhibitor of Dna2 and an activator of Rad16, for degradation in S phase. The ubiquitination and degradation of Pxd1 is dependent on CRL4Cdt2, PCNA, and a PCNA-binding degron motif on Pxd1. CRL4Cdt2-mediated Pxd1 degradation prevents Pxd1 from interfering with the normal S-phase functions of Dna2. Moreover, Pxd1 degradation leads to a reduction of Rad16 nuclease activity in S phase, and restrains Rad16-mediated single-strand annealing, a hazardous pathway of repairing double-strand breaks. These results demonstrate a new role of the CRL4Cdt2 ubiquitin ligase in genome stability maintenance and shed new light on how SSE activities are regulated during the cell cycle. Structure-specific endonucleases are enzymes that process DNA intermediates generated in DNA replication, recombination, and repair. Proper regulation of these enzymes is critical for maintaining genome stability. Dna2 and XPF are two such enzymes present across eukaryotes, from yeasts to humans. Here, we show that in the fission yeast Schizosaccharomyces pombe, the activities of Dna2 and Rad16 (the equivalent of human XPF) are temporally controlled during the cell cycle by the CRL4Cdt2 ubiquitin E3 ligase. In the S phase of the cell cycle, CRL4Cdt2 promotes the degradation of Pxd1, which is an inhibitor of Dna2 and an activator of Rad16. Through targeting Pxd1 for degradation, CRL4Cdt2 increases the activity of Dna2 in S phase and is important for the normal S-phase function of Dna2. Meanwhile, the degradation of Pxd1 reduces the activity of Rad16 in S phase, and curtails Rad16-dependent single-strand annealing, a mutagenic DNA repair pathway. Our findings uncover a new mechanism regulating two important endonucleases during the cell cycle, and reveal a new way of coordinating endonucleases to safeguard genome stability.
Collapse
|
14
|
Setiaputra D, Durocher D. Shieldin - the protector of DNA ends. EMBO Rep 2019; 20:embr.201847560. [PMID: 30948458 DOI: 10.15252/embr.201847560] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks are a threat to genome integrity and cell viability. The nucleolytic processing of broken DNA ends plays a central role in dictating the repair processes that will mend these lesions. Usually, DNA end resection promotes repair by homologous recombination, whereas minimally processed ends are repaired by non-homologous end joining. Important in this process is the chromatin-binding protein 53BP1, which inhibits DNA end resection. How 53BP1 shields DNA ends from nucleases has been an enduring mystery. The recent discovery of shieldin, a four-subunit protein complex with single-stranded DNA-binding activity, illuminated a strong candidate for the ultimate effector of 53BP1-dependent end protection. Shieldin consists of REV7, a known 53BP1-pathway component, and three hitherto uncharacterized proteins: C20orf196 (SHLD1), FAM35A (SHLD2), and CTC-534A2.2 (SHLD3). Shieldin promotes many 53BP1-associated activities, such as the protection of DNA ends, non-homologous end joining, and immunoglobulin class switching. This review summarizes the identification of shieldin and the various models of shieldin action and highlights some outstanding questions requiring answers to gain a full molecular understanding of shieldin function.
Collapse
Affiliation(s)
- Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. Proc Natl Acad Sci U S A 2019; 116:6091-6100. [PMID: 30850524 DOI: 10.1073/pnas.1819276116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the repair of DNA double-strand breaks by homologous recombination, the DNA break ends must first be processed into 3' single-strand DNA overhangs. In budding yeast, end processing requires the helicase Sgs1 (BLM in humans), the nuclease/helicase Dna2, Top3-Rmi1, and replication protein A (RPA). Here, we use single-molecule imaging to visualize Sgs1-dependent end processing in real-time. We show that Sgs1 is recruited to DNA ends through Top3-Rmi1-dependent or -independent means, and in both cases Sgs1 is maintained in an immoble state at the DNA ends. Importantly, the addition of Dna2 triggers processive Sgs1 translocation, but DNA resection only occurs when RPA is also present. We also demonstrate that the Sgs1-Dna2-Top3-Rmi1-RPA ensemble can efficiently disrupt nucleosomes, and that Sgs1 itself possesses nucleosome remodeling activity. Together, these results shed light on the regulatory interplay among conserved protein factors that mediate the nucleolytic processing of DNA ends in preparation for homologous recombination-mediated chromosome damage repair.
Collapse
|
16
|
Bordelet H, Dubrana K. Keep moving and stay in a good shape to find your homologous recombination partner. Curr Genet 2019; 65:29-39. [PMID: 30097675 PMCID: PMC6342867 DOI: 10.1007/s00294-018-0873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023]
Abstract
Genomic DNA is constantly exposed to damage. Among the lesion in DNA, double-strand breaks (DSB), because they disrupt the two strands of the DNA double helix, are the more dangerous. DSB are repaired through two evolutionary conserved mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Whereas NHEJ simply reseals the double helix with no or minimal processing, HR necessitates the formation of a 3'ssDNA through the processing of DSB ends by the resection machinery and relies on the recognition and pairing of this 3'ssDNA tails with an intact homologous sequence. Despite years of active research on HR, the manner by which the two homologous sequences find each other in the crowded nucleus, and how this modulates HR efficiency, only recently emerges. Here, we review recent advances in our understanding of the factors limiting the search of a homologous sequence during HR.
Collapse
Affiliation(s)
- Hélène Bordelet
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France
| | - Karine Dubrana
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France.
| |
Collapse
|
17
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proc Natl Acad Sci U S A 2018; 115:E11961-E11969. [PMID: 30510002 DOI: 10.1073/pnas.1816539115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Mre11-Rad50-Xrs2NBS1 complex plays important roles in the DNA damage response by activating the Tel1ATM kinase and catalyzing 5'-3' resection at DNA double-strand breaks (DSBs). To initiate resection, Mre11 endonuclease nicks the 5' strands at DSB ends in a reaction stimulated by Sae2CtIP Accordingly, Mre11-nuclease deficient (mre11-nd) and sae2Δ mutants are expected to exhibit similar phenotypes; however, we found several notable differences. First, sae2Δ cells exhibit greater sensitivity to genotoxins than mre11-nd cells. Second, sae2Δ is synthetic lethal with sgs1Δ, whereas the mre11-nd sgs1Δ mutant is viable. Third, Sae2 attenuates the Tel1-Rad53CHK2 checkpoint and antagonizes Rad953BP1 accumulation at DSBs independent of Mre11 nuclease. We show that Sae2 competes with other Tel1 substrates, thus reducing Rad9 binding to chromatin and to Rad53. We suggest that persistent Sae2 binding at DSBs in the mre11-nd mutant counteracts the inhibitory effects of Rad9 and Rad53 on Exo1 and Dna2-Sgs1-mediated resection, accounting for the different phenotypes conferred by mre11-nd and sae2Δ mutations. Collectively, these data show a resection initiation independent role for Sae2 at DSBs by modulating the DNA damage checkpoint.
Collapse
|
19
|
Oh J, Symington LS. Role of the Mre11 Complex in Preserving Genome Integrity. Genes (Basel) 2018; 9:E589. [PMID: 30501098 PMCID: PMC6315862 DOI: 10.3390/genes9120589] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous lesions that threaten genome integrity and cell survival. The DNA damage response (DDR) safeguards the genome by sensing DSBs, halting cell cycle progression and promoting repair through either non-homologous end joining (NHEJ) or homologous recombination (HR). The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex is central to the DDR through its structural, enzymatic, and signaling roles. The complex tethers DNA ends, activates the Tel1/ATM kinase, resolves protein-bound or hairpin-capped DNA ends, and maintains telomere homeostasis. In addition to its role at DSBs, MRX/N associates with unperturbed replication forks, as well as stalled replication forks, to ensure complete DNA synthesis and to prevent chromosome rearrangements. Here, we summarize the significant progress made in characterizing the MRX/N complex and its various activities in chromosome metabolism.
Collapse
Affiliation(s)
- Julyun Oh
- Biological Sciences Program, Columbia University, New York, NY 10027, USA.
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|